We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Radiation-induced intestinal damage: latest molecular and clinical developments

    Lina Lu

    School of Nuclear Science & Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China

    School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Wenjun Li

    Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China

    Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Lihua Chen

    School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China

    ,
    Qiong Su

    School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China

    ,
    Yanbin Wang

    School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China

    ,
    Zhong Guo

    Medical College of Northwest Minzu University, Lanzhou 730000, Gansu, PR China

    ,
    Yongjuan Lu

    School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China

    ,
    Bin Liu

    *Authors for correspondence: Tel.: +86 18 189 508418;

    E-mail Address: binliu_edu@sina.com

    School of Nuclear Science & Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China

    School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu, PR China

    &
    Song Qin

    Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China

    Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China

    Published Online:https://doi.org/10.2217/fon-2019-0416

    Aim: To systematically review the prophylactic and therapeutic interventions for reducing the incidence or severity of intestinal symptoms among cancer patients receiving radiotherapy. Materials & methods: A literature search was conducted in the PubMed database using various search terms, including ‘radiation enteritis’, ‘radiation enteropathy’, ‘radiation-induced intestinal disease’, ‘radiation-induced intestinal damage’ and ‘radiation mucositis’. The search was limited to in vivo studies, clinical trials and meta-analyses published in English with no limitation on publication date. Other relevant literature was identified based on the reference lists of selected studies. Results: The pathogenesis of acute and chronic radiation-induced intestinal damage as well as the prevention and treatment approaches were reviewed. Conclusion: There is inadequate evidence to strongly support the use of a particular strategy to reduce radiation-induced intestinal damage. More high-quality randomized controlled trials are required for interventions with limited evidence suggestive of potential benefits.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104(6), 1129–1137 (2005).
    • 2. Miller KD, Nogueira L, Mariotto AB et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 69(5), 363–385 (2019).
    • 3. Kingham TP, Wong SL. Global surgical oncology: addressing the global surgical oncology disease burden. Ann. Surg. Oncol. 22(3), 708–709 (2015).
    • 4. Martinel Lamas DJ, Carabajal E, Prestifilippo JP et al. Protection of radiation-induced damage to the hematopoietic system, small intestine and salivary glands in rats by JNJ7777120 compound, a histamine H4 ligand. PLoS ONE 8(7), e69106 (2013).
    • 5. Bryant AK, Banegas MP, Martinez ME, Mell LK, Murphy JD. Trends in radiation therapy among cancer survivors in the United States, 2000-2030. Cancer Epidemiol. Biomarkers Prev. 26(6), 963–970 (2017).
    • 6. Chen SW, Liang JA, Yang SN et al. Radiation injury to intestine following hysterectomy and adjuvant radiotherapy for cervical cancer. Gynecol. Oncol. 95(1), 208–214 (2004).
