We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanomedicine-fortified cosmeceutical serums for the mitigation of psoriasis and acne

    Priya Patel

    Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, 360005, India

    ,
    Rohit Pal

    Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, 360005, India

    ,
    Krishna Butani

    Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, 360005, India

    ,
    Sudarshan Singh

    *Author for correspondence:

    E-mail Address: sudarshansingh83@hotmail.com

    Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand

    Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand

    &
    Bhupendra G Prajapati

    **Author for correspondence:

    E-mail Address: bhupendra.prajapati@ganpatuniversity.ac.in

    Department of Pharmaceutics & Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, 384012, India

    Published Online:https://doi.org/10.2217/nnm-2023-0147

    Cosmetics have a long history of use for regenerative and therapeutic purposes that are appealing to both genders. The untapped potential of nanotechnology in cosmeceuticals promises enhanced efficacy and addresses the issues associated with conventional cosmetics. In the field of cosmetics, the incorporation of nanomedicine using various nanocarriers such as vesicle and solid lipid nanoparticles significantly enhances product effectiveness and promotes satisfaction, especially in tackling prevalent skin diseases. Moreover, vesicle-fortified serum is known for high skin absorption with the capacity to incorporate and deliver various therapeutics. Additionally, nano-embedded serum-based cosmeceuticals hold promise for treating various skin disorders, including acne and psoriasis, heralding potential therapeutic advancements. This review explores diverse nanotechnology-based approaches for delivering cosmetics with maximum benefits.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Salvioni L, Morelli L, Ochoa E et al. The emerging role of nanotechnology in skin care. Adv. Colloid Interface Sci. 293, doi:10.1016/j.cis.2021.102437 (2021) (Epub ahead of print).
    • 2. Zaleski-Larsen LA, Fabi SG, McGraw T, Taylor M. Acne scar treatment: a multimodality approach tailored to scar type. Dermatol. Surg. 42(Suppl. 2), S139–S149 (2016).
    • 3. Sherrow V. For Appearance's Sake: The Historical Encyclopedia of Good Looks, Beauty, and Grooming. Greenwood Publishing Group, AZ, USA (2001).
    • 4. Dhawan A, Sharma V, Parmar D. Nanomaterials: a challenge for toxicologists. Nanotoxicology 3(1), 1–9 (2009).
    • 5. Mayoral FA, Kenner JR, Draelos ZD. The skin health and beauty pyramid: a clinically based guide to selecting topical skincare products. JDD 13(4), 414–421 (2014).
    • 6. Draelos ZD. The science behind skin care: moisturizers. J. Cosmet. Dermatol. 17(2), 138–144 (2018).
    • 7. Jackson EM. Moisturizers: what's in them? How do they work? Am. J. Contact Dermat. 3(4), 162–168 (1992).
    • 8. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7), 823–839 (2005).
    • 9. Ashaolu TJ. Nanoemulsions for health, food, and cosmetics: a review. Environ. Chem Lett. 19(4), 3381–3395 (2021).
    • 10. Santos AC, Morais F, Simões A et al. Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv. 16(4), 313–330 (2019).
    • 11. Wunnoo S, Bilhman S, Amnuaikit T et al. Rhodomyrtone as a new natural antibiotic isolated from Rhodomyrtus tomentosa leaf extract: a clinical application in the management of acne vulgaris. Antibiotics 10(2), 108 (2021). • Rhodomyrtone is potential bioactive compound have been fortified in vesicle drug-delivery system and evaluated as nanomedicine efficacy in the management of acne vulgars.
    • 12. Akbari J, Saeedi M, Morteza-Semnani K et al. An eco-friendly and hopeful promise platform for delivering hydrophilic wound healing agents in topical administration for wound disorder: diltiazem-loaded niosomes. J. Pharm. Innov. 1–17 (2023) (Epub ahead of print).
