We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The feasibility of phage therapy for periodontitis

    Zhen Chen

    Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic & Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China

    ,
    Zhimin Guo

    Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, China

    ,
    Hongbing Lin

    Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China

    ,
    Yue Tian

    Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China

    ,
    Peipei Zhang

    Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China

    ,
    Huishan Chen

    Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China

    ,
    Yawei Wang

    Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China

    &
    Yuqin Shen

    *Author for correspondence: Tel.: +1375 669 1607;

    E-mail Address: 2020686041@gzhmu.edu.cn

    Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic & Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China

    Published Online:https://doi.org/10.2217/fmb-2020-0161

    Periodontitis, a chronic progressive inflammation caused by plaque biofilm, is the main cause of tooth loss in adults. For certain refractory periodontitis cases, it is difficult to achieve a good curative effect using the existing periodontal treatment approaches, which may be due to periodontal pathogenic mechanism in the affected periodontal tissue that the host cannot resist and eliminate. Various pieces of evidence collectively revealed that most studies are focusing on phages in periodontal disease. Several studies have reported periodontitis treatment using phage therapy, highlighting its features including specificity, rapid propagation, and effectiveness on bacteriophage biofilms. In this study, we focus on these reports, aiming to lay the foundation for improved periodontal treatment approaches.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Tonetti MS, Henry G, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J. Periodontol. 89(12), 1475–1475 (2018). •• New classification of periodontitis.
    • 2. Eke PI, Wei L, Borgnakke WS et al. Periodontitis prevalence in adults ≥65 years of age, in the USA. Periodontology 72(1), 76–95 (2016).
    • 3. Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJL, Marcenes W. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J. Dent. Res. 93(11), 1045–1053 (2014).
    • 4. Kholy KE, Genco RJ, Van Dyke TE. Oral infections and cardiovascular disease. Trends Endocrinol. Metab. 26(6), 315–321 (2015).
    • 5. Katja K, Cathleen H, Müller-Hilke B, Nakata M, Kreikemeyer B. Oral biofilms from symbiotic to pathogenic interactions and associated disease – connection of periodontitis and rheumatic arthritis by peptidylarginine deiminase. Front. Microbiol. 9, 53 (2018).
    • 6. Börnigen D, Ren B, Pickard R et al. Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer. Sci. Rep. 7(1), 17686 (2017).
    • 7. Marsh PD. Dental plaque: biological significance of a biofilm and community life-style. J. Clin. Periodontol. 32(Suppl. 6), 7–15 (2005). • Classic literature on dental plaque research.
    • 8. Velsko IM, Yates JAF, Aron F et al. Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage. Microbiome 7, 102 (2019).
    • 9. Velsko IM, Chukkapalli SS, Rivera-Kweh MF et al. Periodontal pathogens invade gingiva and aortic adventitia and elicit inflammasome activation in αvβ6 integrin-deficient mice. Infect. Immun. 83(12), 4582–4593 (2015).
    • 10. Drisko CL. Periodontal debridement: still the treatment of choice. J. Evid. Based Dent. 14(s), 33–41 (2014).
    • 11. [No authors listed]. Parameter on “refractory” periodontitis. J. Periodontol. 71(5-s), 859–860 (2000).
    • 12. Chiang CP, Hsieh O, Tai WC, Chen YJ, Chang PC. Clinical outcomes of adjunctive indocyanine green-diode lasers therapy for treating refractory periodontitis: a randomized controlled trial with in vitro assessment. J. Formos. Med. Assoc. 119(2), 652–659 (2019).
    • 13. Habashneh RA, Mashal MA, Khader Y, Qudah R. Clinical and biological effects of adjunctive photodynamic therapy in refractory periodontitis. J. Lasers Med. Sci. 10(2), 139–145 (2019).
    • 14. Dewhirst FE, Chen T, Izard J et al. The human oral microbiome. J. Bacteriol. 192(19), 5002–5017 (2010).
    • 15. He J, Li Y, Cao Y, Xue J, Zhou XD. The oral microbiome diversity and its relation to human diseases. Folia Microbiol. 60(1), 69–80 (2015). •• A general introduction to oral microbiology.
    • 16. Edlund A, Santiago-Rodriguez TM, Boehm TK, Pride DT. Bacteriophage and their potential roles in the human oral cavity. J. Oral Microbiol. 7, 27423 (2015).
    • 17. Lecuit M, Eloit M. The human virome: new tools and concepts. Trends Microbiol. 21(10), 510–515 (2013).
    • 18. Bikel S, Valdez-Lara A, Cornejo-Granados F et al. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput. Struct. Biotechnol. J. 13, 390–401 (2015).
    • 19. Naidu M, Robles-Sikisaka R, Abeles SR, Boehm TK, Pride DT. Characterization of bacteriophage communities and CRISPR profiles from dental plaque. BMC Microbiol. 14(1), 175 (2014).
    • 20. Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 8(3), 162–173 (2017). •• A highly cited review of phages and phage therapy.