    • 7. Wu D, Han R, Deng S et al. Protective effects of flagellin A N/C against radiation-induced NLR pyrin domain containing 3 inflammasome-dependent pyroptosis in intestinal cells. Int. J. Radiat. Oncol. Biol. Phys. 101(1), 107–117 (2018).
    • 8. Sun YW, Zhang YY, Ke XJ, Wu XJ, Chen ZF, Chi P. Pirfenidone prevents radiation-induced intestinal fibrosis in rats by inhibiting fibroblast proliferation and differentiation and suppressing the TGF-beta1/Smad/CTGF signaling pathway. Eur. J. Pharmacol. 822, 199–206 (2018).
    • 9. Riehl TE, Alvarado D, Ee X et al. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut 68 (6), 1003–1013 (2018).
    • 10. Li G, Cheng K, Zhao Z, Wang J, Zhu W, Li J. [Treatment of 21 cases of chronic radiation intestinal injury by staging ileostomy and closure operation]. Zhonghua Wei Chang Wai Ke Za Zhi 21(7), 772–778 (2018).
    • 11. Kim BH, Jung HW, Seo SH, Shin H, Kwon J, Suh JM. Synergistic actions of FGF2 and bone marrow transplantation mitigate radiation-induced intestinal injury. Cell Death Dis. 9(3), 383 (2018).
    • 12. Suman S, Kumar S, Moon BH, Fornace AJ Jr, Kallakury BVS, Datta K. Increased transgenerational intestinal tumorigenesis in offspring of ionizing radiation exposed parent APC(1638N/+) Mice. J. Cancer 8(10), 1769–1773 (2017).
    • 13. Eltahawy NA, Elsonbaty SM, Abunour S, Zahran WE. Synergistic effect of aluminum and ionizing radiation upon ultrastructure, oxidative stress and apoptotic alterations in Paneth cells of rat intestine. Environ. Sci. Pollut. Res. Int. 24(7), 6657–6666 (2017).
    • 14. Suman S, Kallakury BV, Fornace AJ Jr. Datta K. Protracted upregulation of leptin and IGF1 is associated with activation of PI3K/Akt and JAK2 pathway in mouse intestine after ionizing radiation exposure. Int. J. Biol. Sci. 11(3), 274–283 (2015).
    • 15. Zhang C, Ni J, Li BL et al. CpG-oligodeoxynucleotide treatment protects against ionizing radiation-induced intestine injury. PLoS ONE 8(6), e66586 (2013).
    • 16. Matsuu-Matsuyama M, Nakashima M, Shichijo K, Okaichi K, Nakayama T, Sekine I. Basic fibroblast growth factor suppresses radiation-induced apoptosis and TP53 pathway in rat small intestine. Radiat. Res. 174(1), 52–61 (2010).
    • 17. Yeh MH, Chang YH, Tsai YC et al. Bone marrow derived macrophages fuse with intestine stromal cells and contribute to chronic fibrosis after radiation. Radiother. Oncol. 119(2), 250–258 (2016).
    • 18. Jahnson S, Christofferson RH, Gerdin B. Reduced mucosal perianastomotic capillary density in rat small intestine with chronic radiation damage. Radiat. Res. 150(5), 542–548 (1998).
    • 19. Takemura N, Kurashima Y, Mori Y et al. Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Sci. Transl. Med. 10(429), 0333 (2018).
    • 20. Olopade FA, Norman A, Blake P et al. A modified inflammatory bowel disease questionnaire and the vaizey incontinence questionnaire are simple ways to identify patients with significant gastrointestinal symptoms after pelvic radiotherapy. Br. J. Cancer 92(9), 1663–1670 (2005).
    • 21. Kalita B, Ranjan R, Gupta ML. Combination treatment of podophyllotoxin and rutin promotes mouse Lgr5(+ve) intestinal stem cells survival against lethal radiation injury through Wnt signaling. Apoptosis doi:10.1007/s10495-019-01519-x (2019).
    • 22. Kuo B, Szabo E, Lee SC et al. The LPA2 receptor agonist Radioprotectin-1 spares Lgr5-positive intestinal stem cells from radiation injury in murine enteroids. Cell. Signal. 51, 23–33 (2018).
