We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Proteomic profile of Mycobacterium tuberculosis after eupomatenoid-5 induction reveals potential drug targets

    Luciana D Ghiraldi-Lopes

    *Author for correspondence:

    E-mail Address: ldghiraldi@gmail.com

    Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    ,
    Paula AZ Campanerut-Sá

    Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    ,
    Jean E Meneguello

    Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    ,
    Flávio AV Seixas

    Department of Biochemistry, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    ,
    Mariana A Lopes-Ortiz

    Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    Uningá University Center, Rod PR 317, 6114, 87035-510, Maringá, Paraná, Brazil

    ,
    Regiane BL Scodro

    Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    ,
    Claudia TA Pires

    Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    ,
    Rosi Z da Silva

    State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil

    ,
    Vera LD Siqueira

    Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    ,
    Celso V Nakamura

    Postgraduate Program in Pharmaceutical Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    &
    Rosilene F Cardoso

    Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil

    Published Online:https://doi.org/10.2217/fmb-2017-0023

    Aim: We investigated a proteome profile, protein–protein interaction and morphological changes of Mycobacterium tuberculosis after different times of eupomatenoid-5 (EUP-5) induction to evaluate the cellular response to the drug-induced damages. Methods: The bacillus was induced to sub-minimal inhibitory concentration of EUP-5 at 12 h, 24 h and 48 h. The proteins were separated by 2D gel electrophoresis, identified by LC/MS-MS. Scanning electron microscopy and Search Tool for the Retrieval of Interacting Genes/Proteins analyses were performed. Results: EUP-5 impacts mainly in M. tuberculosis proteins of intermediary metabolism and interactome suggests a multisite disturbance that contributes to bacilli death. Scanning electron microscopy revealed the loss of bacillary form. Conclusion: Some of the differentially expressed proteins have the potential to be drug targets such as citrate synthase (Rv0896), phosphoglycerate kinase (Rv1437), ketol-acid reductoisomerase (Rv3001c) and ATP synthase alpha chain (Rv1308).

