We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The impact of size on particulate vaccine adjuvants

    Ruchi R Shah

    Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA

    ,
    Derek T O'Hagan

    Novartis Vaccines & Diagnostics, 350 Massachusetts Avenue, Cambridge, MA 02139, USA

    ,
    Mansoor M Amiji

    Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA

    &
    Luis A Brito

    *Author for correspondence:

    E-mail Address: luis.brito@novartis.com

    Novartis Vaccines & Diagnostics, 350 Massachusetts Avenue, Cambridge, MA 02139, USA

    Published Online:https://doi.org/10.2217/nnm.14.193

    Particulate adjuvants have been successful at inducing increased immune responses against many poorly immunogenic antigens. However, the mechanism of action of these adjuvants often remains unclear. As more potential vaccine targets are emerging, it is becoming necessary to broaden our knowledge on the factors involved in generating potent immune responses to recombinant antigens with adjuvants. While composition of adjuvants is integral in defining the overall performance of an adjuvant, some physical parameters such as particle size, surface charge and surface modification may also contribute to the potency. In this review, we will try to highlight the role of particle size in controlling the immune responses to adjuvanted vaccines, with a focus on insoluble aluminum salts, oil-in-water emulsions, polymeric particles and liposomes.

    References

    • 1 Kommareddy S, Amiji M. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J. Pharm. Sci. 96(2), 397–407 (2007).
    • 2 Xu J, Gattacceca F, Amiji M. Biodistribution and pharmacokinetics of EGFR-targeted thiolated gelatin nanoparticles following systemic administration in pancreatic tumor-bearing mice. Mol. Pharm. 10(5), 2031–2044 (2013).
    • 3 Van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res. 24(8), 1405–1414 (2007).
    • 4 Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
    • 5 Cho K, Wang X, Nie S, Chen Z, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14(5), 1310–1316 (2008).
    • 6 Barenholz Y. Doxil® – the first FDA-approved nano-drug: lessons learned. J. Control. Release 160(2), 117–134 (2012).
    • 7 Kreuter J. Nanoparticles and microparticles for drug and vaccine delivery. J. Anat. 189(Pt 3), 503–505 (1996).
    • 8 O'Hagan DT. The intestinal uptake of particles and the implications for drug and antigen delivery. J. Anat. 189(Pt 3), 477–482 (1996).
    • 9 Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 6(4), 319–327 (2002).
    • 10 Gindy ME, Prud'homme RK. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin. Drug Deliv. 6(8), 865–878 (2009).
    • 11 Gradishar WJ, Tjulandin S, Davidson N et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23(31), 7794–7803 (2005).
    • 12 Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10(11), 787–796 (2010).
    • 13 Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38(5), 1404–1413 (2008).
    • 14 Xiang SD, Scholzen A, Minigo G et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods 40(1), 1–9 (2006).
    • 15 Gamvrellis A, Leong D, Hanley JC, Xiang SD, Mottram P, Plebanski M. Vaccines that facilitate antigen entry into dendritic cells. Immunol. Cell Biol. 82(5), 506–516 (2004).
    • 16 Fifis T, Gamvrellis A, Crimeen-Irwin B et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173(5), 3148–3154 (2004).
    • 17 Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol. Med. 6(6), 708–720 (2014).
    • 18 Foged C, Hansen J, Agger EM. License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur. J. Pharm. Sci. 45(4), 482–491 (2012).
    • 19 Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat. Med. 19(12), 1597–1608 (2013).
    • 20 Shah R, Brito L, O'Hagan D, Amiji M. Emulsions as vaccine adjuvants. In: Subunit Vaccine Delivery. Foged C, Rades TH, Perrie Y, Hook S (Eds). Springer, NY, USA (2015).
