We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation

    Ruenn Chai Lai

    Institute of Medical Biology, A*STAR, 8A Biomedical Grove, 138648 Singapore

    ,
    Ronne Wee Yeh Yeo

    Institute of Medical Biology, A*STAR, 8A Biomedical Grove, 138648 Singapore

    National University of Singapore, Graduate School for Integrative Sciences & Engineering, 28 Medical Drive, 117456 Singapore

    ,
    Kok Hian Tan

    Department of Maternal Fetal Medicine, KK Women’s & Children’s Hospital, 100 Bukit Timah Road, 229899 Singapore

    &
    Sai Kiang Lim

    * Author for correspondence

    Department of Surgery, YLL School of Medicine, NUS, 5 Lower Kent Ridge Road, 119074 Singapore.

    Published Online:https://doi.org/10.2217/rme.13.4

    The therapeutic efficacy of mesenchymal stem cell (MSC) transplantation has recently been attributed to exosomes when a single bolus of MSC exosomes prior to reperfusion of ischemic myocardium ameliorates reperfusion injury and reduces infarct size. In this article we review the therapeutic efficacy of MSC exosome in ameliorating cell intrinsic factors in reperfusion injury by focusing on the proteome complementation of exosomes and reperfused myocardium. The well-documented ATP deficit and initiation of apoptosis during ischemia and reperfusion were recently found to be underpinned by a proteomic deficit in enzymes critical for fatty acid oxidation, glycolysis and tricarboxylic acid cycle, and a proteomic surplus of proapoptotic proteins. Interestingly, this deficit in glycolytic enzymes was complemented by an abundance in MSC exosomes and the surplus of proapoptotic proteins was circumvented by CD73 that could increase survival signaling through the activation of reperfusion injury salvage kinases. Together, this provides a window of opportunity for the cells to repair and regenerate thus constituting the rationale for the therapeutic efficacy of MSC exosomes.

