We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

MUC1 antibody-based therapeutics: the promise of cancer immunotherapy

    Mona Pourjafar‡

    Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

    Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Pouria Samadi‡

    Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

    Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran

    ‡Authors contributed equally

    Search for more papers by this author

    &
    Massoud Saidijam

    *Author for correspondence:

    E-mail Address: sjam110@yahoo.com

    Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran

    Published Online:https://doi.org/10.2217/imt-2020-0019

    Antibody-based targeted therapies have been able to target cancers with enhanced specificity and high efficacy. In this regard, identifying cancer markers (antigens) that are only present (tumor-specific antigens) or have an increased expression (tumor-associated antigen) on the surface of cancer cells is a crucial step for targeted cancer treatment. Various cancer antigens have already been used for therapeutic and diagnostic purposes. MUC1 is one of the most important tumor markers with high levels of expression in various solid tumors which makes it as a potential target for antibody-based therapies. This review discusses preclinical and clinical results from various platforms based on monoclonal antibodies, nanobodies as well as bispecific antibodies against MUC1. We also highlight unmet challenges that must be overcome to generate more effective cancer immunotherapy strategies.

    References

    • 1. Linden S, Sutton P, Karlsson N, Korolik V, Mcguckin M. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1(3), 183–197 (2008).
    • 2. Ostedgaard LS, Moninger TO, Mcmenimen JD et al. Gel-forming mucins form distinct morphologic structures in airways. Proc. Natl Acad. Sci. USA 114(26), 6842–6847 (2017).
    • 3. Rachagani S, Torres MP, Moniaux N, Batra SK. Current status of mucins in the diagnosis and therapy of cancer. Biofactors 35(6), 509–527 (2009).
    • 4. Horm TM, Schroeder JA. MUC1 and metastatic cancer: expression, function and therapeutic targeting. Cell Adh. Migr. 7(2), 187–198 (2013).
    • 5. Dhar P, Mcauley J. The role of the cell surface mucin MUC1 as a barrier to infection and regulator of inflammation. Front. Cell. Infect. Microbiol. 9, 117 (2019).
    • 6. Parry S, Silverman HS, Mcdermott K, Willis A, Hollingsworth MA, Harris A. Identification of MUC1 proteolytic cleavage sites in vivo. Biochem. Biophys. Res. Commun. 283(3), 715–720 (2001).
    • 7. Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22(6), 736–756 (2012).
    • 8. Movahedin M, Brooks TM, Supekar NT, Gokanapudi N, Boons G-J, Brooks CL. Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology 27(7), 677–687 (2017).
    • 9. Piyush T, Rhodes JM, Yu L-G. MUC1 O-glycosylation contributes to anoikis resistance in epithelial cancer cells. Cell Death Discov. 3, 17044 (2017).
    • 10. Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J. Biol. Chem. 265(25), 15294–15299 (1990).
    • 11. Parry S, Hanisch FG, Leir S-H et al. N-Glycosylation of the MUC1 mucin in epithelial cells and secretions. Glycobiology 16(7), 623–634 (2006).
    • 12. Tian E, Ten Hagen KG. Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj. J. 26(3), 325–334 (2009).
    • 13. Ju T, Wang Y, Aryal RP et al. T n and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteom. Clin. Appl. 7(9–10), 618–631 (2013).