    • 21 Gupta RaR, Bradford. Aluminium compounds as vaccine adjuvants. In: Vaccine Adjuvants Preparation Methods and Res. Protocols. O'Hagan D (Ed.). Humana, NJ, USA, 65–89 (2000).
    • 22 Hem SL, Hogenesch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev. Vaccines 6(5), 685–698 (2007).
    • 23 De Gregorio E, Caproni E, Ulmer JB. Vaccine adjuvants: mode of action. Front. Immunol. 4, 214 (2013).
    • 24 De Gregorio E, D'oro U, Wack A. Immunology of TLR-independent vaccine adjuvants. Curr. Opin. Immunol. 21(3), 339–345 (2009).
    • 25 De Gregorio E, Tritto E, Rappuoli R. Alum adjuvanticity: unraveling a century old mystery. Eur. J. Immunol. 38(8), 2068–2071 (2008).
    • 26 Lambrecht BN, Kool M, Willart MA, Hammad H. Mechanism of action of clinically approved adjuvants. Curr. Opin. Immunol. 21(1), 23–29 (2009).
    • 27 Marrack P, Mckee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9(4), 287–293 (2009).
    • 28 Kool M, Petrilli V, De Smedt T et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181(6), 3755–3759 (2008).
    • 29 Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198), 1122–1126 (2008).
    • 30 Hem SL, White JL. Structure and properties of aluminum-containing adjuvants. Pharm. Biotechnol. 6, 249–276 (1995).
    • 31 Romero Mendez IZ, Shi Y, Hogenesch H, Hem SL. Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine 25(5), 825–833 (2007).
    • 32 Morefield GL, Sokolovska A, Jiang D, Hogenesch H, Robinson JP, Hem SL. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine 23(13), 1588–1595 (2005).
    • 33 Li X, Aldayel AM, Cui Z. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J. Control. Release 173, 148–157 (2014).
    • 34 O'Hagan DT, Ott GS, Nest GV, Rappuoli R, Giudice GD. The history of MF59((R)) adjuvant: a phoenix that arose from the ashes. Expert Rev. Vaccines 12(1), 13–30 (2013).
    • 35 Morel S, Didierlaurent A, Bourguignon P et al. Adjuvant System AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29(13), 2461–2473 (2011).
    • 36 Ott G, Barchfeld GL, Van Nest G. Enhancement of humoral response against human influenza vaccine with the simple submicron oil/water emulsion adjuvant MF59. Vaccine 13(16), 1557–1562 (1995).
    • 37 Allison AC. Squalene and squalane emulsions as adjuvants. Methods 19(1), 87–93 (1999).
    • 38 Vesikari T, Karvonen A, Tilman S et al. Immunogenicity and safety of MF59-adjuvanted H5N1 influenza vaccine from infancy to adolescence. Pediatrics 126(4), e762–e770 (2010).
    • 39 Villa M, Black S, Groth N et al. Safety of MF59-adjuvanted influenza vaccination in the elderly: results of a comparative study of MF59-adjuvanted vaccine versus nonadjuvanted influenza vaccine in Northern Italy. Am. J. Epidemiol. 178(7), 1139–1145 (2013).
    • 40 Whitehouse MW, Orr KJ, Beck FW, Pearson CM. Freund's adjuvants: relationship of arthritogenicity and adjuvanticity in rats to vehicle composition. Immunology 27(2), 311–330 (1974).
    • 41 Stills HF Jr. Adjuvants and antibody production: dispelling the myths associated with Freund's complete and other adjuvants. ILAR J. 46(3), 280–293 (2005).
    • 42 Stuewart-Tull DE, Shimono T, Kotani S, Knights BA. Immunosuppressive effect in mycobacterial adjuvant emulsions of mineral oils containing low molecular weight hydrocarbons. Int. Arch. Allergy Appl. Immunol. 52(1–4), 118–128 (1976).
    • 43 Murray R, Cohen P, Hardegree MC. Mineral oil adjuvants: biological and chemical studies. Ann. Allergy 30(3), 146–151 (1972).
    • 44 Bovier PA. Epaxal: a virosomal vaccine to prevent hepatitis A infection. Expert Rev. Vaccines 7(8), 1141–1150 (2008).
    • 45 Herzog C, Hartmann K, Kunzi V et al. Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine. Vaccine 27(33), 4381–4387 (2009).
    • 46 Henson D, Van Dissel J, Joosten S et al. Vaccination with a Hybrid 1 (H1) fusion protein combined with a liposomal adjuvant (CAF01) induced antigen specific T-cells 3 years post vaccination in a human clinical trial. (VAC7P.971). J. Immunol. 192(1 Suppl.), 141.116 (2014).