    • 13. Patel R, Singh S, Singh S, Sheth N, Gendle R. Development and characterization of curcumin loaded transfersome for transdermal delivery. J. Pharm. Sci. Res. 1(4), 71 (2009). •• Coucumin is a potential bioactive compound derived from curcuma longa demonstrates excellent efficacy due to multifarious biological application have been fortified within lipid-based vesicle and assessed for diffusion through skin for efficacy. Therefore the formulation is of outmost importance that indicates potency as cosmeceutical serum in management of psoriasis and acne.
    • 14. Chittasupho C, Chaobankrang K, Sarawungkad A et al. Antioxidant, anti-inflammatory and attenuating intracellular reactive oxygen species activities of nicotiana tabacum var. Virginia leaf extract phytosomes and shape memory gel formulation. Gels 9(2), 78 (2023). •• Bioactive compound incorporated within lipid vesicles demonstrates enhance topical diffusion thus compound with anti-inflammatory efficacy are useful in management of acne.
    • 15. Chittasupho C, Ditsri S, Singh S et al. Ultraviolet radiation protective and anti-inflammatory effects of Kaempferia galanga L. rhizome oil and microemulsion: formulation, characterization, and hydrogel preparation. Gels 8(10), 639 (2022).
    • 16. Liu X, Xu J, Zhang H et al. Microwave-assisted synthesis of octahedral Rh nanocrystals and their performance for electrocatalytic oxidation of formic acid. RSC Adv. 13(3), 1751–1756 (2023).
    • 17. Kaity S, Maiti S, Ghosh AK, Pal D, Ghosh A, Banerjee S. Microsponges: a novel strategy for drug delivery system. J. Adv. Pharm. Technol. Res. 1(3), 283 (2010).
    • 18. Alotaibi G, Alharthi S, Basu B et al. Nano-gels: recent advancement in fabrication methods for mitigation of skin cancer. Gels 9(4), 331 (2023).
    • 19. Bi D, Qu F, Xiao W et al. Reactive oxygen species-responsive gel-based microneedle patches for prolonged and intelligent psoriasis management. ACS Nano 17(5), 4346–4357 (2023).
    • 20. Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater. Res. 25, 1–15 (2021).
    • 21. Budiasih S, Masyitah I, Jiyauddin K et al. Formulation and characterization of cosmetic serum containing argan oil as moisturizing agent. Presented at: Proceedings of BROMO Conference (BROMO 2018). SCITEPRESS – Science and Technology Publications, Setúbal, Portugal, 297–304 (2018).
    • 22. Todo H. Transdermal permeation of drugs in various animal species. Pharmaceutics 9, 33 (2017).
    • 23. Lim K-M. Skin epidermis and barrier function. Int. J. Mol. Sci. 22, 3035 (2021).
    • 24. Rochette L, Mazini L, Meloux A et al. Anti-aging effects of GDF11 on skin. Int. J. Mol. Sci. 21(7), 2958 (2020).
    • 25. Stamu-O'Brien C, Jafferany M, Carniciu S, Abdelmaksoud A. Psychodermatology of acne: psychological aspects and effects of acne vulgaris. J. Cosmet. Dermatol. 20(4), 1080–1083 (2021).
    • 26. Baran R. The burden of nail psoriasis: an introduction. Dermatology 221(Suppl. 1), S1–S5 (2010).
    • 27. Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet 379(9813), 361–372 (2012).
    • 28. Goulden V, Clark S, Cunliffe W. Post-adolescent acne: a review of clinical features. Br. J. Dermatol. 136(1), 66–70 (1997).
    • 29. Khakimova L, Abdukhamidova D, Akhmedova M, Ablakulova M. Acne in allergic skin diseases. Texas J. Med. Sci. 8, 129–131 (2022).
    • 30. Pochi P. The pathogenesis and treatment of acne. Annu. Rev. Med. 41(1), 187–198 (1990).
    • 31. Eichenfield L, Leyden J. Acne: current concepts of pathogenesis and approach to rational treatment. Pediatrician 18(3), 218–223 (1991).
    • 32. Lever L, Marks R. Current views on the aetiology, pathogenesis and treatment of acne vulgaris. Drugs 39(5), 681–692 (1990).
    • 33. Leung AK, Barankin B, Lam JM, Leong KF, Hon KL. Dermatology: how to manage acne vulgaris. Drugs Context 10, 1–18(2021).