    • 14. Clausen H, Bennett EP. A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 6(6), 635–646 (1996).
    • 15. Breloy I, Hanisch FG. Functional Roles of O-Glycosylation. Molecules 23(12), 3063 (2018).
    • 16. Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep. 7(6), 599–604 (2006).
    • 17. Hanson RL, Hollingsworth MA. Functional consequences of differential O-glycosylation of MUC1, MUC4, and MUC16 (downstream effects on signaling). Biomolecules 6(3), 34 (2016).
    • 18. Chandrasekaran E, Xue J, Xia J et al. Characterization of cancer associated mucin type O-glycans using the exchange sialylation properties of mammalian sialyltransferase ST3Gal-II. J. Proteome Res. 11(4), 2609–2618 (2012).
    • 19. Saeland E, Belo AI, Mongera S, Van Die I, Meijer GA, Van Kooyk Y. Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int. J. Cancer 131(1), 117–128 (2012).
    • 20. Taylor-Papadimitriou J, Burchell JM, Graham R, Beatson R. Latest developments in MUC1 immunotherapy. Biochem. Soc. Trans. 46(3), 659–668 (2018).
    • 21. Burchell J, Gendler S, Taylor-Papadimitriou J et al. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res. 47(20), 5476–5482 (1987).
    • 22. Posey AD Jr, Schwab RD, Boesteanu AC et al. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44(6), 1444–1454 (2016).
    • 23. Weiner LM, Murray JC, Shuptrine CW. Antibody-based immunotherapy of cancer. Cell 148(6), 1081–1084 (2012).
    • 24. Pourjafar M, Samadi P, Khoshinani HM, Saidijam M. Are mimotope vaccines a good alternative to monoclonal antibodies? Immunotherapy 11(9), 795–800 (2019).
    • 25. Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 12, 14 (2012).
    • 26. Sameri S, Saidijam M, Bahreini F, Najafi R. Cancer chemopreventive activities of silibinin on colorectal cancer through regulation of E-cadherin/β-catenin pathway. Nutr. Cancer 1–11 (2020) (Epub ahead of print).
    • 27. Redman J, Hill E, Aldeghaither D, Weiner L. Mechanisms of action of therapeutic antibodies for cancer. Mol. Immunol. 67(2), 28–45 (2015).
    • 28. Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin. Cancer Biol. 22(1), 3–13 (2012).
    • 29. Xu H, Gan L, Han Y et al. Site-specific labeling of an anti-MUC1 antibody: probing the effects of conjugation and linker chemistry on the internalization process. RSC Adv. 9(4), 1909–1917 (2019).
    • 30. Xing P-X, Prenzoska J, Quelch K, Mckenzie IF. Second generation anti-MUC1 peptide monoclonal antibodies. Cancer Res. 52(8), 2310–2317 (1992).
    • 31. Rivalland G, Loveland B, Mitchell P. Update on Mucin-1 immunotherapy in cancer: a clinical perspective. Expert Opin. Biol. Ther. 15(12), 1773–1787 (2015).
    • 32. Murawa P, Kobylarek R, Gracz A, Malicki J, Kierzkowski J. Intraperitoneal administration of radiolabelled monoclonal antibody pemtumomab (Yttrium-90-HMFG1) in gastric cancer. Rep. Pract. Oncol. Radiother. 8(2), 49–56 (2003).
    • 33. Xing PX, Tjandra J, Stacker S et al. Monoclonal antibodies reactive with mucin expressed in breast cancer. Immunol. Cell Biol. 67(3), 183–195 (1989).
    • 34. Pericleous L, Richards J, Epenetos A, Courtenay-Luck N, Deonarain M. Characterisation and internalisation of recombinant humanised HMFG-1 antibodies against MUC1. Br. J. Cancer 93(11), 1257 (2005).
    • 35. Pegram MD, Borges VF, Ibrahim N et al. Phase I dose escalation pharmacokinetic assessment of intravenous humanized anti-MUC1 antibody AS1402 in patients with advanced breast cancer. Breast Cancer Res. 11(5), R73 (2009).
