We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Transcriptomics and methylomics study on the effect of iodine-containing drug FS-1 on Escherichia coli ATCC BAA-196

    Ilya S Korotetskiy

    *Author for correspondence:

    E-mail Address: laeda81@gmail.com

    Department of Virology, Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan

    ,
    Ardak B Jumagaziyeva

    Department of Microbiology, Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan

    ,
    Sergey V Shilov

    Department of Virology, Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan

    ,
    Tatyana V Kuznetsova

    Department of Virology, Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan

    ,
    Auyes N Myrzabayeva

    Department of Microbiology, Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan

    ,
    Zhanar A Iskakbayeva

    Department of Microbiology, Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan

    ,
    Aleksandr I Ilin

    Department of Chemistry, Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan

    ,
    Monique Joubert

    Department of Biochemistry, Genetics & Microbiology, Centre for Bioinformatics & Computational Biology, University of Pretoria, Pretoria, South Africa

    ,
    Setshaba Taukobong

    Department of Biochemistry, Genetics & Microbiology, Centre for Bioinformatics & Computational Biology, University of Pretoria, Pretoria, South Africa

    &
    Oleg N Reva

    **Author for correspondence:

    E-mail Address: oleg.reva@up.ac.za

    Department of Biochemistry, Genetics & Microbiology, Centre for Bioinformatics & Computational Biology, University of Pretoria, Pretoria, South Africa

    Published Online:

    Aim: Promising results on application of iodine-containing nano-micelles, FS-1, against antibiotic-resistant Escherichia coli was demonstrated. Materials & methods: RNA sequencing for transcriptomics and the complete genome sequencing by SMRT PacBio were followed by genome assembly and methylomics. Results & conclusion: FS-1-treated E. coli showed an increased susceptibility to antibiotics ampicillin and gentamicin. Cultivation with FS-1 caused gene expression alterations toward anaerobic respiration, increased anabolism and inhibition of many nutrient uptake systems. Main targets of iodine-containing particles were cell membrane structures causing oxidative, osmotic and acidic stresses. Identification of methylated nucleotides showed an altered pattern in the FS-1-treated culture. Possible role of transcriptional and epigenetic modifications in the observed increase in susceptibility to gentamicin and ampicillin were discussed.