    • 34. Tahir CM. Pathogenesis of acne vulgaris: simplified. J. Pakistan Assoc. Dermatol. 20(2), 93–97 (2010).
    • 35. Leeming J, Holland K, Cunliffe W. The pathological and ecological significance of microorganisms colonising acne vulgaris comedones. J. Med. Microbiol. 20(1), 11–16 (1985).
    • 36. Joo SS, Jang SK, Kim SG, Choi JS, Hwang KW, Lee DI. Anti-acne activity of Selaginella involvens extract and its non-antibiotic antimicrobial potential on propionibacterium acnes. Phytother. Res. 22(3), 335–339 (2008).
    • 37. Kim JE, Han H, Xu Y, Lee MH, Lee HJ. Efficacy of FRO on acne vulgaris pathogenesis. Pharmaceutics 15(7), 1885 (2023).
    • 38. Downing DT, Stewart ME, Wertz PW, Strauss JS. Essential fatty acids and acne. J. Am. Acad. Dermatol. 14(2), 221–225 (1986).
    • 39. Puhrel S, Sakamoto M. The chemoattractant properties of comedonal contents. J. Invest. Dermatol. 70, 353–354 (1978).
    • 40. Cavallo I, Sivori F, Truglio M et al. Skin dysbiosis and Cutibacterium acnes biofilm in inflammatory acne lesions of adolescents. Sci. Rep. 12(1), (2022) (Epub ahead of print).
    • 41. Heng AHS, Chew FT. Systematic review of the epidemiology of acne vulgaris. Sci. Rep. 10, 5754 (2020).
    • 42. Zhou X, Chen Y, Cui L, Shi Y, Guo C. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis. 13(1), 81 (2022).
    • 43. Gottlieb SL, Gilleaudeau P, Johnson R et al. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat. Med. 1(5), 442–447 (1995).
    • 44. Young KZ, Sarkar MK, Gudjonsson JE. Pathophysiology of generalized pustular psoriasis. Exp. Dermatol. 32(8), 1194–1203 (2023).
    • 45. Das RP, Jain AK, Ramesh V. Current concepts in the pathogenesis of psoriasis. Indian J. Dermatol. 54(1), 7 (2009).
    • 46. Mehlis SL, Gordon KB. The immunology of psoriasis and biologic immunotherapy. J. Am. Acad. Dermatol. 49(2), 44–50 (2003).
    • 47. Conrad C, Boyman O, Tonel G et al. α1β1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat. Med. 13(7), 836–842 (2007).
    • 48. Schön MP, Wilsmann-Theis D. Current developments and perspectives in psoriasis. JDDG 21(4), 363–372 (2023).
    • 49. Mehta VM, Balachandran C. Biologicals in psoriasis. J. Pakistan Associ. Dermatol. 18(2), 100–109 (2008).
    • 50. McGregor J, Barker J, Ross E, Macdonald D. Epidermal dendritic cells in psoriasis possess a phenotype associated with antigen presentation: in situ expression of β2-integrins. J. Am. Acad. Dermatol. 27(3), 383–388 (1992).
    • 51. Yamanaka K, Yamamoto O, Honda T. Pathophysiology of psoriasis: a review. J. Dermatol. 48(6), 722–731 (2021).
    • 52. Shortman K, Liu Y-J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2(3), 151–161 (2002).
    • 53. Rajguru JP, Maya D, Kumar D, Suri P, Bhardwaj S, Patel ND. Update on psoriasis: a review. J. Family Med. Prim. Care 9(1), 20 (2020).
    • 54. Longo R, Sarmiento R, Fanelli M, Capaccetti B, Gattuso D, Gasparini G. Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis 5(4), 237–256 (2002).
    • 55. Bhushan M, McLaughlin B, Weiss J, Griffiths C. Levels of endothelial cell stimulating angiogenesis factor and vascular endothelial growth factor are elevated in psoriasis. Br. J. Dermatol. 141(6), 1054–1060 (1999).
    • 56. Creamer D, Sullivan D, Bicknell R, Barker J. Angiogenesis in psoriasis. Angiogenesis 5(1), 231–236 (2002).
    • 57. Baldwin H, Tan J. Effects of diet on acne and its response to treatment. Am. J. Clin. Dermatol. 22, 55–65 (2021).
    • 58. Gupta V, Mohapatra S, Mishra H et al. Nanotechnology in cosmetics and cosmeceuticals – a review of latest advancements. Gels 8(3), 173 (2022).
    • 59. Ahmad J. Lipid nanoparticles based cosmetics with potential application in alleviating skin disorders. Cosmetics 8(3), 84 (2021).
    • 60. Date A, Naik B, Nagarsenker M. Novel drug delivery systems: potential in improving topical delivery of antiacne agents. Skin Pharmacol. Physiol. 19(1), 2–16 (2005).