    • 36. Ibrahim NK, Yariz KO, Bondarenko I et al. Randomized phase II trial of letrozole plus anti-MUC1 antibody AS1402 in hormone receptor–positive locally advanced or metastatic breast cancer. Clin. Cancer. Res. 17(21), 6822–6830 (2011).
    • 37. Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JA, Kremer L. New strategies using antibody combinations to increase cancer treatment effectiveness. Front. Immunol. 8, 1804 (2017).
    • 38. Nagata M, Muto S, Horie S. Molecular biomarkers in bladder cancer: novel potential indicators of prognosis and treatment outcomes. Dis. Markers 2016, 8205836 (2016).
    • 39. Gold DV, Lew K, Maliniak R, Hernandez M, Cardillo T. Characterization of monoclonal antibody PAM4 reactive with a pancreatic cancer mucin. Int. J. Cancer 57(2), 204–210 (1994).
    • 40. Gold DV, Karanjawala Z, Modrak DE, Goldenberg DM, Hruban RH. PAM4-reactive MUC1 is a biomarker for early pancreatic adenocarcinoma. Clin. Cancer Res. 13(24), 7380–7387 (2007).
    • 41. Gold DV, Newsome G, Liu D, Goldenberg DM. Mapping PAM4 (clivatuzumab), a monoclonal antibody in clinical trials for early detection and therapy of pancreatic ductal adenocarcinoma, to MUC5AC mucin. Mol. Cancer 12(1), 143 (2013).
    • 42. Cardillo TM, Ying Z, Gold DV. Therapeutic advantage of 90yttrium-versus 131iodine-labeled PAM4 antibody in experimental pancreatic cancer. Clin. Cancer Res. 7(10), 3186–3192 (2001).
    • 43. Gold DV, Cardillo T, Vardi Y, Blumenthal RJIJOC. Radioimmunotherapy of experimental pancreatic cancer with 131I-labeled monoclonal antibody PAM4. Int. J. Cancer 71(4), 660–667 (1997).
    • 44. Gold DV, Cardillo T, Goldenberg DM, Sharkey RM. Localization of pancreatic cancer with radiolabeled monoclonal antibody PAM4. Crit. Rev. Oncol. Hematol. 39(1–2), 147–154 (2001).
    • 45. Gulec S, Pennington K, Bruetman D et al. A Phase-I study of 90Y-hPAM4 (humanized anti-MUC1 monoclonal antibody) in patients with unresectable and metastatic pancreatic cancer. J. Nucl. Med. 48(Suppl. 2), 393P–393P (2007).
    • 46. Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinform. 14(1), 42–54 (2016).
    • 47. Picozzi VJ, Ramanathan RK, Lowery MA et al. 90Y-clivatuzumab tetraxetan with or without low-dose gemcitabine: a Phase Ib study in patients with metastatic pancreatic cancer after two or more prior therapies. Eur. J. Cancer 51(14), 1857–1864 (2015).
    • 48. Curry JM, Thompson KJ, Rao SG et al. The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. J. Surg. Oncol. 107(7), 713–722 (2013).
    • 49. Vivero-Escoto JL, Jeffords LM, Dréau D, Alvarez-Berrios M, Mukherjee P. Mucin1 antibody-conjugated dye-doped mesoporous silica nanoparticles for breast cancer detection in vivo. Presented at: Colloidal Nanoparticles for Biomedical Applications XII. San Francisco, CA, USA (2017).
    • 50. Moore LJ, Roy LD, Zhou R et al. Antibody-guided in vivo imaging for early detection of mammary gland tumors. Transl. Oncol. 9(4), 295–305 (2016).
    • 51. Bose M, Mukherjee P. A novel antibody blocks anti-apoptotic activity of MUC1 in pancreatic cancer cell lines. Cancer Res. 79(Suppl. 13), 2052 (2019).
    • 52. Ilovich O, Kelly V, Wu S et al. Development and non-clinical evaluation of an 111In/225Ac theranostic for triple negative breast cancer. J. Med. Imaging Radiat. Oncol. 50, S113 (2019).
    • 53. Ceriani RL, Chan CM, Baratta FS, Ozzello L, Derosa CM, Habif DV. Levels of expression of breast epithelial mucin detected by monoclonal antibody BrE-3 in breast-cancer prognosis. Int. J. Cancer 51(3), 343–354 (1992).