    Papers of special note have been highlighted as: • of interest

    References

    • 1 WHO. Global tuberculosis report 2016. CDC 2016 (2016). www.who.int/tb/publications/global_report/en/.
    • 2 Hassan HM, Guo HL, Yousef BA, Luyong Z, Zhenzhou J. Hepatotoxicity mechanisms of isoniazid: a mini-review. J. Appl. Toxicol. 35(12), 1427–1432 (2015).
    • 3 Hoagland DT, Liu J, Lee RB, Lee RE. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev. 102, 55–72 (2016).
    • 4 Kakkar AK, Dahiya N. Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis 94(4), 357–362 (2014).
    • 5 Gautam R, Saklani A, Jachak SM. Indian medicinal plants as a source of antimycobacterial agents. J. Ethnopharmacol. 110(2), 200–234 (2007).
    • 6 Bunalema L, Kirimuhuzya C, Tabuti JRS et al. The efficacy of the crude root bark extracts of Erythrina abyssinica on rifampicin resistant Mycobacterium tuberculosis. Afr. Health Sci. 11(4), 587–593 (2012).
    • 7 Carpenter CD, O'Neill T, Picot N et al. Anti-mycobacterial natural products from the Canadian medicinal plant Juniperus communis. J. Ethnopharmacol. 143(2), 695–700 (2012).
    • 8 Diaz LE, Munoz DR, Prieto RE et al. Antioxidant, antitubercular and cytotoxic activities of Piper imperiale. Molecules 17(4), 4142–4157 (2012).
    • 9 Ymele-Leki P, Cao S, Sharp J et al. A high-throughput screen identifies a new natural product with broad-spectrum antibacterial activity. PLoS ONE 7(2), e31307 (2012).
    • 10 Jouda JB, Mawabo IK, Notedji A et al. Anti-mycobacterial activity of polyketides from Penicillium sp. endophyte isolated from Garcinia nobilis against Mycobacterium smegmatis. Int. J. Mycobacteriol. 5(2), 7–11 (2016).
    • 11 Copp BR, Pearce AN. Natural product growth inhibitors of Mycobacterium tuberculosis. Nat. Prod. Rep. 24(2), 278–297 (2007).
    • 12 Gupta R, Thakur B, Singh P et al. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J. Med. Res. 131, 809–813 (2010).
    • 13 Zhao BQ, Peng S, He WJ, Liu YH, Wang JF, Zhou XJ. Antitubercular and cytotoxic tigliane-type diterpenoids from Croton tiglium. Bioorg. Med. Chem. Lett. 26(20), 4996–4999 (2016).
    • 14 Chinsembu KC. Tuberculosis and nature's pharmacy of putative anti-tuberculosis agents. Acta Trop. 153, 46–56 (2016).
    • 15 Bell C, Smith GT, Sweredoski MJ, Hess S. Characterization of the mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research. J. Proteome Res. 11(1), 119–130 (2012).
    • 16 Li H, Doucet B, Flewelling AJ et al. Antimycobacterial natural products from Endophytes of the medicinal plant Aralia nudicaulis. Nat. Prod. Commun. 10(10), 1641–1642 (2015).
    • 17 Pires CTA, Brenzan MA, de Lima Scodro RB et al. Anti-Mycobacterium tuberculosis activity and cytotoxicity of Calophyllum brasiliense Cambess (Clusiaceae). Mem. Inst. Oswaldo Cruz. 109(3), 324–329 (2014).
    • 18 Scodro RBL, Pires CTA, Carrara VS et al. Anti-tuberculosis neolignans from Piper regnellii. Phytomedicine 20(7), 600–604 (2013). • Determined the anti-Mycobacterium tuberculosis (M. tb) activities of supercritical CO2 extracts, neolignans eupomatenoid-5.
    • 19 Garcia FP, Lazarin-Bidóia D, Ueda-Nakamura T, Silva SDO, Nakamura CV. Eupomatenoid-5 isolated from leaves of Piper regnellii induces apoptosis in Leishmania amazonensis. Evid. Based Complement. Alternat. Med. 2013, 940531 (2013).
    • 20 Koroishi AM, Foss SR, Cortez DAG, Ueda-Nakamura T, Nakamura CV, Dias Filho BP. In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes. J. Ethnopharmacol. 117(2), 270–277 (2008).
    • 21 Longato GB, Fiorito GF, Vendramini-Costa DB et al. Different cell death responses induced by eupomatenoid-5 in MCF-7 and 786–0 tumor cell lines. Toxicol. Vitr. 29(5), 1026–1033 (2015).
    • 22 Lopes MA, Ferracioli KRC, Siqueira VLD et al. In vitro interaction of eupomatenoid-5 from Piper solmsianum C. DC. var. solmsianum and anti-tuberculosis drugs. Int. J. Tuberc. Lung Dis. 18(12), 1513–1515 (2014). • Evaluated the in vitro interaction between eupomatenoid-5, extracted from Piper solmsianum C. DC. var. solmsianum, and first-line antituberculosis drugs against M. tb.
    • 23 Marçal FJB, Cortez DAG, Ueda-Nakamura T, Nakamura CV, Filho BPD. Activity of the extracts and neolignans from Piper regnellii against methicillin-resistant Staphylococcus aureus (MRSA). Molecules 15(4), 2060–2069 (2010).
    • 24 Pelizzaro-Rocha KJ, Veiga-Santos P, Lazarin-Bidóia D et al. Trypanocidal action of eupomatenoid-5 is related to mitochondrion dysfunction and oxidative damage in Trypanosoma cruzi. Microbes Infect. 13(12–13), 1018–1024 (2011).