    • 61. Münster U, Nakamuranachname C, Haberland A et al. RU 58841-myristate–prodrug development for topical treatment of acne and androgenetic alopecia. Pharmazie 60(1), 8–12 (2005).
    • 62. Lin Y-K, Huang Z-R, Zhuo R-Z, Fang J-Y. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int. J. Nanomed. 5, 117–128 (2010).
    • 63. Negi P, Sharma I, Hemrajani C et al. Thymoquinone-loaded lipid vesicles: a promising nanomedicine for psoriasis. BMC Complement. Altern. Med. 19(1), 1–9 (2019).
    • 64. Vasanth S, Dubey A, Ravi GS et al. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: a collegial approach for the treatment of acne vulgaris. AAPS PharmSciTech 21, 1–17 (2020).
    • 65. Cristiano MC, Froiio F, Mancuso A et al. In vitro and in vivo trans-epidermal water loss evaluation following topical drug delivery systems application for pharmaceutical analysis. J. Pharm. Biomed. Anal. 186, doi:10.1016/j.jpba.2020.113295 (2020) (Epub ahead of print).
    • 66. Marks R. Acne and its management beyond the age of 35 years. Am. J. Clin. Dermatol. 5, 459–462 (2004).
    • 67. del Pulgar JIGP, Nebreda RF, García JML, Cunliffe WJ. Resistencia antibiótica del Propionibacterium acnes en pacientes tratados por acné vulgar en Málaga. Actas Dermosifiliogr. 93(4), 271–275 (2002).
    • 68. Nouh AH, Elshahid AR, Kadah AS, Zeyada YA. Topical niacinamide (nicotinamide) treatment for discoid lupus erythematosus (DLE): a prospective pilot study. J. Cosmet. Dermatol. 22(5), 1647–1657 (2023).
    • 69. Xu H, Li H. Acne, the skin microbiome, and antibiotic treatment. Am. J. Clin. Dermatol. 20(3), 335–344 (2019).
    • 70. Shaw JC, White LE. Persistent acne in adult women. Arch. Dermatol. 137(9), 1252–1253 (2001).
    • 71. Elsaie ML. Hormonal treatment of acne vulgaris: an update. Clin. Cosmet. Investig. Dermatol. 9, 241–248 (2016).
    • 72. Harper JC. Use of oral contraceptives for management of acne vulgaris: practical considerations in real world practice. Dermatol. Clin. 34(2), 159–165 (2016).
    • 73. Williams C, Layton AM. Persistent acne in women: implications for the patient and for therapy. Am. J. Clin. Dermatol. 7, 281–290 (2006).
    • 74. Bettoli V, Guerra-Tapia A, Herane MI, Piquero-Martín J. Challenges and solutions in oral isotretinoin in acne: reflections on 35 years of experience. Clin. Cosmet. Investig. Dermatol. 12, 943–951 (2019).
    • 75. Landis MN. Optimizing isotretinoin treatment of acne: update on current recommendations for monitoring, dosing, safety, adverse effects, compliance, and outcomes. Am. J. Clin. Dermatol. 21(3), 411–419 (2020).
    • 76. Grace R. Cosmeceuticals: functional food for the skin. Natural Foods Merchandiser 23, 92–99 (2002).
    • 77. Goulden V, Clark SM, McGeown C, Cunliffe WJ. Treatment of acne with intermittent isotretinoin. Br. J. Dermatol. 137(1), 106–108 (1997).
    • 78. Karsai S, Schmitt L, Raulin C. The pulsed-dye laser as an adjuvant treatment modality in acne vulgaris: a randomized controlled single-blinded trial. Br. J. Dermatol. 163(2), 395–401 (2010).
    • 79. Mason J, Mason A, Cork M. Topical preparations for the treatment of psoriasis: a systematic review. Br. J. Dermatol. 146(3), 351–364 (2002).
    • 80. Bruner CR, Feldman SR, Ventrapragada M, Fleischer AB Jr. A systematic review of adverse effects associated with topical treatments for psoriasis. Dermatol. Online J. 9(1), 2 (2003).
    • 81. Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124(6), 869–871 (1988).
    • 82. Stern RS. Genital tumors among men with psoriasis exposed to psoralens and ultraviolet A radiation (PUVA) and ultraviolet B radiation. The Photochemotherapy Follow-up Study. N. Engl. J. Med. 322(16), 1093–1097 (1990).
    • 83. Coven TR, Burack LH, Gilleaudeau P, Keogh M, Ozawa M, Krueger JG. Narrowband UV-B produces superior clinical and histopathological resolution of moderate-to-severe psoriasis in patients compared with broadband UV-B2. Arch. Dermatol. 133(12), 1514–1522 (1997).