    • 54. Mizrachi H, Salako QA, Furmanski P, Glenn SD, Denardo GL. Radioimmunolocalization of metastatic breast carcinoma using Indium-ill-Methyl Benzyl DTPA BrE-3 monoclonal antibody: Phase I study. J. Nucl. Med. 34(7), 1067–1074 (1993).
    • 55. Denardo SJ, Kramer EL, O'donnell RT et al. Radioimmunotherapy for breast cancer using indium-lll/yttrium-90 BrE-3: results of a phase I clinical trial. J. Nucl. Med. 38(8), 1180–1185 (1997).
    • 56. Denardo SJ. Radioimmunodetection and therapy of breast cancer. Presented at: Semin. Nucl. Med. 35(2), 143–151 (2005).
    • 57. Kramer EL, Liebes L, Wasserheit C et al. Initial clinical evaluation of radiolabeled MX-DTPA humanized BrE-3 antibody in patients with advanced breast cancer. Clin. Cancer. Res. 4(7), 1679–1688 (1998).
    • 58. Pietersz GA, Wenjun L, Krauer K, Baker T, Wreschner D, Mckenzie IF. Comparison of the biological properties of two anti-mucin-1 antibodies prepared for imaging and therapy. Cancer Immunol. Immunother. 44(6), 323–328 (1997).
    • 59. Davies Q, Perkins A, Roos J et al. An immunoscintigraphic evaluation of the engineered human monoclonal antibody (hCTMO1) for use in the treatment of ovarian carcinoma. Br. J. Obstet. Gynaecol. 106(1), 31–37 (1999).
    • 60. Gillespie A, Broadhead T, Chan S et al. Phase I open study of the effects of ascending doses of the cytotoxic immunoconjugate CMB-401 (hCTMO1-calicheamicin) in patients with epithelial ovarian cancer. Ann. Oncol. 11(6), 735–741 (2000).
    • 61. Chan SY, Gordon AN, Coleman RE et al. A Phase II study of the cytotoxic immunoconjugate CMB-401 (hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Cancer Immunol. Immunother. 52(4), 243–248 (2003).
    • 62. Price M, Pugh J, Hudecz F et al. C595–a monoclonal antibody against the protein core of human urinary epithelial mucin commonly expressed in breast carcinomas. Br. J. Cancer 61(5), 681 (1990).
    • 63. Song EY, Qu CF, Rizvi SM et al. Bismuth-213 radioimmunotherapy with C595 anti–MUC1 monoclonal antibody in an ovarian cancer ascites model. Cancer Biol. Ther. 7(1), 76–80 (2008).
    • 64. Hughes O, Bishop M, Perkins A et al. Targeting superficial bladder cancer by the intravesical administration of copper-67–labeled anti-MUC1 mucin monoclonal antibody C595. J. Clin. Oncol. 18(2), 363–363 (2000).
    • 65. Hughes O, Perkins A, Frier M et al. Imaging for staging bladder cancer: a clinical study of intravenous 111indium-labelled anti-MUC1 mucin monoclonal antibody C595. BJU Int. 87(1), 39–46 (2001).
    • 66. Dian D, Janni W, Kuhn C et al. Evaluation of a novel anti-mucin 1 (MUC1) antibody (PankoMab) as a potential diagnostic tool in human ductal breast cancer; comparison with two established antibodies. Oncol. Res. Treat. 32(5), 238–244 (2009).
    • 67. Danielczyk A, Stahn R, Faulstich D et al. PankoMab: a potent new generation anti-tumour MUC1 antibody. Cancer Immunol. Immunother. 55(11), 1337–1347 (2006).
    • 68. Fiedler W, Dedosso S, Cresta S et al. A Phase I study of PankoMab-GEX, a humanised glyco-optimised monoclonal antibody to a novel tumour-specific MUC1 glycopeptide epitope in patients with advanced carcinomas. Eur. J. Cancer 63, 55–63 (2016).
    • 69. Ledermann J, Sehouli J, Zurawski B et al. LBA41A double-blind, placebo-controlled, randomized, Phase II study to evaluate the efficacy and safety of switch maintenance therapy with the anti-TA-MUC1 antibody PankoMab-GEX after chemotherapy in patients with recurrent epithelial ovarian carcinoma. Ann. Oncol. 28(Suppl. 5), 626 (2017).