    Papers of special note have been highlighted as: ▪ of interest

    References

    • Friedenstein AJ, Petrakova KV, Kurolesova AI et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation6,230–247 (1968).▪ First description of mesenchymal stem cells.
    • Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J. Cell. Physiol.211,27–35 (2007).
    • Kern S, Eichler H, Stoeve J et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells24,1294–1301 (2006).
    • Lee RH, Kim B, Choi I et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell. Physiol. Biochem.14,311–324 (2004).
    • Banas A, Teratani T, Yamamoto Y et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology46,219–228 (2007).
    • in‘t Anker PS, Noort WA, Scherjon SA et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica88,845–852 (2003).
    • Gotherstrom C, Ringden O, Westgren M et al. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant.32,265–272 (2003).
    • Young HE, Steele TA, Bray RA et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat. Rec.264,51–62. (2001).
    • Jackson WM, Aragon AB, Djouad F et al. Mesenchymal progenitor cells derived from traumatized human muscle. J. Tissue Eng. Regen. Med.3,129–138 (2009).
    • 10  Roubelakis MG, Pappa KI, Bitsika V et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev.16,931–952 (2007).
    • 11  Tsai MS, Lee JL, Chang YJ et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod.19,1450–1456 (2004).
    • 12  Fukuchi Y, Nakajima H, Sugiyama D et al. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells22,649–658 (2004).
    • 13  Miao Z, Jin J, Chen L et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int.30,681–687 (2006).
    • 14  Erices AA, Allers CI, Conget PA et al. Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant.12,555–561 (2003).
    • 15  Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J. Dent. Res.88,792–806 (2009).
    • 16  Perry BC, Zhou D, Wu X et al. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng. Part C Methods14,149–156 (2008).
    • 17  Lian Q, Lye E, Suan Yeo K et al. Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells25,425–436 (2007).
    • 18  Lai RC, Choo A, Lim SK. Derivation and characterization of human ESC-derived mesenchymal stem cells. Methods Mol. Biol.698,141–150 (2011).
    • 19  Jung Y, Bauer G, Nolta JA. Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells30,42–47 (2012).
    • 20  Bruder SP, Kurth AA, Shea M et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J. Orth. Res.16,155–162 (1998).
    • 21  Johnstone B, Hering TM, Caplan AI et al.In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res.238,265–272 (1998).
    • 22  Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science284,143–147 (1999).
    • 23  Haynesworth SE, Goshima J, Goldberg VM et al. Characterization of cells with osteogenic potential from human marrow. Bone13,81–88 (1992).
    • 24  Yoo JU, Barthel TS, Nishimura K et al. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J. Bone Joint Surg. Am.80,1745–1757 (1998).
    • 25  Dennis JE, Merriam A, Awadallah A et al. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J. Bone Miner. Res.14,700–709. (1999).
    • 26  Gojo S, Gojo N, Takeda Y et al.In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp. Cell Res.288,51–59 (2003).
    • 27  Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol.164,247–256 (2000).
    • 28  Woodbury D, Schwarz EJ, Prockop DJ et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res.61,364–370 (2000).
    • 29  Kohyama J, Abe H, Shimazaki T et al. Brain from bone: Efficient ‘meta-differentiation’ of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation68,235–244 (2001).
    • 30  Kobayashi T, Hamano K, Li TS et al. Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. J. Surg. Res.89,189–195 (2000).
    • 31  Tomita S, Li RK, Weisel RD et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation100,II247–II256 (1999).
    • 32  Sato T, Iso Y, Uyama T et al. Coronary vein infusion of multipotent stromal cells from bone marrow preserves cardiac function in swine ischemic cardiomyopathy via enhanced neovascularization. Lab. Invest.91,553–564 (2011).
    • 33  Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells25,2896–2902 (2007).
    • 34  Ferrand J, Noel D, Lehours P et al. Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One6,e19569 (2011).
    • 35  Spees JL, Olson SD, Ylostalo J et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc. Natl Acad. Sci. USA100,2397–2402 (2003).
    • 36  Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature422,901–904 (2003).
    • 37  Prockop DJ. ‘Stemness’ does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin. Pharmacol. Ther.82,241–243 (2007).
    • 38  da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells26,2287–2299 (2008).
    • 39  Dai W, Hale SL, Martin BJ et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation112,214–223 (2005).
    • 40  Noiseux N, Gnecchi M, Lopez-Ilasaca M et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol. Ther.14,840–850 (2006).
    • 41  Iso Y, Spees JL, Serrano C et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem. Biophys. Res. Commun.354,700–706 (2007).