    • 84. Cameron H, Dawe R, Yule S, Murphy J, Ibbotson S, Ferguson J. A randomized, observer-blinded trial of twice vs. three times weekly narrowband ultraviolet B phototherapy for chronic plaque psoriasis. Br. J. Dermatol. 147(5), 973–978 (2002).
    • 85. Singh M, Suman S, Shukla Y. New enlightenment of skin cancer chemoprevention through phytochemicals: in vitro and in vivo studies and the underlying mechanisms. Biomed. Res. Int. 2014, doi:10.1155/2014/243452 (2014) (Epub ahead of print).
    • 86. Lapolla W, Yentzer BA, Bagel J, Halvorson CR, Feldman SR. A review of phototherapy protocols for psoriasis treatment. J. Am. Acad. Dermatol. 64(5), 936–949 (2011).
    • 87. Dogra S, Mahajan R. Phototherapy for atopic dermatitis. Indian J. Dermatol. Venereol. Leprol. 81, 10 (2015).
    • 88. Eichenfield LF, Tom WL, Chamlin SL et al. Guidelines of care for the management of atopic dermatitis: section 1. Diagnosis and assessment of atopic dermatitis. J. Am. Acad. Dermatol. 70(2), 338–351 (2014).
    • 89. Vangipuram R, Feldman S. Ultraviolet phototherapy for cutaneous diseases: a concise review. Oral Dis. 22(4), 253–259 (2016).
    • 90. Schaarschmidt M-L, Kromer C, Herr R, Schmieder A, Goerdt S, Peitsch WK. Treatment satisfaction of patients with psoriasis. Acta Derm. Venereol. 95(5), 572–578 (2015).
    • 91. Aramwit P, Fongsodsri K, Tuentam K et al. Sericin coated thin polymeric films reduce keratinocyte proliferation via the mTOR pathway and epidermal inflammation through IL17 signaling in psoriasis rat model. Sci. Rep. 13(1), (2023) (Epub ahead of print).
    • 92. Naldi L, Griffiths C. Traditional therapies in the management of moderate to severe chronic plaque psoriasis: an assessment of the benefits and risks. Br. J. Dermatol. 152(4), 597–615 (2005).
    • 93. van de Kerkhof PCM, Kragballe K, Segaert S, Lebwohl M, Council IP. Factors impacting the combination of topical corticosteroid therapies for psoriasis: perspectives from the international psoriasis council. J. Eur. Acad. Dermatol. Venereol. 25(10), 1130–1139 (2011).
    • 94. Tan X, Feldman SR, Chang J, Balkrishnan R. Topical drug delivery systems in dermatology: a review of patient adherence issues. Expert Opin. Drug Deliv. 9(10), 1263–1271 (2012).
    • 95. Bazin R, Fanchon C. Equivalence of face and volar forearm for the testing of moisturizing and firming effect of cosmetics in hydration and biomechanical studies. Int. J. Cosmet. Sci. 28(6), 453–461 (2006).
    • 96. Daniels R, Knie U. Galenics of dermal products – vehicles, properties and drug release. JDDG 5(5), 367–383 (2007).
    • 97. Wiechers J, Barlow T. Skin moisturisation and elasticity originate from at least two different mechanisms. Int. J. Cosmet. Sci. 21(6), 425–435 (1999).
    • 98. Arif T. Salicylic acid as a peeling agent: a comprehensive review. Clin. Cosmet. Investig. Dermatol. 8, 455–461 (2015).
    • 99. Huang J, Weinstein SJ, Yu K et al. Association between serum retinol and overall and cause-specific mortality in a 30-year prospective cohort study. Nat. Commun. 21(1), 6418 (2021).
    • 100. Nurzyńska-Wierdak R, Pietrasik D, Walasek-Janusz M. Essential oils in the treatment of various types of acne – a review. Plants 12(1), 90 (2023).
    • 101. Fitton A, Goa KL. Azelaic acid. Drugs 41, 780–798 (1991).
    • 102. Li F, Chen H, Chen D et al. Clinical evidence of the efficacy and safety of a new multi-peptide anti-aging topical eye serum. J. Cosmet. Dermatol. doi:10.1111/jocd.15849 (2023) (Epub ahead of print). • Peptides recently gain significant attention due to antimicrobial property thus incorporating them within nanocarriers could be potential mode of delivering topically and treating dermal complications.
    • 103. Casari A, Al Sibai R, Mediani M, Molinari M, Fiore W. Evaluation of a novel topical formulation for the treatment of problematic skin: results of an Italian clinical study. J. Dermatol. Res. Ther. 8(1), 115 (2022).