    • 70. Garralda E, Van Hoef M, Ochsenreither S et al. 1510TiP The GATTO study: a Phase I of the anti-EGFR tomuzotuximab (TO) in combination with the anti-MUC1 gatipotuzumab (GAT) in patients with EGFR positive solid tumors. Ann. Oncol. 29, 292–131 (2018).
    • 71. Qi W, Schultes BC, Liu D, Kuzma M, Decker W, Madiyalakan R. Characterization of an anti-MUC1 monoclonal antibody with potential as a cancer vaccine. Hybridoma Hybridomics 20(5–6), 313–324 (2001).
    • 72. De Bono J, Rha SY, Stephenson J et al. Phase I trial of a murine antibody to MUC1 in patients with metastatic cancer: evidence for the activation of humoral and cellular antitumor immunity. Ann. Oncol. 15(12), 1825–1833 (2004).
    • 73. Mehla K, Tremayne J, Grunkemeyer JA et al. Combination of mAb-AR20.5, anti-PD-L1 and PolyICLC inhibits tumor progression and prolongs survival of MUC1.Tg mice challenged with pancreatic tumors. Cancer Immunol. Immunother. 67(3), 445–457 (2018).
    • 74. Kearse KP, Smith NL, Semer DA et al. Monoclonal antibody DS6 detects a tumor-associated sialoglycotope expressed on human serous ovarian carcinomas. Int. J. Cancer 88(6), 866–872 (2000).
    • 75. Trombe M, Caron A, Tellier A et al. Preclinical activity of an antibody drug conjugate targeting tumor specificmuc1 structural peptide-glycotope. Cancer Res. 79(Suppl. 13), 235 (2019).
    • 76. Gomez-Roca CA, Boni V, Moreno V et al. A Phase I study of SAR566658, an anti CA6-antibody drug conjugate (ADC), in patients (Pts) with CA6-positive advanced solid tumors (STs)(NCT01156870). J. Clin. Oncol. 34(Suppl. 15), 2511 (2016).
    • 77. Calvete JA, Newell DR, Wright AF, Rose MS. In vitro and in vivo antitumor activity of ZENECA ZD0490, a recombinant ricin A-chain immunotoxin for the treatment of colorectal cancer. Cancer Res. 54(17), 4684–4690 (1994).
    • 78. Baeckström D, Hansson GC, Nilsson O, Johansson C, Gendler SJ, Lindholm L. Purification and characterization of a membrane-bound and a secreted mucin-type glycoprotein carrying the carcinoma-associated sialyl-Lea epitope on distinct core proteins. J. Biol. Chem. 266(32), 21537–21547 (1991).
    • 79. Tolcher AW, Ochoa L, Hammond LA et al. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a Phase I, pharmacokinetic, and biologic correlative study. J. Clin. Oncol. 21(2), 211–222 (2003).
    • 80. Rodon J, Garrison M, Hammond LA et al. Cantuzumab mertansine in a three-times a week schedule: a Phase I and pharmacokinetic study. Cancer Chemother. Pharmacol. 62(5), 911–919 (2008).
    • 81. Mita M, Ricart A, Mita A et al. A Phase I study of a CanAg-targeted immunoconjugate, huC242-DM4, in patients with Can Ag-expressing solid tumors. J. Clin. Oncol. 25(Suppl. 18), 3062–3062 (2007).
    • 82. Goff L, Papadopoulos K, Posey J et al. A Phase II study of IMGN242 (huC242-DM4) in patients with CanAg-positive gastric or gastroesophageal (GE) junction cancer. J. Clin. Oncol. 27(15S), e15625–e15625 (2009).
    • 83. Biassoni L, Granowska M, Carroll M et al. 99m Tc-labelled SM3 in the preoperative evaluation of axillary lymph nodes and primary breast cancer with change detection statistical processing as an aid to tumour detection. Br. J. Cancer 77(1), 131 (1998).
    • 84. You F, Jiang L, Zhang B et al. Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. Sci. China Life Sci. 59(4), 386–397 (2016).