    Lay abstract

    New approaches of combatting drug-resistant infections are in demand as the development of new antibiotics is in a deep crisis. This study was set out to investigate molecular mechanisms of action of new iodine-containing nano-micelle drug FS-1, which potentially may improve the antibiotic therapy of drug-resistant infections. Iodine is one of the oldest antimicrobials and until now there were no reports on development of resistance to iodine. Recent studies showed promising results on application of iodine-containing nano-micelles against antibiotic-resistant pathogens as a supplement to antibiotic therapy. The mechanisms of action, however, remain unclear. The collection strain Escherichia coli ATCC BAA-196 showing an extended spectrum of resistance to ββ-lactam and aminoglycoside antibiotics was used in this study as a model organism. Antibiotic resistance patterns, whole genomes and total RNA sequences of the FS-1-treated (FS) and negative control (NC) variants of E. coli BAA-196 were obtained and analyzed. FS culture showed an increased susceptibility to antibiotics associated with profound gene expression alterations switching the bacterial metabolism to anaerobic respiration, increased anabolism, osmotic stress response and inhibition of many nutrient uptake systems. Nucleotide methylation pattern were identified in FS and NC cultures. While the numbers of methylated sites in both genomes remained similar, some peculiar alterations were observed in their distribution along chromosomal and plasmid sequences.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4(3), 482–501 (2018). • A comprehensive overview of antibiotic resistance mechanisms of bacteria.
    • 2. López-Jácome E, Franco-Cendejas R, Quezada H et al. The race between drug introduction and appearance of microbial resistance. Current balance and alternative approaches. Curr. Opin. Pharmacol. 48, 48–56 (2019). • An overview of therapeutic approaches to combat antibiotic-resistant infections.
    • 3. Brooks BD, Brooks AE. Therapeutic strategies to combat antibiotic resistance. Adv. Drug. Deliv. Rev. 78, 14–27 (2014).
    • 4. Smith PA, Romesberg FE. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat. Chem. Biol. 3(9), 549–556 (2007).
    • 5. Baym M, Stone LK, Kishony R. Multidrug evolutionary strategy to reverse antibiotic resistance. Science 351(6268), aad3292 (2016). •• Provides theoretical background of antibiotic resistance reversion mechanisms.
    • 6. Ilin AI, Kulmanov ME, Korotetskiy IS et al. Genomic insight into mechanisms of reversion of antibiotic resistance in multidrug-resistant Mycobacterium tuberculosis induced by a nanomolecular iodine-containing complex FS-1. Front. Cell. Infect. Microbiol. 7, 151 (2017). •• Demonstrates in vivo experiment on Mtb antibiotic resistance reversion by treatment of animals with FS-1.
    • 7. Islamov R, Kerimzhanova B, Ilin A. New antituberculosis drug FS-1. In Vašková JVaško L (Eds). Medicinal Chemistry IntechOpen, London, UK, 103–116 (2018).
    • 8. Ilin AI, Kerimzhanova B, Yuldasheva GA. Action mechanism of molecular iodine complex with bioorganic ligans, magnesium and litium halogenides on human tuberculosis strain with multiple drug resistance. J. Microbial Biochem. Tech. 9(6), 283–300 (2017).
    • 9. Reva ON, Korotetskiy IS, Joubert M et al. The effect of iodine-containing nano-micelles, FS-1, on antibiotic resistance, gene expression and epigenetic modifications in the genome of multidrug-resistant MRSA strain Staphylococcus aureus ATCC BAA-39. Front. Microbiol. 11, 2525 (2020). •• Parallel study on antibiotic resistance reversion by FS-1 on multidrug-resistant S. aureus.
    • 10. Ilin AI, Kulmanov ME, Korotetskiy IS et al. Complete genome sequence of multidrug-resistant clinical isolate Mycobacterium tuberculosis 187. 0, used to study the effect of drug susceptibility reversion by the new medicinal drug FS-1. Genome Announc. 3(6), e01272–15 (2015).