    • 23. Boyne DJ, O'Sullivan DE, Olij BF, King WD, Friedenreich CM, Brenner DR. Physical activity, global DNA methylation, and breast cancer risk: a systematic literature review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 27(11), 1320–1331 (2018).
    • 24. Kim JS, Han NK, Kim SH, Lee HJ. Silibinin attenuates radiation-induced intestinal fibrosis and reverses epithelial-to-mesenchymal transition. Oncotarget 8(41), 69386–69397 (2017).
    • 25. Kim CK, Yang VW, Bialkowska AB. The role of intestinal stem cells in epithelial regeneration following radiation-induced gut injury. Curr. Stem Cell Rep. 3(4), 320–332 (2017). •• Explores the regenerative capacity and mechanisms of various populations of intestinal stem cells in response to ionizing radiation.
    • 26. Chen W, Ju S, Lu T et al. Directional delivery of RSPO1 by mesenchymal stem cells ameliorates radiation-induced intestinal injury. Cytokine 95, 27–34 (2017).
    • 27. Bhanja P, Norris A, Gupta-Saraf P, Hoover A, Saha S. BCN057 induces intestinal stem cell repair and mitigates radiation-induced intestinal injury. Stem Cell Res. Ther. 9(1), 26 (2018).
    • 28. Liang Y, Zhou H, Yao Y et al. 12-O-tetradecanoylphorbol-13-acetate (TPA) increases murine intestinal crypt stem cell survival following radiation injury. Oncotarget 8(28), 45566–45576 (2017).
    • 29. Ahmadzai AA, Patel Ii, Veronesi G et al. Determination using synchrotron radiation-based Fourier transform infrared microspectroscopy of putative stem cells in human adenocarcinoma of the intestine: corresponding benign tissue as a template. Appl. Spectrosc. 68(8), 812–822 (2014).
    • 30. Gracz AD, Fuller MK, Wang F et al. Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells. Stem Cells 31(9), 2024–2030 (2013).
    • 31. Umar S. Intestinal stem cells. Curr. Gastroenterol. Rep. 12(5), 340–348 (2010).
    • 32. Meran L, Baulies A, Li VSW. Intestinal stem cell niche: the extracellular matrix and cellular components. Stem Cells Int. 2017, 11 (2017).
    • 33. Yen TH, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Rev. 2(3), 203–212 (2006).
    • 34. François A, Milliat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation damage to the gut mucosa. Biomed. Res. Int. 2013, 123241–123241 (2013). • Focuses on what has been observed in the healthy gut and what needs to be done concerning the immunoinflammatory response after localized radiation exposure.
    • 35. Dorr W, Hendry JH. Consequential late effects in normal tissues. Radiother. Oncol. 61(3), 223–231 (2001).
    • 36. Shukla PK, Gangwar R, Manda B et al. Rapid disruption of intestinal epithelial tight junction and barrier dysfunction by ionizing radiation in mouse colon in vivo: protection by N-acetyl-l-cysteine. Am. J. Physiol. Gastrointest. Liver Physiol. 310(9), G705–G715 (2016).
    • 37. Kim ND, Luster AD. The role of tissue resident cells in neutrophil recruitment. Trends Immunol. 36(9), 547–555 (2015).
    • 38. Young MA, Daly CS, Taylor E, James R, Clarke AR, Reed KR. Subtle deregulation of the Wnt-signaling pathway through loss of Apc2 reduces the fitness of intestinal stem cells. Stem Cells 36(1), 114–122 (2018).
    • 39. Katoh M, Katoh M. WNT antagonist, DKK2, is a notch signaling target in intestinal stem cells: augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates. Int. J. Mol. Med. 19(1), 197–201 (2007).
    • 40. Peck BC, Mah AT, Pitman WA, Ding S, Lund PK, Sethupathy P. Functional transcriptomics in diverse intestinal epithelial cell types reveals robust microRNA sensitivity in intestinal stem cells to microbial status. J. Biol. Chem. 292(7), 2586–2600 (2017).