    • 85. Paknejad M, Rasaee M, Tehrani FK et al. Production of monoclonal antibody, PR81, recognizing the tandem repeat region of MUC1 mucin. Hybridoma Hybridomics 22(3), 153–158 (2003).
    • 86. Mohammadi M, Rasaee MJ, Rajabibazl M, Paknejad M, Zare M, Mohammadzadeh S. Epitope mapping of PR81 anti-MUC1 monoclonal antibody following PEPSCAN and phage display techniques. Hybridoma 26(4), 223–230 (2007).
    • 87. Salouti M, Rajabi H, Babaei M et al. 99mTc direct radiolabeling of PR81, a new anti-MUC1 monoclonal antibody for radioimmunoscintigraphy. Iran. J. Nucl. Med. 13(1), 7–16 (2005).
    • 88. Nishimura S-I, Hinou H, Numata Y, Onoda J, Naito S, Ohyabu N. Anti-MUC1 antibody. (U.S. Patent No. 8,722,856) (2014).
    • 89. Pelat T, Hust M, Hale M, Lefranc M-P, Dübel S, Thullier P. Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol. 9(1), 60 (2009).
    • 90. Thie H, Toleikis L, Li J et al. Rise and fall of an anti-MUC1 specific antibody. PLoS ONE 6(1), e15921 (2011).
    • 91. Yonezawa S, Kitajima S, Higashi M et al. A novel anti-MUC1 antibody against the MUC1 cytoplasmic tail domain: use in sensitive identification of poorly differentiated cells in adenocarcinoma of the stomach. Gastric Cancer 15(4), 370–381 (2012).
    • 92. Ismaili A, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Memari HR. Production and characterization of anti-(mucin MUC1) single-domain antibody in tobacco (Nicotiana tabacum cultivar Xanthi). Biotechnol. Appl. Biochem. 47(1), 11–19 (2007).
    • 93. Sadeqzadeh E, Rahbarizadeh F, Ahmadvand D, Rasaee MJ, Parhamifar L, Moghimi SM. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells. J. Control. Release 156(1), 85–91 (2011).
    • 94. Pichinuk E, Benhar I, Jacobi O et al. Antibody targeting of cell-bound MUC1 SEA domain kills tumor cells. Cancer Res. 72(13), 3324–3336 (2012).
    • 95. Rubinstein DB, Karmely M, Ziv R et al. MUC1/X protein immunization enhances cDNA immunization in generating anti-MUC1 A/B junction antibodies that target malignant cells. Cancer Res. 66(23), 11247–11253 (2006).
    • 96. Panchamoorthy G, Jin C, Raina D et al. Targeting the human MUC1-C oncoprotein with an antibody–drug conjugate. JCI Insight 3(12), e99880 (2018).
    • 97. Wu G, Kim D, Kim JN et al. A Mucin1 C-terminal subunit-directed monoclonal antibody targets overexpressed Mucin1 in breast cancer. Int. J. Mol. Sci. 8(1), 78 (2018).
    • 98. Wu G, Maharjan S, Kim D et al. A novel monoclonal antibody targets mucin1 and attenuates growth in pancreatic cancer model. Int. J. Mol. Sci. 19(7), 2004 (2018).
    • 99. Kim MJ, Choi JR, Tae N et al. Novel antibodies targeting MUC1-C showed anti-metastasis and growth-inhibitory effects on human breast cancer cells. Int. J. Mol. Sci. 21(9), 3258 (2020).
    • 100. Naito S, Takahashi T, Onoda J et al. Generation of novel anti-MUC1 monoclonal antibodies with designed carbohydrate specificities using MUC1 glycopeptide library. ACS Omega 2(11), 7493–7505 (2017).
    • 101. Palitzsch B, Gaidzik N, Stergiou N et al. A synthetic glycopeptide vaccine for the induction of a monoclonal antibody that differentiates between normal and tumor mammary cells and enables the diagnosis of human pancreatic cancer. Angew. Chem. Int. 55(8), 2894–2898 (2016).
    • 102. Stergiou N, Nagel J, Pektor S et al. Evaluation of a novel monoclonal antibody against tumor-associated MUC1 for diagnosis and prognosis of breast cancer. Int. J. Med. Sci. 16(9), 1188 (2019).
    • 103. Wakui H, Tanaka Y, Ose T et al. A straightforward approach to antibodies recognising cancer specific glycopeptidic neoepitopes. Chem. Sci. 11(19), 4999–5006 (2020).