    • 104. Patwekar S, Gattani S, Giri R, Bade A, Sangewar B, Raut V. Review on nanoparticles used in cosmetics and dermal products. World J. Pharm. Pharm. Sci. 3, 1407–1421 (2014).
    • 105. Bangale M, Mitkare S, Gattani S, Sakarkar D. Recent nanotechnological aspects in cosmetics and dermatological preparations. Int. J. Pharm. Pharm. Sci. 4(2), 88–97 (2012).
    • 106. Oliveira C, Coelho C, Teixeira JA, Ferreira-Santos P, Botelho CM. Nanocarriers as active ingredients enhancers in the cosmetic industry – the European and North America regulation challenges. Molecules 27(5), 1–35(2022).
    • 107. Zhou H, Luo D, Chen D et al. Current advances of nanocarrier technology-based active cosmetic ingredients for beauty applications. Clin. Costmet. Investig. Dermatol. 14, 867–887 (2021).
    • 108. Pourmand A, Abdollahi M. Current opinion on nanotoxicology. Daru 20(1), 1–3 (2012).
    • 109. Mostafalou S, Mohammadi H, Ramazani A, Abdollahi M. Different biokinetics of nanomedicines linking to their toxicity; an overview. DARU J. Pharm. Sci. 21, 1–4 (2013).
    • 110. Wang S, Su R, Nie S et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem. 25(4), 363–376 (2014).
    • 111. Chermahini SH, Majid FA, Sarmidi MR. Cosmeceutical value of herbal extracts as natural ingredients and novel technologies in anti-aging. J. Med. Plant Res. 5(14), 3074–3077 (2011).
    • 112. Müller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Cur. Drug Discov. Technol. 8(3), 207–227 (2011).
    • 113. Jimtaisong A, Saewan N. Utilization of carboxymethyl chitosan in cosmetics. Int. J. Cosmet. Sci. 36(1), 12–21 (2014).
    • 114. Borowska S, Brzóska MM. Metals in cosmetics: implications for human health. J. Appl. Toxicol. 35(6), 551–572 (2015).
    • 115. Szmyd R, Goralczyk AG, Skalniak L et al. Effect of silver nanoparticles on human primary keratinocytes. Biol. Chem. 394(1), 113–123 (2013).
    • 116. Tucci P, Porta G, Agostini M et al. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis. 4(3), 1–11 (2013).
    • 117. Hackenberg S, Kleinsasser N. Dermal toxicity of ZnO nanoparticles: a worrying feature of sunscreen? Nanomedicine 7(4), 461–463 (2012).
    • 118. Singh S, Chunglok W, Nwabor OF, Ushir YV, Singh S, Panpipat W. Hydrophilic biopolymer matrix antibacterial peel-off facial mask functionalized with biogenic nanostructured material for cosmeceutical applications. J. Polym. Environ. 30(3), 938–953 (2022).
    • 119. Qi Y, Wei S, Xin T et al. Passage of exogeneous fine particles from the lung into the brain in humans and animals. Proc. Natl Acad. Sci. USA 119(26), e2117083119 (2022).
    • 120. Mavon A, Miquel C, Lejeune O, Payre B, Moretto P. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol. Physiol. 20(1), 10–20 (2007).
    • 121. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev. 123, 33–64 (2018).
    • 122. Chen J, Dong X, Zhao J, Tang G. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J. Appl. Toxicol. 29(4), 330–337 (2009). •• Although metallic nanoparticles demonstrate excellent efficacy due to their size and specific shape, however the toxicity concern are important considering drug and cosmetic act. Therefore considering safety and efficacy of product before use by consumer biocompatibility of cosmetics is deemed necessary.
    • 123. Sajid M, Ilyas M, Basheer C et al. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollution Res. 22, 4122–4143 (2015).
    • 124. Abbasi BH, Fazal H, Ahmad N, Ali M, Giglioli-Guivarch N, Hano C. Nanomaterials for cosmeceuticals: nanomaterials-induced advancement in cosmetics, challenges, and opportunities. In: Nanocosmetics. Nanda ANanda SNguyen TARajendran SSlimani Y (Eds). Elsevier, MA, USA, 79–108 (2020).
    • 125. Raj S, Jose S, Sumod U, Sabitha M. Nanotechnology in cosmetics: opportunities and challenges. J. Pharm. Bioallied Sci. 4(3), 186 (2012).