    • 47 Watson DS, Endsley AN, Huang L. Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 30(13), 2256–2272 (2012).
    • 48 Brewer JM, Tetley L, Richmond J, Liew FY, Alexander J. Lipid vesicle size determines the Th1 or Th2 response to entrapped antigen. J. Immunol. 161(8), 4000–4007 (1998).
    • 49 Mann JF, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine 27(27), 3643–3649 (2009).
    • 50 Brewer JM, Pollock KG, Tetley L, Russell DG. Vesicle size influences the trafficking, processing, and presentation of antigens in lipid vesicles. J. Immunol. 173(10), 6143–6150 (2004).
    • 51 Henriksen-Lacey M, Devitt A, Perrie Y. The vesicle size of DDA:TDB liposomal adjuvants plays a role in the cell-mediated immune response but has no significant effect on antibody production. J. Control. Release 154(2), 131–137 (2011).
    • 52 Christensen D, Korsholm KS, Rosenkrands I, Lindenstrom T, Andersen P, Agger EM. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines 6(5), 785–796 (2007).
    • 53 Vangasseri DP, Cui Z, Chen W, Hokey DA, Falo LD Jr, Huang L. Immunostimulation of dendritic cells by cationic liposomes. Mol. membrane Biol. 23(5), 385–395 (2006).
    • 54 Christensen D, Agger EM, Andreasen LV, Kirby D, Andersen P, Perrie Y. Liposome-based cationic adjuvant formulations (CAF): past, present, and future. J. liposome Res. 19(1), 2–11 (2009).
    • 55 Jain S, O'Hagan DT, Singh M. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev. Vaccines 10(12), 1731–1742 (2011).
    • 56 Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 9(9), 1095–1107 (2010).
    • 57 Kreuter J, Berg U, Liehl E, Soliva M, Speiser PP. Influence of the particle size on the adjuvant effect of particulate polymeric adjuvants. Vaccine 4(2), 125–129 (1986).
    • 58 Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: size matters. AAPS J. 15(1), 85–94 (2013).
    • 59 Li X, Sloat BR, Yanasarn N, Cui Z. Relationship between the size of nanoparticles and their adjuvant activity: data from a study with an improved experimental design. Eur. J. Pharm. bioPharm. 78(1), 107–116 (2011).
    • 60 Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298(2), 315–322 (2005).
    • 61 Gamvrellis A, Gloster S, Jefferies M et al. Characterisation of local immune responses induced by a novel nano-particle based carrier-adjuvant in sheep. Vet. Immunol. Immunopathol. 155(1–2), 21–29 (2013).
    • 62 Scheerlinck J-PY, Gloster S, Gamvrellis A, Mottram PL, Plebanski M. Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine 24(8), 1124–1131 (2006).
    • 63 Gutierro I, Hernandez RM, Igartua M, Gascon AR, Pedraz JL. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 21(1–2), 67–77 (2002).
    • 64 Nagamoto T, Hattori Y, Takayama K, Maitani Y. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm. Res. 21(4), 671–674 (2004).
    • 65 Wendorf J, Chesko J, Kazzaz J et al. A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum. Vaccin. 4(1), 44–49 (2008).
    • 66 Singh M, Li XM, Wang H et al. Controlled release microparticles as a single dose diphtheria toxoid vaccine: immunogenicity in small animal models. Vaccine 16(4), 346–352 (1998).
    • 67 Wendorf J, Singh M, Chesko J et al. A practical approach to the use of nanoparticles for vaccine delivery. J. Pharm. Sci. 95(12), 2738–2750 (2006).
    • 68 Galloway AL, Murphy A, Desimone JM et al. Development of a nanoparticle-based influenza vaccine using the PRINT technology. NanoMed. 9(4), 523–531 (2013).
    • 69 Calabro S, Tritto E, Pezzotti A et al. The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 31(33), 3363–3369 (2013).
    • 70 Brar SK, Verma M. Measurement of nanoparticles by light-scattering techniques. Trends Anal. Chem. 30(1), 4–17 (2011).
    • 71 Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. BioPharm. 69(1), 1–9 (2008).