    • 11. Joubert M, Reva ON, Korotetskiy IS et al. Assembly of complete genome sequences of negative-control and experimental strain variants of Staphylococcus aureus ATCC BAA-39 selected under the effect of the drug FS-1, which induces antibiotic resistance reversion. Microbiol. Resour. Announc. 8(30), e00579–19 (2019).
    • 12. Korotetskiy IS, Joubert M, Taukobong S et al. Complete genome sequence of a multidrug-resistant strain Escherichia coli ATCC BAA-196 as a model to study the induced antibiotic resistance reversion. Microbiol. Resour. Announc. 8(50), e01118–01119 (2019).
    • 13. Jacoby GA, Sutton L. Properties of plasmids responsible for production of extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 35(1), 164–169 (1991).
    • 14. Neu HC. Infections due to gram-negative bacteria, an overview. Rev. Infect. Dis. 7(Suppl. 4), S778–S782 (1985).
    • 15. Guerrant RL, Hughes JM, Lima NL, Crane J. Diarrhea in developed and developing countries, magnitude, special settings, and etiologies. Rev. Infect. Dis. 12(Suppl. 1), S41–S50 (1990).
    • 16. Emori TG, Gaynes RP. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 6(4), 428–442 (1993).
    • 17. Bezuidt O, Pierneef R, Mncube K, Lima-Mendez G, Reva ON. Mainstreams of horizontal gene exchange in enterobacteria, consideration of the outbreak of enterohemorrhagic E. coli O104, H4 in Germany in 2011. PLoS ONE 6(10), e25702 (2011).
    • 18. Yang SC, Lin CH, Aljuffali IA, Fang JY. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 199(6), 811–825 (2017).
    • 19. Downing T. Tackling drug-resistant infection outbreaks of global pandemic Escherichia coli ST131 using evolutionary and epidemiological genomics. Microorganisms 3(2), 236–267 (2015).
    • 20. Odonkor ST, Addo KK. Prevalence of multidrug-resistant Escherichia coli isolated from drinking water sources. Int. J. Microbiol. 2018, 7204013 (2018).
    • 21. O'Flaherty E, Solimini AG, Pantanella F, De Giusti M, Cummins E. Human exposure to antibiotic resistant-Escherichia coli through irrigated lettuce. Environ. Int. 122, 270–280 (2019).
    • 22. Hernday AD, Braaten BA, Low DA. The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol. Cell. 12(4), 947–957 (2003). • An interesting example of virulence regulation in E. coli by nucleotide methylation.
    • 23. Brunet YR, Bernard CS, Cascales E. Fur-Dam regulatory interplay at an internal promoter of the enteroaggregative Escherichia coli type VI secretion sci1 gene cluster. J. Bacteriol. 202(10), e00075–20 (2020).
    • 24. Blattner FR, Plunkett G 3rd, Bloch CA et al. The complete genome sequence of Escherichia coli K-12. Science 277(5331), 1453–1462 (1997).
    • 25. Hayashi K, Morooka N, Yamamoto Y et al. Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol. Syst. Biol. 2, 2006.0007 (2006).
    • 26. Durfee T, Nelson R, Baldwin S et al. The complete genome sequence of Escherichia coli DH10B, insights into the biology of a laboratory workhorse. J. Bacteriol. 190(7), 2597–2606 (2008).
    • 27. Cassu-Corsi D, Martins WM, Nicoletti AG, Almeida LG, Vasconcelos AT, Gales AC. Characterisation of plasmid-mediated rmtB-1 in Enterobacteriaceae clinical isolates from São Paulo, Brazil. Mem. Inst. Oswaldo Cruz. 113(2), e180392 (2018).
    • 28. Karp PD, Ong WK, Paley S et al. The EcoCyc Database. EcoSal Plus 8(1), 10.1128/ecosalplus.ESP-0006-2018 (2018).
    • 29. Freddolino PL, Amini S, Tavazoie S. Newly identified genetic variations in common Escherichia coli MG1655 stock cultures. J. Bacteriol. 194(2), 303–306 (2012).
    • 30. Travnickova E, Mikula P, Oprsal J et al. Resazurin assay for assessment of antimicrobial properties of electrospun nanofiber filtration membranes. AMB Expr 9(1), 183 (2019).
    • 31. Seppey M, Manni M, Zdobnov EM. BUSCO, assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).
    • 32. Aziz RK, Bartels D, Best AA et al. The RAST Server, Rapid Annotations using Subsystems Technology. BMC Genomics 9, 75 (2008).