    • 126. Demir N. Nanotechnology in cosmetics: opportunities and challenges. NanoEra 1(1), 19–23 (2021).
    • 127. Schwarz JC, Baisaeng N, Hoppel M, Löw M, Keck CM, Valenta C. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int. J. Pharm. 447(1–2), 213–217 (2013).
    • 128. Beyer RE, Burnett B-A, Cartwright KJ et al. Tissue coenzyme Q (ubiquinone) and protein concentrations over the life span of the laboratory rat. Mech. Ageing Dev. 32(2–3), 267–281 (1985).
    • 129. Amnuaikit T, Shankar R, Benjakul S. Hydrolyzed fish collagen serum from by-product of food industry: cosmetic product formulation and facial skin evaluation. Sustainability 14(24), (2022) (Epub ahead of print).
    • 130. Mursyid AM, Waris R. Formulation and evaluation of pharmaceutical stable serum of Duchesnea indica (arbenan). Univ. J. Pharm. Res. 6(1), 38–42 (2021).
    • 131. Kwak M-S, Ahn H-J, Song K-W. Rheological investigation of body cream and body lotion in actual application conditions. Korea–Australia Rheol. J. 27, 241–251 (2015).
    • 132. Dayan N. (Ed.). Handbook of Formulating Dermal Applications: a Definitive Practical Guide. John Wiley & Sons, Toronto, Canada (2016).
    • 133. Sasidharan S, Joseph P, Junise. Formulation and evaluation of fairness serum using polyherbal extracts. Int. J. Pharm. 4(3), 105–112 (2014).
    • 134. Stewart S, Parker M, Amézquita A, Pitt T. Microbiological risk assessment for personal care products. Int. J. Cosmet. Sci. 38(6), 634–645 (2016).
    • 135. Thakre AD. Formulation and development of de pigment serum incorporating fruits extract. Int. J. Innov. Sci. Res. Technol. 2(12), 330–382 (2017).
    • 136. Jagtap PP, Chaudhari VA, Davar RN, Patil NC, Joshi PP, Desale BR. Formulation and development of anti-acne serum using Euphorbia hirta. Int. J. All Res. Writings 2(12), 171–179 (2020).
    • 137. Robinson M, Cohen C, de Fraissinette Ade B, Ponec M, Whittle E, Fentem J. Non-animal testing strategies for assessment of the skin corrosion and skin irritation potential of ingredients and finished products. Food Chem. Toxicol. 40(5), 573–592 (2002).
    • 138. Matarrese P, Beauchef G, Peno-Mazzarino L, Lati E, Fitoussi R, Vié K. Assessment of an ex vivo irritation test performed on human skin explants and comparison of its results with those of a 24-/48-h human patch test for the evaluation of cosmetics. Toxicology In Vitro 70, doi:10.1016/j.tiv.2020.105030 (2021) (Epub ahead of print).
    • 139. Amnuaikit T, Khakhong S, Khongkow P. Formulation development and facial skin evaluation of serum containing jellose from tamarind seeds. J. Pharm. Res. Int. 1, 14 (2019).
    • 140. Clarys P, Barel AO, Gabard B. Non-invasive electrical measurements for the evaluation of the hydration state of the skin: comparison between three conventional instruments – the Comeometer®, the Skicon® and the Nova DPM®. Skin Res. Technol. 5(1), 14–20 (1999).
    • 141. Ribeiro RC, Barreto SM, Ostrosky EA, Rocha-Filho PA, Veríssimo LM, Ferrari M. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent. Molecules 20(2), 2492–2509 (2015).
    • 142. Greenhall AM. House bat management. Resource Pub. 143, 78 (1982).
    • 143. Clarys P, Alewaeters K, Lambrecht R, Barel A. Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®. Skin Res. Technol. 6(4), 230–238 (2000).
    • 144. Rossi D, Realdon N. Surface tensiometry approach to characterize cosmetic products in the beauty sector. In: Surface Science and Adhesion in Cosmetics. Mittal KLBui HS (Eds). Scrivener Publishing LLC, MA, USA 309–352 (2021).
    • 145. Tatmatsu-Rocha JC, Ferraresi C, Hamblin MR et al. Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin. J. Photochem. Photobiol. B. 164, 96–102 (2016).
    • 146. Nammour S, El Mobadder M, Namour M et al. Aesthetic treatment outcomes of capillary hemangioma, venous lake, and venous malformation of the lip using different surgical procedures and laser wavelengths (Nd: YAG, Er, Cr: YSGG, CO2, and Diode 980 nm). Int. J. Environ. Res. Public Health 17(22), 8665 (2020).