    • 41. Foronda D, Weng R, Verma P, Chen YW, Cohen SM. Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut. Genes Dev. 28(21), 2421–2431 (2014).
    • 42. Han NK, Jeong YJ, Pyun BJ, Lee YJ, Kim SH, Lee HJ. Geranylgeranylacetone ameliorates intestinal radiation toxicity by preventing endothelial cell dysfunction. Int. J. Mol. Sci. 18(10), 2103 (2017).
    • 43. Wang J, Zheng H, Ou X, Fink LM, Hauer-Jensen M. Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: possible link between endothelial dysfunction and chronic radiation fibrosis. Am. J. Pathol. 160(6), 2063–2072 (2002).
    • 44. Li Y, Kong S, Yang F, Xu W. Protective effects of 2-amino-5,6-dihydro-4h-1,3-thiazine and its derivative against radiation-induced hematopoietic and intestinal injury in mice. Int. J. Mol. Sci. 19(5), 1530 (2018).
    • 45. Du B, Yuan J, Ren ZQ et al. Effect of different doses of radiation on intestinal injury in NOD/SCID Mice. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 40(1), 7–12 (2018). • Studies the effect of different doses of radiation on intestinal injury, with an attempt to find the optimal radiation dose for establishing intestinal injury models in NOD/SCID mice.
    • 46. Suman S, Kumar S, Moon BH, Fornace AJ Jr. Datta K. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC(1638N/+) mice. Life Sci. Space Res. (Amst.) 13, 45–50 (2017).
    • 47. Lee C, Shim S, Jang H et al. Human umbilical cord blood-derived mesenchymal stromal cells and small intestinal submucosa hydrogel composite promotes combined radiation-wound healing of mice. Cytotherapy 19(9), 1048–1059 (2017).
    • 48. Klochkova SV, Kvaratskheliya AG, Alekseeva NT, Nikityuk DB. Regeneration potential of lymphoid tissue of small intestine in mice after exposure to low-intensity radiation. Bull. Exp. Biol. Med. 164(2), 214–217 (2017).
    • 49. Jeong BK, Song JH, Jeong H et al. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice. Oncotarget 7(12), 15105–15117 (2016).
    • 50. Grubskaia LV, Voitsitskii VM, Khizhniak SV. [The effect of ionizing radiation with low dose rate on the state of electron transfer chain of enterocyte mitochondria of rat small intestine]. Ukr. Biokhim. Zh. (1999) 84(1), 45–52 (2012).
    • 51. Andreyev J. Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. Lancet Oncol. 8(11), 1007–1017 (2007).
    • 52. Kumar S, Suman S, Fornace AJ Jr., Datta K. Space radiation triggers persistent stress response, increases senescent signaling, and decreases cell migration in mouse intestine. Proc. Natl Acad. Sci. USA 115(42), E9832–E9841 (2018).
    • 53. Lim YB, Pyun BJ, Lee HJ, Jeon SR, Jin YB, Lee YS. Proteomic identification of radiation response markers in mouse intestine and brain. Proteomics 11(7), 1254–1263 (2011).
    • 54. Wang J, Zheng H, Kulkarni A, Ou X, Hauer-Jensen M. Regulation of early and delayed radiation responses in rat small intestine by capsaicin-sensitive nerves. Int. J. Radiat. Oncol. Biol. Phys. 64(5), 1528–1536 (2006).
    • 55. Stenson WF. Prostaglandins and the epithelial response to radiation injury in the intestine. Curr. Opin. Gastroenterol. 20(2), 61–64 (2004).
    • 56. Miyoshi-Imamura T, Kakinuma S, Kaminishi M et al. Unique characteristics of radiation-induced apoptosis in the postnatally developing small intestine and colon of mice. Radiat. Res. 173(3), 310–318 (2010).
    • 57. Houchen CW, Sturmoski MA, Anant S, Breyer RM, Stenson WF. Prosurvival and antiapoptotic effects of PGE2 in radiation injury are mediated by EP2 receptor in intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 284(3), G490–G498 (2003).