    • 33. Karp PD, Midford PE, Billington R et al. Pathway Tools version 23.0 update, software for pathway/genome informatics and systems biology. Brief Bioinform. 22(1), 109–126 (2021).
    • 34. Jia B, Raphenya AR, Alcock B et al. CARD 2017, expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45(D1), D566–D573 (2017).
    • 35. Bezuidt O, Lima-Mendez G, Reva ON. SEQWord Gene Island Sniffer, a program to study the lateral genetic exchange among bacteria. World Acad. Sci. Engineer. Technol. 58, 1169–1274 (2009).
    • 36. Freeman JM, Plasterer TN, Smith TF, Mohr SC. Patterns of genome organization in bacteria. Science 279(5358), 1827–1827 (1998).
    • 37. De Maeyer D, Renkens J, Cloots L, De Raedt L, Marchal K. PheNetic, network-based interpretation of unstructured gene lists in E. coli. Mol. Biosyst. 9(7), 1594–1603 (2013).
    • 38. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79(24), 7696–7701 (2013).
    • 39. Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 64(8), 711–713 (1998).
    • 40. Dong T, Yu R, Schellhorn H. Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli. Mol. Microbiol. 79(2), 375–386 (2011).
    • 41. Korotetskiy IS, Shilov SV, Shvidko SV et al. Transcriptional response of the multidrug-resistant Staphylococcus aureus following FS-1 exposure. Eurasian J. Appl. Biotechnol. 3(2017), 43–48 (2017).
    • 42. Stols L, Donnelly MI. Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl. Environ. Microbiol. 63(7), 2695–2701 (1997).
    • 43. Nizam SA, Shimizu K. Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under anaerobic and microaerobic conditions. Biochem. Eng. J. 42(3), 229–236 (2008).
    • 44. Hollinshead WD, Rodriguez S, Martin HG et al. Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants. Biotechnol. Biofuels 9, 212 (2016).
    • 45. Gonzalez JE, Long CP, Antoniewicz MR. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis. Metab. Eng. 39, 9–18 (2017).
    • 46. Stim KP, Bennett GN. Nucleotide sequence of the adi gene, which encodes the biodegradative acid-induced arginine decarboxylase of Escherichia coli. J. Bacteriol. 175(5), 1221–1234 (1993).
    • 47. Jiang GR, Nikolova S, Clark DP. Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 147(Pt 9), 2437–2446 (2001).
    • 48. Mora L, Heurgué-Hamard V, de Zamaroczy M, Kervestin S, Buckingham RH. Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo. J. Biol. Chem. 282(49), 35638–35645 (2007).
    • 49. Gagarinova A, Stewart G, Samanfar B et al. Systematic genetic screens reveal the dynamic global functional organization of the bacterial translation machinery. Cell Rep. 17(3), 904–916 (2016).
    • 50. Wada A, Igarashi K, Yoshimura S, Aimoto S, Ishihama A. Ribosome modulation factor, stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli. Biochem. Biophys. Res. Commun. 214(2), 410–417 (1995).
    • 51. Yamaguchi Y, Park JH, Inouye M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284(42), 28746–28753 (2009).
    • 52. Ballal A, Basu B, Apte SK. The Kdp-ATPase system and its regulation. J. Biosci. 32(3), 559–568 (2007).
    • 53. Weber A, Jung K. Profiling early osmostress-dependent gene expression in Escherichia coli using DNA macroarrays. J. Bacteriol. 184(19), 5502–5507 (2002).
    • 54. Matsuda A, Kurono N, Kawano C et al. Genome-wide screen for Escherichia coli genes involved in repressing cell-to-cell transfer of non-conjugative plasmids. Biochem. Biophys. Res. Commun. 428(4), 445–450 (2012).
    • 55. Soo VW, Hanson-Manful P, Patrick WM. Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc. Natl Acad. Sci. USA 108(4), 1484–1489 (2011).
    • 56. Nachin L, Nannmark U, Nyström T. Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J. Bacteriol. 187(18), 6265–6272 (2005).
    • 57. Pomposiello PJ, Bennik MH, Demple B. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J. Bacteriol. 183(13), 3890–3902 (2001).