    • 147. Suter F, Schmid D, Wandrey F, Zülli F. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications. Eur. J. Pharm. Biopharm. 108, 304–309 (2016).
    • 148. Ramezanli T, Zhang Z, Michniak-Kohn BB. Development and characterization of polymeric nanoparticle-based formulation of adapalene for topical acne therapy. Nanomedicine 13(1), 143–152 (2017).
    • 149. Amasya G, Ozturk C, Aksu B, Tarimci N. QbD based formulation optimization of semi-solid lipid nanoparticles as nano-cosmeceuticals. J. Drug Deliv. Sci. Technol. 66, doi:10.1016/j.jddst.2021.102737 (2021) (Epub ahead of print).
    • 150. Khotimah H, Lestari Ismail DD, Widasmara D et al. Ameliorative effect of gel combination of Centella asiatica extract transfersomes and rosemary essential oil nanoemulsion against UVB-induced skin aging in Balb/c mice. F1000Research 11(288), 1–21 (2022).
    • 151. Kapoor MS, D'Souza A, Aibani N et al. Stable liposome in cosmetic platforms for transdermal folic acid delivery for fortification and treatment of micronutrient deficiencies. Sci. Rep. 8(1), (2018) (Epub ahead of print).
    • 152. Moccia F, Liberti D, Giovando S et al. Chestnut wood mud as a source of ellagic acid for dermo-cosmetic applications. Antioxidants 11(9), 1681 (2022).
    • 153. Avadhani KS, Manikkath J, Tiwari M et al. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 24(1), 61–74 (2017).
    • 154. Kanlayavattanakul M, Lourith N, Ospondpant D, Ruktanonchai U, Pongpunyayuen S, Chansriniyom C. Salak plum peel extract as a safe and efficient antioxidant appraisal for cosmetics. Biosci. Biotechnol. Biochem. 77(5), 1068–1074 (2013).
    • 155. Nwabor OF, Singh S. A systematic review on Rhodomyrtus tomentosa (Aiton) Hassk: a potential source of pharmacological relevant bioactive compounds with prospects as alternative remedies in varied medical conditions. IJPSN 15(2), 5875–5891 (2022).
    • 156. Chorachoo J, Amnuaikit T, Voravuthikunchai SP. Liposomal encapsulated rhodomyrtone: a novel antiacne drug. Evid. Based Complement. Alternat. Med. 2013, doi:10.1155/2013/157635 (2013) (Epub ahead of print). • Similar to bioresource-derived compound the synthetic compound demonstrate efficacy against psoriasis and acne when incorporated within lipid vesicles. Hence nanocarrier containing such compounds are outmost important too.
    • 157. Burlando B, Verotta L, Cornara L, Bottini-Massa E. Herbal Principles in Cosmetics: Properties and Mechanisms of Action. CRC Press, FL, USA (2010).
    • 158. Guo F, Lin M, Gu Y, Zhao X, Hu G. Preparation of PEG-modified proanthocyanidin liposome and its application in cosmetics. Eur. Food Res. Technol. 240, 1013–1021 (2015).
    • 159. Kaur CD, Saraf S. Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation–damaged skin. J. Cosmet. Dermatol. 10(4), 260–265 (2011).
    • 160. Saraf S, Jeswani G, Kaur CD, Saraf S. Development of novel herbal cosmetic cream with Curcuma longa extract loaded transfersomes for antiwrinkle effect. Afr. J. Pharm. Pharmacol. 5(8), 1054–1062 (2011). •• Considering age related issue such as wrinkle over face are serious problem among the current generation people. The incorporation of herbal extract within the nanocarriers are potential option for treating wrinkles and use as a cosmetics.
    • 161. Bowman DM, May ND, Maynard AD. Nanomaterials in cosmetics: regulatory aspects. In: Analysis of Cosmetic Products. Salvador AChisvert A (Eds). Elsevier, London UK, 289–302 (2018).
    • 162. Katz LM, Dewan K, Bronaugh RL. Nanotechnology in cosmetics. Food Chem. Toxicol. 85, 127–137 (2015).
    • 163. Adams DJ. The valley of death in anticancer drug development: a reassessment. Trends Pharmacol. Sci. 33(4), 173–180 (2012).
    • 164. Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond.) 14(1), 93–126 (2019).