    • 42  Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J. Cell Biochem.98,1076–1084 (2006).▪ Review of the literature to rationalize cellular secretion as the mediator of mesenchymal stem cell therapeutic effects. This group was the first to describe the secretions of mesenchymal stem cells.
    • 43  Ankrum J, Karp JM. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med.16,203–209 (2010).
    • 44  Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J. Cell Physiol.166,585–592 (1996).
    • 45  Sze SK, de Kleijn DP, Lai RC et al. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol. Cell. Proteomics6,1680–1689 (2007).
    • 46  Timmers L, Lim SK, Hoefer IE et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res.6,206–214 (2011).
    • 47  Timmers L, Lim S-K, Arslan F et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res.1,129–137 (2008).
    • 48  Meirelles Lda S, Fontes AM, Covas DT et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev.20,419–427 (2009).
    • 49  Chen L, Tredget EE, Wu PY et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One3,e1886 (2008).
    • 50  Hung SC, Pochampally RR, Chen SC et al. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells25,2363–2370 (2007).
    • 51  Kinnaird T, Stabile E, Burnett MS et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation109,1543–1549 (2004).
    • 52  Li L, Zhang S, Zhang Y et al. Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol. Biol. Rep.36,725–731 (2009).
    • 53  Lin YC, Ko TL, Shih YH et al. Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke42,2045–2053 (2011).
    • 54  Togel F, Weiss K, Yang Y et al. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am. J. Physiol. Renal Physiol.292,F1626–F1635 (2007).
    • 55  van Poll D, Parekkadan B, Cho CH et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology47,1634–1643 (2008).
    • 56  Bruno S, Grange C, Deregibus MC et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol.20,1053–1067 (2009).
    • 57  Gatti S, Bruno S, Deregibus MC et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant.26,1474–1483 (2011).
    • 58  Lai RC, Arslan F, Lee MM et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res.4,214–222 (2010).▪ First demonstration of the therapeutic efficacy of exosomes, and of mesenchymal stem cell exosomes having cardioprotective effects.
    • 59  Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol.9,581–593 (2009).
    • 60  Duijvesz D, Luider T, Bangma CH et al. Exosomes as biomarker treasure chests for prostate cancer. Eur. Urol.59,823–831 (2011).
    • 61  Simpson RJ, Mathivanan S. Extracellular microvesicles: the need for internationally recognised nomenclature and stringent purification criteria. J. Proteomics Bioinform.5,ii (2012).
    • 62  Lai RC, Yeo RWY, Tan KH et al. Exosomes for drug delivery – a novel application for the mesenchymal stem cell. Biotechnol. Adv. doi:10.1016/j.biotechadv.2012.08.008 (2012) (Epub ahead of print).
    • 63  Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics8,4083–4099 (2008).
    • 64  Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics9,4997–5000 (2009).
    • 65  Kalra H, Simpson RJ, Ji H et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol.10,e1001450 (2012).
    • 66  Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell33,967–978 (1983).
    • 67  Raposo G, Nijman HW, Stoorvogel W et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med.183,1161–1172 (1996).
    • 68  Zitvogel L, Regnault A, Lozier A et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med.4,594–600 (1998).
    • 69  Skog J, Wurdinger T, van Rijn S et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol.10,1470–1476 (2008).
    • 70  Taylor DDl, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol.110,13–21 (2008).
    • 71  Rabinowits G, Gerçel-Taylor C, Day JM et al. Exosomal microRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer10,42–46 (2009).
    • 72  Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen. Med.6,481–492 (2011).
    • 73  Lai RC, Arslan F, Tan SS et al. Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles. J. Mol. Cell. Cardiol.48,1215–1224 (2010).
    • 74  Bassand JP, Danchin N, Filippatos G et al. Implementation of reperfusion therapy in acute myocardial infarction. A policy statement from the European Society of Cardiology. Eur. Heart J.26,2733–2741 (2005).
    • 75  Bleumink GS, Knetsch AM, Sturkenboom MCJM et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure. Eur. Heart J.25,1614–1619 (2004).
    • 76  Jennings RB, Sommers HM, Smyth GA et al. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch. Pathol.70,68–78 (1960).
    • 77  Knight DR. Editorial overview: cardioprotective drugs for myocardial ischemic injury--a therapeutic area at risk. Curr. Opin Investig. Drugs8,190–192 (2007).
    • 78  Rosano GM, Fini M, Caminiti G et al. Cardiac metabolism in myocardial ischemia. Curr. Pharm. Des.14,2551–2562 (2008).▪ One of the most comprehensive overviews of the biochemistry of the myocardium during ischemia and reperfusion – highly educational.
    • 79  Frank A, Bonney M, Bonney S et al. Myocardial ischemia reperfusion injury. Semin. Cardiothorac. Vasc. Anesth.16,123–132 (2012).
    • 80  Inserte J, Garcia-Dorado D, Ruiz-Meana M et al. Effect of inhibition of Na+/Ca2+ exchanger at the time of myocardial reperfusion on hypercontracture and cell death. Cardiovasc. Res.55,739–748 (2002).