    • 58. Moon C, Ahn K, Kim J et al. Eutigoside C attenuates radiation-induced crypt injury in the mouse intestine. Phytother. Res. 24(6), 840–845 (2010).
    • 59. Dolzhanov A, Ushakov IB. [Mitotic activity of epithelium in crypts of rats' empty intestine and tissue basophils in the event of intestinal syndrome of radiation disease treated with poly-radio-modification]. Aviakosm. Ekolog. Med. 35(4), 66–69 (2001).
    • 60. Lee MG, Freeman AR, Roos DE, Milner AD, Borg MF. Randomized double-blind trial of amifostine versus placebo for radiation-induced xerostomia in patients with head and neck cancer. J. Med. Imaging Radiat. Oncol. 63(1), 142–150 (2019).
    • 61. Huang B, He T, Yao Q et al. Amifostine suppresses the side effects of radiation on BMSCs by promoting cell proliferation and reducing ROS production. Stem Cells Int. 2019, 8749090 (2019).
    • 62. Koukourakis MI, Giatromanolaki A, Fylaktakidou K et al. Amifostine protects mouse liver against radiation-induced autophagy blockage. Anticancer Res. 38(1), 227–238 (2018).
    • 63. Cook JA, Naz S, Anver MR et al. Cancer incidence in C3H mice protected from lethal total-body radiation after amifostine. Radiat. Res. 189(5), 490–496 (2018).
    • 64. Can B, Atilgan R, Pala S, Kuloglu T, Kiray S, Ilhan N. Examination of the effect of ovarian radiation injury induced by hysterosalpingography on ovarian proliferating cell nuclear antigen and the radioprotective effect of amifostine: an experimental study. Drug Des. Devel. Ther. 12, 1491–1500 (2018).
    • 65. Ueno M, Matsumoto S, Matsumoto A et al. Effect of amifostine, a radiation-protecting drug, on oxygen concentration in tissue measured by EPR oximetry and imaging. J. Clin. Biochem. Nutr. 60(3), 151–155 (2017).
    • 66. Aktoz T, Caloglu M, Yurut-Caloglu V et al. Histopathological and biochemical comparisons of the protective effects of amifostine and l-carnitine against radiation-induced acute testicular toxicity in rats. Andrologia 49(9), e12754 (2017).
    • 67. Cakmak G, Severcan M, Zorlu F, Severcan F. Structural and functional damages of whole body ionizing radiation on rat brain homogenate membranes and protective effect of amifostine. Int. J. Radiat. Biol. 92(12), 837–848 (2016).
    • 68. Kouloulias VE, Kouvaris JR, Pissakas G et al. Phase II multicenter randomized study of amifostine for prevention of acute radiation rectal toxicity: topical intrarectal versus subcutaneous application. Int. J. Radiat. Oncol. Biol. Phys. 62(2), 486–493 (2005).
    • 69. Katsanos KH, Briasoulis E, Tsekeris P et al. Randomized phase II exploratory study of prophylactic amifostine in cancer patients who receive radical radiotherapy to the pelvis. J. Exp. Clin. Cancer Res. 29(1), 68 (2010).
    • 70. Kouvaris J, Kouloulias V, Malas E et al. Amifostine as radioprotective agent for the rectal mucosa during irradiation of pelvic tumors. A phase II randomized study using various toxicity scales and rectosigmoidoscopy. Strahlenther. Onkol. 179(3), 167–174 (2003).
    • 71. Portelance L, Chao KS, Grigsby PW, Bennet H, Low D. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 51(1), 261–266 (2001).
    • 72. Sterzing F, Engenhart-Cabillic R, Flentje M, Debus J. Image-guided radiotherapy: a new dimension in radiation oncology. Dtsch. Arztebl. Int. 108(16), 274–280 (2011).
    • 73. Hugo GD, Yan D, Liang J. Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra-and inter-fraction variation in lung tumour position. Phys. Med. Biol. 52(1), 257 (2006).