    • 104. Doi M, Yokoyama A, Kondo K et al. Anti-tumor effect of the anti-KL-6/MUC1 monoclonal antibody through exposure of surface molecules by MUC1 capping. Cancer Sci. 97(5), 420–429 (2006).
    • 105. Ohyabu N, Hinou H, Matsushita T et al. An essential epitope of anti-MUC1 monoclonal antibody KL-6 revealed by focused glycopeptide library. J. Am. Chem. Soc. 131(47), 17102–17109 (2009).
    • 106. Namba M, Hattori N, Hamada H et al. Anti-KL-6/MUC1 monoclonal antibody reverses resistance to trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity by capping MUC1. Cancer Lett. 442, 31–39 (2019).
    • 107. Matsumura K, Niki I, Tian H et al. Radioimmunoscintigraphy of pancreatic cancer in tumor-bearing athymic nude mice using 99m technetium-labeled anti-KL-6/MUC1 antibody. Radiat. Med. 26(3), 133 (2008).
    • 108. Yamamoto M, Bhavanandan V, Nakamori S, Irimura T. A novel monoclonal antibody specific for sialylated MUC1 mucin. Jap. J. Cancer Res. 87(5), 488–496 (1996).
    • 109. Suzuki H, Shoda J, Kawamoto T et al. Expression of MUC1 recognized by monoclonal antibody MY. 1E12 is a useful biomarker for tumor aggressiveness of advanced colon carcinoma. Clin. Exp. Metastasis 21(4), 321–329 (2004).
    • 110. Yoshimura Y, Denda-Nagai K, Takahashi Y et al. Products of chemoenzymatic synthesis representing MUC1 tandem repeat unit with T-, ST-or STn-antigen revealed distinct specificities of anti-MUC1 antibodies. Sci. Rep. 9(1), 1–12 (2019).
    • 111. Muguruma N, Ito S. Labeled anti-mucin antibody detectable by infrared-fluorescence endoscopy. Cancer Biomark. 4(6), 321–328 (2008).
    • 112. Ryuko K, Schol DJ, Snijdewint FG et al. Characterization of a new MUC1 monoclonal antibody (VU-2-G7) directed to the glycosylated PDTR sequence of MUC1. Tumor Biol. 21(4), 197–210 (2000).
    • 113. Tarp MA, Sørensen AL, Mandel U et al. Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology 17(2), 197–209 (2007).
    • 114. Sørensen AL, Reis CA, Tarp MA et al. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 16(2), 96–107 (2006).
    • 115. Posey AD Jr, Schwab RD, Boesteanu AC et al. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44(6), 1444–1454 (2016).
    • 116. King T, Posey A. Co-expression of an engineered cell-surface sialidase by CART cells improves anti-cancer activity of NK cells in solid tumors. Cytotherapy 21(5), S27 (2019).
    • 117. Li Y, Zhou C, Li J et al. Single domain based bispecific antibody, Muc1-Bi-1, and its humanized form, Muc1-Bi-2, induce potent cancer cell killing in muc1 positive tumor cells. PLoS ONE 13(1), e0191024 (2018).
    • 118. Katayose Y, Kudo T, Suzuki M et al. MUC1-specific targeting immunotherapy with bispecific antibodies: inhibition of xenografted human bile duct carcinoma growth. Cancer Res. 56(18), 4205–4212 (1996).
    • 119. Hinoda Y, Nakagawa N, Ohe Y et al. Recognition of the polypeptide core of mucin by monoclonal antibody MUSE11 against an adenocarcinoma-associated antigen. Jap. J. Cancer Res. 81(12), 1206–1209 (1990).
    • 120. Takemura S-I, Asano R, Tsumoto K et al. Construction of a diabody (small recombinant bispecific antibody) using a refolding system. Protein Eng. 13(8), 583–588 (2000).
    • 121. Takemura S-I, Kudo T, Asano R et al. A mutated superantigen SEA D227A fusion diabody specific to MUC1 and CD3 in targeted cancer immunotherapy for bile duct carcinoma. Cancer Immunol. Immunother. 51(1), 33–44 (2002).