    • 81  Garnier A, Fortin D, Deloménie C et al. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J. Physiol.551,491–501 (2003).
    • 82  Jennings RB, Reimer KA. The cell biology of acute myocardial ischemia. Annu. Rev. Med.42,225–246 (1991).
    • 83  Gurusamy N, Goswami S, Malik G et al. Oxidative injury induces selective rather than global inhibition of proteasomal activity. J. Mol. Cell. Cardiol.44,419–428 (2008).
    • 84  Jennings RB, Reimer KA. Lethal myocardial ischemic injury. Am. J. Pathol.102,241–255 (1981).
    • 85  Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc. Res.61,461–470 (2004).
    • 86  Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. Cell Physiol.282,C227–C241 (2002).
    • 87  Eltzschig HK, Eckle T. Ischemia and reperfusion – from mechanism to translation. Nat. Med.17,1391–1401 (2011).
    • 88  Zhao ZQ, Morris CD, Budde JM et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc. Res.59,132–142 (2003).
    • 89  Gottlieb RA, Burleson KO, Kloner RA et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest.94,1621–1628 (1994).
    • 90  Freude B, Masters TN, Robicsek F et al. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J. Mol. Cell. Cardiol.32,197–208 (2000).
    • 91  Dirksen MT, Laarman GJ, Simoons ML et al. Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovasc. Res.74,343–355 (2007).
    • 92  Li X, Arslan F, Ren Y et al. Metabolic adaptation to a disruption in oxygen supply during myocardial ischemia and reperfusion is underpinned by temporal and quantitative changes in the cardiac proteome. J. Proteome Res.11,2331–2346 (2012).▪ The first detailed quantitative and temporal proteomic profile of the myocardium during ischemia and reperfusion.
    • 93  Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc. Res.61,448–460 (2004).
    • 94  Kajstura J, Cheng W, Reiss K et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab. Invest.74,86–107 (1996).
    • 95  Olivetti G, Quaini F, Sala R et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J. Mol. Cell. Cardiol.28,2005–2016 (1996).
    • 96  Yaoita H, Ogawa K, Maehara K et al. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation97,276–281 (1998).
    • 97  Mocanu MM, Baxter GF, Yellon DM. Caspase inhibition and limitation of myocardial infarct size: protection against lethal reperfusion injury. Br. J. Pharmacol.130,197–200 (2000).
    • 98  Holly TA, Drincic A, Byun Y et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J. Mol. Cell. Cardiol.31,1709–1715 (1999).
    • 99  Lai RC, Yeo RW, Tan SS et al.Mesenchymal Stem Cell Therapy. Chase LG, Vemuri MC (Eds). Humana Press, NY, USA, (2012).
    • 100  Thery C, Duban L, Segura E et al. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat. Immunol.3,1156–1162 (2002).
    • 101  Andre F, Chaput N, Schartz NE et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol.172,2126–2136 (2004).
    • 102  Valadi H, Ekstrom K, Bossios A et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol.9,654–659 (2007).
    • 103  Alvarez-Erviti L, Seow Y, Yin H et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnol.29,341–345 (2011).
    • 104  Chen TS, Lai RC, Lee MM et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res.38,215–224 (2010).
    • 105  Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res.71,3792–3801 (2011).
    • 106  Tian T, Wang Y, Wang H et al. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell Biochem.111,488–496 (2010).
    • 107  Feng D, Zhao WL, Ye YY et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic11,675–687 (2010).
    • 108  Parolini I, Federici C, Raggi C et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem.284,34211–34222 (2009).
    • 109  Schrader J. Mechanisms of ischemic injury in the heart. Basic Res. Cardiol.80(Suppl. 2),135–139 (1985).
    • 110  Walter G, Vandenborne K, Elliott M et al.In vivo ATP synthesis rates in single human muscles during high intensity exercise. J. Physiol.519(Pt 3),901–910 (1999).
    • 111  Eckle T, Hartmann K, Bonney S et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat. Med.18,774–782 (2012).
    • 112  Eltzschig HK, Eckle T. Ischemia and reperfusion – from mechanism to translation. Nat. Med.17,1391–1401 (2011).
    • 113  Neubauer S. The failing heart – an engine out of fuel. N. Eng. J. Med.356,1140–1151 (2007).
    • 114  Das DK, Maulik N. Bioenergetics, ischemic contracture and reperfusion injury. EXS76,155–173 (1996).
    • 115  Van Rooyen J, McCarthy J, Opie LH. Increased glycolysis during ischaemia mediates the protective effect of glucose and insulin in the isolated rat heart despite the presence of cardiodepressant exogenous substrates. Cardiovasc. J. S. Afr.13,103–109 (2002).
    • 116  Correa F, García N, Gallardo-Pérez JC et al. Post-conditioning preserves glycolytic ATP during early reperfusion: a survival mechanism for the reperfused heart. Cell. Physiol. Biochem.22,635–644 (2008).
    • 117  Jeremy RW, Ambrosio G, Pike MM et al. The functional recovery of post-ischemic myocardium requires glycolysis during early reperfusion. J. Mol. Cell. Cardiol.25,261–276 (1993).