    • 74. Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO. Radiation dose-volume effects in radiation-induced rectal injury. Int. J. Radiat. Oncol. Biol. Phys. 76(Suppl. 3), S123–S129 (2010).
    • 75. Wiesendanger-Wittmer EM, Sijtsema NM, Muijs CT, Beukema JC. Systematic review of the role of a belly board device in radiotherapy delivery in patients with pelvic malignancies. Radiother. Oncol. 102(3), 325–334 (2012).
    • 76. Buchi KN, Moore JG, Hrushesky WJ, Sothern RB, Rubin NH. Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenterology 101(2), 410–415 (1991).
    • 77. Aluwini S, Pos F, Schimmel E et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): acute toxicity results from a randomised non-inferiority phase 3 trial. Lancet Oncol. 16(3), 274–283 (2015).
    • 78. Arcangeli G, Saracino B, Gomellini S et al. A prospective Phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 78(1), 11–18 (2010).
    • 79. Koontz BF, Bossi A, Cozzarini C, Wiegel T, D'amico A. A systematic review of hypofractionation for primary management of prostate cancer. Eur. Urol. 68(4), 683–691 (2015).
    • 80. Yavas C, Yavas G, Celik E et al. Beta-hydroxy-beta-methyl-butyrate, L-glutamine, and L-arginine supplementation improves radiation-induce acute intestinal toxicity. J. Diet. Suppl. 16 (5), 576–591 (2018).
    • 81. Vidal-Casariego A, Calleja-Fernandez A, De Urbina-Gonzalez JJ, Cano-Rodriguez I, Cordido F, Ballesteros-Pomar MD. Efficacy of glutamine in the prevention of acute radiation enteritis: a randomized controlled trial. JPEN J. Parenter. Enteral Nutr. 38(2), 205–213 (2014).
    • 82. Shim S, Jang HS, Myung HW et al. Rebamipide ameliorates radiation-induced intestinal injury in a mouse model. Toxicol. Appl. Pharmacol. 329, 40–47 (2017).
    • 83. Banerjee S, Shah SK, Melnyk SB, Pathak R, Hauer-Jensen M, Pawar SA. Cebpd is essential for gamma-tocotrienol mediated protection against radiation-induced hematopoietic and intestinal injury. Antioxidants (Basel) 7(4), 55 (2018).
    • 84. Hille A, Christiansen H, Pradier O et al. Effect of pentoxifylline and tocopherol on radiation proctitis/enteritis. Strahlenther Onkol. 181(9), 606–614 (2005).
    • 85. Thotala D, Chetyrkin S, Hudson B, Hallahan D, Voziyan P, Yazlovitskaya E. Pyridoxamine protects intestinal epithelium from ionizing radiation-induced apoptosis. Free Radic. Biol. Med. 47(6), 779–785 (2009).
    • 86. Roche M, Neti PV, Kemp FW et al. Radiation-induced reductions in transporter mRNA levels parallel reductions in intestinal sugar transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298(1), R173–R182 (2010).
    • 87. Roche M, Kemp FW, Agrawal A et al. Marked changes in endogenous antioxidant expression precede vitamin A-, C-, and E-protectable, radiation-induced reductions in small intestinal nutrient transport. Free Radic. Biol. Med. 50(1), 55–65 (2011).
    • 88. Sato T, Kinoshita M, Yamamoto T et al. Treatment of irradiated mice with high-dose ascorbic acid reduced lethality. PloS ONE 10(2), e0117020 (2015).
    • 89. Kennedy M, Bruninga K, Mutlu EA, Losurdo J, Choudhary S, Keshavarzian A. Successful and sustained treatment of chronic radiation proctitis with antioxidant vitamins E and C. Am. J. Gastroenterol. 96(4), 1080–1084 (2001).
    • 90. Khayyal MT, Kreuter MH, Kemmler M, Altmann P, Abdel-Naby DH, El-Ghazaly MA. Effect of a chamomile extract in protecting against radiation-induced intestinal mucositis. Phytother. Res. doi:10.1002/ptr.6263 (2019) (Epub ahead of print).