    • 122. Runcie K, Budman DR, John V, Seetharamu NJMM. Bi-specific and tri-specific antibodies-the next big thing in solid tumor therapeutics. Mol. Med. 24(1), 50 (2018).
    • 123. Goletz S, Kehler P, Gellert J, Danielczyk A, Jäkel A. Multispecific antibody constructs binding to muc1 and cd3. https://patents.google.com/patent/US20200131275A1/en (2020).
    • 124. Kodama H, Suzuki M, Katayose Y et al. Specific and effective targeting cancer immunotherapy with a combination of three bispecific antibodies. Immunol. Lett. 81(2), 99–106 (2002).
    • 125. Schuhmacher J, Klivényi G, Kaul S et al. Pretargeting of human mammary carcinoma xenografts with bispecific anti-MUC1/anti-Ga chelate antibodies and immunoscintigraphy with PET. Nucl. Med. Biol. 28(7), 821–828 (2001).
    • 126. Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat. Rev. Cancer 9(12), 874–885 (2009).
    • 127. Thie H, Toleikis L, Li J et al. Rise and fall of an anti-MUC1 specific antibody. PLoS ONE 6(1), e15921 (2011).
    • 128. Moreno M, Bontkes HJ, Scheper RJ, Kenemans P, Verheijen RH, Von Mensdorff-Pouilly S. High level of MUC1 in serum of ovarian and breast cancer patients inhibits huHMFG-1 dependent cell-mediated cytotoxicity (ADCC). Cancer Lett. 257(1), 47–55 (2007).
    • 129. Tang Y, Cui X, Xiao H et al. Binding of circulating anti-MUC1 antibody and serum MUC1 antigen in stage IV breast cancer. Mol. Med. Rep. 15(5), 2659–2664 (2017).
    • 130. Treon SP, Maimonis P, Bua D et al. Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood 96(9), 3147–3153 (2000).
    • 131. Storr SJ, Royle L, Chapman CJ et al. The O-linked glycosylation of secretory/shed MUC1 from an advanced breast cancer patient's serum. Glycobiology 18(6), 456–462 (2008).
    • 132. Pegram M, Borges V, Fuloria J et al. Phase I pharmacokinetics (PK) of humanized anti-MUC-1 antibody R1550. J. Clin. Oncol. 24(Suppl. 18), 2533–2533 (2006).
    • 133. Zhou D, Xu L, Huang W, Tonn T. Epitopes of MUC1 tandem repeats in cancer as revealed by antibody crystallography: toward glycopeptide signature-guided therapy. Molecules 23(6), 1326 (2018).
    • 134. Singh R, Bandyopadhyay D. MUC1: a target molecule for cancer therapy. Cancer Biol. Ther. 6(4), 481–486 (2007).
    • 135. Ledermann J, Sehouli J, Zurawski B et al. LBA41A double-blind, placebo-controlled, randomized, Phase II study to evaluate the efficacy and safety of switch maintenance therapy with the anti-TA-MUC1 antibody PankoMab-GEX after chemotherapy in patients with recurrent epithelial ovarian carcinoma. 28(Suppl. 5), (2017).
    • 136. Madsen CB, Wandall HH, Pedersen AE. Potential for novel MUC1 glycopeptide-specific antibody in passive cancer immunotherapy. Immunopharmacol. Immunotoxicol. 35(6), 649–652 (2013).
    • 137. Zhao Q, Piyush T, Chen C et al. MUC1 extracellular domain confers resistance of epithelial cancer cells to anoikis. Cell Death Dis. 5(10), e1438–e1438 (2014).
    • 138. Mcguckin MA, Hurst TG, Ward BG. Heterogeneity in production, secretion and glycosylation of MUC1 epithelial mucin by primary cultures of ovarian carcinoma. Int. J. Cancer 63(3), 412–418 (1995).
    • 139. Walsh MD, Luckie SM, Cummings MC, Antalis TM, Mcguckin MA. Heterogeneity of MUC1 expression by human breast carcinoma cell lines in vivo and in vitro. Breast Cancer Res. Treat. 58(3), 253–264 (1999).
    • 140. Reilly RM, Sandhu J, Alvarez-Diez TM, Gallinger S, Kirsh J, Stern H. Problems of delivery of monoclonal antibodies. Clin. Pharmacokinet. 28(2), 126–142 (1995).