    • 118  Vanoverschelde JL, Janier MF, Bakke JE et al. Rate of glycolysis during ischemia determines extent of ischemic injury and functional recovery after reperfusion. Am. J. Physiol. Heart Circ. Physiol.267,H1785–H1794 (1994).
    • 119  Jeremy RW, Koretsune Y, Marban E et al. Relation between glycolysis and calcium homeostasis in postischemic myocardium. Circ. Res.70,1180–1190 (1992).
    • 120  Van Emous JG, Vleggeert-Lankamp CLAM, Nederhoff MGJ et al. Postischemic Na+-K+-ATPase reactivation is delayed in the absence of glycolytic ATP in isolated rat hearts. Am. J. Physiol. Heart Circ. Physiol.280,H2189–H2195 (2001).
    • 121  Krause S, Hess ML. Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Circ. Res.55,176–184 (1984).
    • 122  Xu KY, Zweier JL, Becker LC. Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ. Res.77,88–97 (1995).
    • 123  Bunger R, Mallet RT, Hartman DA. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Eur. J. Biochem.180,221–233 (1989).
    • 124  Schwaiger M, Neese RA, Araujo L et al. Sustained nonoxidative glucose utilization and depletion of glycogen in reperfused canine myocardium. J. Am. Coll. Cardiol.13,745–754 (1989).
    • 125  Mallet RT, Hartman DA, Bunger R. Glucose requirement for postischemic recovery of perfused working heart. Eur. J. Biochem.188,481–493 (1990).
    • 126  Bers DM, Barry WH, Despa S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc. Res.57,897–912 (2003).
    • 127  Mercer RW, Dunham PB. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J. Gen. Physiol.78,547–568 (1981).
    • 128  Sugiyama S, Satoh H, Nomura N et al. The importance of glycolytically-derived ATP for the Na+/H+ exchange activity in guinea pig ventricular myocytes. Mol. Cell. Biochem.217,153–161 (2001).
    • 129  Yoshioka J, Chutkow WA, Lee S et al. Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. J. Clin. Invest.122,267–279 (2012).
    • 130  Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol.27,441–464 (2011).
    • 131  Penefsky HS. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. Proc. Natl Acad. Sci. USA82,1589–1593 (1985).
    • 132  Arslan F, Lai RC, Smeets MB et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. (2013) (In press).
    • 133  Yellon DM, Baxter GF. Reperfusion injury revisited: is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc. Med.9,245–249 (1999).
    • 134  Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail. Rev.12,217–234 (2007).
    • 135  Steelman LS, Chappell WH, Abrams SL et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging3,192–222 (2011).
    • 136  McDunn JE, Muenzer JT, Rachdi L et al. Peptide-mediated activation of Akt and extracellular regulated kinase signaling prevents lymphocyte apoptosis. FASEB J.22,561–568 (2008).
    • 137  Yin J, Xu K, Zhang J et al. Wound-induced ATP release and EGF receptor activation in epithelial cells. J. Cell Sci.120,815–825 (2007).
    • 138  Zhao Z-Q, Corvera JS, Halkos ME et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol.285,H579–H588 (2003).
    • 139  Staat P, Rioufol G, Piot C et al. Postconditioning the human heart. Circulation112,2143–2148 (2005).
    • 140  Lønborg J, Kelbæk H, Vejlstrup N et al. Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ. Cardiovasc. Interv.3(1),34–41 (2010).
    • 141  Yang XC, Liu Y, Wang LF et al. Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J. Invasive Cardiol.19,424–430 (2007).
    • 142  Thibault H, Piot C, Staat P et al. Long-term benefit of postconditioning. Circulation117,1037–1044 (2008).
    • 143  Zhao ZQ, Vinten-Johansen J. Postconditioning: reduction of reperfusion-induced injury. Cardiovasc. Res.70,200–211 (2006).
    • 144  Colgan SP, Eltzschig HK, Eckle T et al. Physiological roles for ecto-5´-nucleotidase (CD73). Purinergic Signal.2,351–360 (2006).
    • 145  Gross ER, Gross GJ. Ligand triggers of classical preconditioning and postconditioning. Cardiovasc. Res.70,212–221 (2006).
    • 146  Forman MB, Stone GW, Jackson EK. Role of adenosine as adjunctive therapy in acute myocardial infarction. Cardiovasc. Drug Rev.24,116–147 (2006).
    • 147  Headrick JP, Lasley RD. Adenosine receptors and reperfusion injury of the heart. Handb. Exp. Pharmacol. (193), 189–214 (2009).
    • 148  Luthje J. Origin, metabolism and function of extracellular adenine nucleotides in the blood. Klin. Wochenschr.67,317–327 (1989).
    • 149  Chekeni FB, Elliott MR, Sandilos JK et al. Pannexin 1 channels mediate signal release and membrane permeability during apoptosis. Nature467,863–867 (2010).
    • 150  Luthje J, Ogilvie A. Catabolism of Ap4A and Ap3A in whole blood. The dinucleotides are long-lived signal molecules in the blood ending up as intracellular ATP in the erythrocytes. Eur. J. Biochem.173,241–245 (1988).
    • 151  Jacobson KA. Introduction to adenosine receptors as therapeutic targets. Handb. Exp. Pharmacol.1–24 (2009).
    • 152  Lai RC, Yeo RW, Tan KH et al. Exosomes for drug delivery – a novel application for the mesenchymal stem cell. Biotechnol. Adv. doi:10.1016/j.biotechadv.2012.08.008 (2012) (Epub ahead of print).
    • 153  Lai RC, Tan SS, Teh BJ et al. Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int. J. Proteomics2012,971907 (2012).
    • 201  ExoCarta. www.exocarta.org
    • 202  Vesiclepedia. A community compendium for extracellular vesicles. www.microvesicles.org