    • 91. Mangoni M, Sottili M, Gerini C et al. A PPAR-gamma agonist protects from radiation-induced intestinal toxicity. United European Gastroenterol. J. 5(2), 218–226 (2017).
    • 92. Van De Wetering FT, Verleye L, Andreyev HJ et al. Non-surgical interventions for late rectal problems (proctopathy) of radiotherapy in people who have received radiotherapy to the pelvis. Cochrane Database Syst. Rev. 4, Cd003455 (2016).
    • 93. Wang J, Boerma M, Fu Q, Kulkarni A, Fink LM, Hauer-Jensen M. Simvastatin ameliorates radiation enteropathy development after localized, fractionated irradiation by a protein C-independent mechanism. Int. J. Radiat. Oncol. Biol. Phys. 68(5), 1483–1490 (2007).
    • 94. Wedlake LJ, Silia F, Benton B et al. Evaluating the efficacy of statins and ACE-inhibitors in reducing gastrointestinal toxicity in patients receiving radiotherapy for pelvic malignancies. Eur. J. Cancer 48(14), 2117–2124 (2012).
    • 95. Cheng Y, Dong Y, Hou Q et al. The protective effects of XH-105 against radiation-induced intestinal injury. J. Cell. Mol. Med. 23(3), 2238–2247 (2019).
    • 96. Jahraus CD, Bettenhausen D, Malik U, Sellitti M, St Clair WH. Prevention of acute radiation-induced proctosigmoiditis by balsalazide: a randomized, double-blind, placebo controlled trial in prostate cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 63(5), 1483–1487 (2005).
    • 97. Elshawi OE, Nabeel AI. Modulatory effect of a new benzopyran derivative via COX-2 blocking and down regulation of NF-kappaB against gamma-radiation induced- intestinal inflammation. J. Photochem. Photobiol. B Biol. 192, 90–96 (2019).
    • 98. Gu J, Liu S, Mu N et al. A DPP-IV-resistant glucagon-like peptide-2 dimer with enhanced activity against radiation-induced intestinal injury. J. Control Release 260, 32–45 (2017).
    • 99. Kligler B, Cohrssen A. Probiotics. Am. Fam. Physician 78(9), 1073–1078 (2008).
    • 100. Stacey R, Green JT. Radiation-induced small bowel disease: latest developments and clinical guidance. Ther. Adv. Chronic Dis. 5(1), 15–29 (2014).
    • 101. Wedlake LJ, Shaw C, Whelan K, Andreyev HJ. Systematic review: the efficacy of nutritional interventions to counteract acute gastrointestinal toxicity during therapeutic pelvic radiotherapy. Aliment. Pharmacol. Ther. 37(11), 1046–1056 (2013).
    • 102. Ciorba MA, Riehl TE, Rao MS et al. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gut 61(6), 829–838 (2012).
    • 103. Liu Q, Nobaek S, Adawi D et al. Administration of Lactobacillus plantarum 299v reduces side-effects of external radiation on colon anastomotic healing in an experimental model. Colorectal Dis. 3(4), 245–252 (2001).
    • 104. Delia P, Sansotta G, Donato V et al. Prophylaxis of diarrhoea in patients submitted to radiotherapeutic treatment on pelvic district: personal experience. Dig. Liver Dis. 34(Suppl. 2), S84–S86 (2002).
    • 105. Delia P, Sansotta G, Donato V et al. Use of probiotics for prevention of radiation-induced diarrhea. World J. Gastroenterol. 13(6), 912–915 (2007).
    • 106. Henson CC, Burden S, Davidson SE, Lal S. Nutritional interventions for reducing gastrointestinal toxicity in adults undergoing radical pelvic radiotherapy. Cochrane Database Syst. Rev. doi:10.1002/14651858.CD009896.pub2 (11), Cd009896 (2013).
    • 107. Murphy J, Stacey D, Crook J, Thompson B, Panetta D. Testing control of radiation-induced diarrhea with a psyllium bulking agent: a pilot study. Can. Oncol. Nurs. J. 10(3), 96–100 (2000).