    • 21. Ly M, Abeles SR, Boehm TK et al. Altered oral viral ecology in association with periodontal disease. mBio 5(3), e01133-14 (2014). • A detailed introduction to the study of periodontal-associated viruses.
    • 22. Lugli GA, Milani C, Turroni F et al. Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota. Environ. Microbiol. 18(7), 2196–2213 (2016).
    • 23. Al-Shayeb B, Sachdeva R, Chen LX et al. Clades of huge phages from across Earth's ecosystems. Nature 578(7795), 425–431 (2020).
    • 24. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage 1(2), 66–85 (2011).
    • 25. Ryszard M, Borysowski J, Beata W-D et al. Clinical aspects of phage therapy. Adv. Virus Res. 83, 73–121 (2012). • A comprehensive summary of phage therapy.
    • 26. Moon JS, Choi EJ, Jeong NN, Sohn JR, Han DW, Oh JW. Research progress of M13 bacteriophage-based biosensors. Nanomaterials 9(10), 1448 (2019).
    • 27. Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnol. 32(11), 1141–1145 (2014).
    • 28. Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA 104(27), 11197–11202 (2007).
    • 29. Gong P, Cheng M, Li X et al. Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5. Virology 492, 11–20 (2016).
    • 30. Michael L, Dinesh B, Renwick D, Craig B. Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics 7(1), 17 (2018).
    • 31. Jun SY, Jang IJ, Yoon S et al. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob. Agents Chemother. 61(6), e02629-16 (2017).
    • 32. Maszewska A, Zygmunt M, Grzejdziak I, Rozalski A. Use of polyvalent bacteriophages to combat biofilm of Proteus mirabilis causing catheter associated urinary tract infections. J. Appl. Microbiol. 125(5), 1253–1269 (2018).
    • 33. Pires DP, Cleto S, Sillankorva S, Azeredo J, TK LU. Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev. 80(3), 523–543 (2016).
    • 34. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6, 26717 (2016).
    • 35. Sarker SA, Sultana S, Reuteler G et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4, 124–137 (2016).
    • 36. Ooi ML, Drilling AJ, Morales S et al. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol. Head Neck Surg. 145(8), 723–729 (2019).
    • 37. Loccarrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage 1(2), 111–114 (2011).
    • 38. Pei R, Lamas-Samanamud GR. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl. Environ. Microbiol. 80(17), 5340–5348 (2014).
    • 39. Lusiak-Szelachowska M, Weber-Dabrowska B, Gorski A. Bacteriophages and lysins in biofilm control. Virol. Sin. 35(2), 125–133 (2020).
    • 40. Pires DP, Oliveira H, Melo Luis DR, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl. Microbiol. Biotechnol. 100(5), 2141–2151 (2016).
    • 41. Lusiak-Szelachowska M, Zaczek M, Weber-Dabrowska B et al. Phage neutralization by sera of patients receiving phage therapy’s. Viral Immunol. 27(6), 295–304 (2014).
    • 42. Wang IN. Lysis timing and bacteriophage fitness. Genetics 172(1), 17–26 (2005).
    • 43. Abdelkader K, Gerstmans H, Saafan A, Dishisha T, Briers Y. The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole. Viruses 11(2), 96 (2019).
    • 44. Young R, Gill JJ. Phage therapy redux – what is to be done? Science 350(6265), 1163–1164 (2015).
    • 45. Debarbieux L, Pirnay JP, Verbeken G et al. A bacteriophage journey at the European Medicines Agency. FEMS Microbiol. Lett. 363(2), fnv225 (2016).
    • 46. Khalifa L, Brosh Y, Gelman D et al. Targeting Enterococcus faecalis biofilms with phage therapy. Environ. Microbiol. 81(8), 2696–2705 (2015).
    • 47. Xiang Y, Li W, Song F et al. Biological characteristics and whole-genome analysis of the Enterococcus faecalis phage PEf771. Can. J. Microbiol. 66(9), 505–520 (2020).
    • 48. Bhardwaj SB, Mehta M, Sood S, Sharma J. Isolation of a novel phage and targeting biofilms of drug-resistant oral Enterococci. J. Glob. Infect. Dis. 12(1), 11–15 (2020).
    • 49. Fatemeh A, Hosein E, Taghavi ZA et al. Isolation and identification of bacteriophage effective on carbapenemase-resistant Pseudomonas aeruginosa strains. J. Adv. Oral Res. 7(2), 40–44 (2016).
    • 50. Chou WC, Huang SC, Chiu CH, Chen YYM. YMC-2011, a temperate phage of Streptococcus salivarius 57.I. Appl. Environ. Microbiol. 83(6), e03186 (2017).
    • 51. Norris AH: US4957686A (1990).
    • 52. Dalmasso M, de Haas E, Neve H et al. Isolation of a novel phage with activity against Streptococcus mutans biofilms. PLoS ONE 10(9), e0138651 (2015).
    • 53. Castillo-Ruiz M, Vines ED, Montt C et al. Isolation of a novel Aggregatibacter actinomycetemcomitans serotype b bacteriophage capable of lysing bacteria within a biofilm. Appl. Environ. Microbiol. 77(9), 3157–3159 (2011).
    • 54. Machuca P, Daille L, Vines E, Berrocal L, Bittner M. Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl. Environ. Microbiol. 76(21), 7243–7250 (2010).
    • 55. Mitchell HL, Dashper SG, Catmull DV et al. Treponema denticola biofilm-induced expression of a bacteriophage, toxin-antitoxin systems and transposases. Microbiology 156, 774–788 (2010).
    • 56. Zhang Y, Shan TL, Li F et al. A novel phage from periodontal pockets associated with chronic periodontitis. Virus Genes 55(3), 381–193 (2019). • Latest research on periodontal-associated phages.