    • 58. Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T. CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol. Microbiol. 56(6), 1648–1663 (2005).
    • 59. Jørgensen MG, Nielsen JS, Boysen A, Franch T, Møller-Jensen J, Valentin-Hansen P. Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli. Mol. Microbiol. 84(1), 36–50 (2012).
    • 60. De Lay N, Gottesman S. A complex network of small non-coding RNAs regulate motility in Escherichia coli. Mol. Microbiol. 86(3), 524–538 (2012).
    • 61. Attila C, Ueda A, Wood TK. 5-Fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound. Appl. Microbiol. Biotechnol. 82(3), 525–533 (2009).
    • 62. Dressaire C, Moreira RN, Barahona S, Alves de Matos AP, Arraiano CM. BolA is a transcriptional switch that turns off motility and turns on biofilm development. mBio 6(1), e02352–14 (2015).
    • 63. Weber MM, French CL, Barnes MB, Siegele DA, McLean RJ. A previously uncharacterized gene, yjfO (bsmA), influences Escherichia coli biofilm formation and stress response. Microbiology 156(Pt 1), 139–147 (2010).
    • 64. Domka J, Lee J, Wood TK. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl. Environ. Microbiol. 72(4), 2449–2459 (2006).
    • 65. Marinus MG, Løbner-Olesen A. DNA methylation. EcoSal Plus 6(1), 10.1128/ecosalplus.ESP-0003-2013 (2014).
    • 66. Blow MJ, Clark TA, Daum CG et al. The epigenomic landscape of prokaryotes. PLoS Genet. 12(2), e1005854 (2016). •• A comprehensive overview of the epigenomic landscape of prokaryotes.
    • 67. Loenen WA. Tracking EcoKI and DNA fifty years on, a golden story full of surprises. Nucleic Acids Res. 31(24), 7059–7069 (2003).
    • 68. Kahramanoglou C, Prieto AI, Khedkar S et al. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat. Commun. 3, 886 (2012).
    • 69. Golovenko D, Manakova E, Tamulaitiene G, Grazulis S, Siksnys V. Structural mechanisms for the 5′-CCWGG sequence recognition by the N- and C-terminal domains of EcoRII. Nucleic Acids Res. 37(19), 6613–6624 (2009).
    • 70. Wang B, Wang P, Zheng E et al. Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli. J. Microbiol. 49(5), 797–802 (2011).
    • 71. Ilin AI, Parsadanyan GG, Nersesyan AK. Interaction of halogens with nucleic acids and its consequence. New Armenian Med. J. 7(3), 33–43 (2013).
    • 72. Khil PP, Camerini-Otero RD. Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol. Microbiol. 44(1), 89–105 (2002).
    • 73. Bougdour A, Cunning C, Baptiste PJ, Elliott T, Gottesman S. Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol. Microbiol. 68(2), 298–313 (2008).
    • 74. Brown DR, Barton G, Pan Z, Buck M, Wigneshweraraj S. Nitrogen stress response and stringent response are coupled in Escherichia coli. Nat. Commun. 5, 4115 (2014).
    • 75. Broadbent SE, Balbontin R, Casadesus J, Marinus MG, van der Woude M. YhdJ, a nonessential CcrM-like DNA methyltransferase of Escherichia coli and Salmonella enterica. J. Bacteriol. 189(11), 4325–4327 (2007).
    • 76. Westphal LL, Sauvey P, Champion MM, Ehrenreich IM, Finkel SE. Genomewide Dam methylation in Escherichia coli during long-term stationary phase. mSystems 1(6), e00130–16 (2016).
    • 77. Russell DW, Zinder ND. Hemimethylation prevents DNA replication in E. coli. Cell 50(7), 1071–1079 (1987).
    • 78. Attwood JT, Yung RL, Richardson BC. DNA methylation and the regulation of gene transcription. Cell. Mol. Life Sci. 59(2), 241–257 (2002).
    • 79. Cohen NR, Ross CA, Jain S et al. A role for the bacterial GATC methylome in antibiotic stress survival. Nat. Genet. 48(5), 581–586 (2016).
    • 80. Kelly FC. Iodine in medicine and pharmacy since its discovery – 1811–1961. Proc. R. Soc. Med. 54(10), 831–836 (1961). • A fundamental overview on the history of discovery and application of iodine in medicine.
    • 81. Korotetskiy IS, Jumagaziyeva AB, Shilov SV et al. Phenotypic and genotypic characterization of clinical isolates of nosocomial infections. Eurasian J. Appl. Biotechnol. 2020(1), 48–60 (2020).