    • 25 Luize PS, Ueda-Nakamura T, Filho BPD et al. Ultrastructural alterations induced by the neolignan dihydrobenzofuranic eupomatenoid-5 on epimastigote and amastigote forms of Trypanosoma cruzi. Parasitol. Res. 100(1), 31–37 (2006).
    • 26 Vendrametto MC, Santos AO dos, Nakamura CV, Filho BPD, Cortez DAG, Ueda-Nakamura T. Evaluation of antileishmanial activity of eupomatenoid-5, a compound isolated from leaves of Piper regnellii var. pallescens. Parasitol. Int. 59(2), 154–158 (2010).
    • 27 Lazarin-Bidóia D, Desoti VC, Ueda-Nakamura T, Dias Filho BP, Nakamura CV, Silva SO. Further evidence of the trypanocidal action of eupomatenoid-5: confirmation of involvement of reactive oxygen species and mitochondria owing to a reduction in trypanothione reductase activity. Free Radic. Biol. Med. 60, 17–28 (2013).
    • 28 Hughes MA, Silva JC, Geromanos SJ, Townsend CA. Quantitative proteomic analysis of drug-induced changes in mycobacteria. J. Proteome Res. 5(1), 54–63 (2006).
    • 29 Sharma P, Kumar B, Singhal N et al. Streptomycin induced protein expression analysis in Mycobacterium tuberculosis by two-dimensional gel electrophoresis & mass spectrometry. Indian J. Med. Res. 132, 400–408 (2010). • Uses the 2D electrophoresis and MS/MS to evaluate drug action in M. tb.
    • 30 Sharma D, Kumar B, Lata M et al. Comparative proteomic analysis of aminoglycosides resistant and susceptible Mycobacterium tuberculosis clinical isolates for exploring potential drug targets. PLoS ONE 10(10), e0139414 (2015). • Analyzed the membranes and membrane-associated proteins of Amikacin- and Kanamycin-resistant M. tb by proteomic and bioinformatic approach.
    • 31 Lata M, Sharma D, Deo N, Tiwari PK, Bisht D, Venkatesan K. Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates. J. Proteomics 127(Pt A), 114–121 (2015).
    • 32 Campanerut-Sá PA, Ghiraldi-Lopes LD, Meneguello JE et al. Proteomic and morphological changes produced by subinhibitory concentration of isoniazid in Mycobacterium tuberculosis. Future Microbiol. 11, 1123–1132 (2016). • Evaluates the proteomic and mophological changes in M. tb after isoniazid induction.
    • 33 Sharma D, Bisht D. M. tuberculosis hypothetical proteins and proteins of unknown function: hope for exploring novel resistance mechanisms as well as future target of drug resistance. Front. Microbiol. 8, 465 (2017).
    • 34 Palomino J, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46(8), 2720–2722 (2002).
    • 35 de Steenwinkel JEM, de Knegt GJ, ten Kate MT et al. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 65(12), 2582–2589 (2010).
    • 36 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
    • 37 Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using coomassie brilliant blue G-250 and R-250. Electrophoresis 9(6), 255–262 (1988).
    • 38 Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68(5), 850–858 (1996).
    • 39 Aragão AZB, Belloni M, Simabuco FM et al. Novel processed form of syndecan-1 shed from SCC-9 cells plays a role in cell migration. PLoS ONE 7(8), e43521 (2012).
    • 40 STRING. http://string.embl.de/.
    • 41 Mawuenyega KG, Fosrt CV, Dobos KM et al. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol. Biol. Cell 16(1), 396–404 (2005).
    • 42 Tuberculist. http://genolist.pasteur.fr/Tuberculist.
    • 43 Campos MP, Cechinel Filho V, Silva RZ, Yunes RA, Monache FD, Cruz AB. Antibacterial activity of extract, fractions and four compounds extracted from Piper solmsianum C. DC. VAR. solmsianum (Piperaceae). Z. Naturforsch. C. 62(3–4), 173–178 (2007).
    • 44 Demitto FdeO, Do Amaral RC, Maltempe FG et al. In vitro activity of rifampicin and verapamil combination in multidrug-resistant Mycobacterium tuberculosis. PLoS ONE 10(7), e0133343 (2015).
    • 45 Pagliotto ADF, Caleffi-Ferracioli KR, Lopes MA et al. Anti-Mycobacterium tuberculosis activity of antituberculosis drugs and amoxicillin/clavulanate combination. J. Microbiol. Immunol. Infect. 49, 980–983 (2016).
    • 46 Caleffi-Ferracioli KR, Amaral RCR, Demitto FO et al. Morphological changes and differentially expressed efflux pump genes in Mycobacterium tuberculosis exposed to a rifampicin and verapamil combination. Tuberculosis 97, 65–72 (2016).
    • 47 Kang C, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN. The Mycobacterium tuberculosis serine/treonine kinase PknA and PknB: substrate identification and regulation of cell shape regulation cell shape. Genes Dev. 19(14), 1692–1704 (2005).
    • 48 Nguyen L, Scherr N, Gatfield J, Walburger A, Pieters J, Thompson CJ. Antigen 84, an effector of pleiomorphism in Mycobactenum smegmatis. J. Bacteriol. 189(21), 7896–7910 (2007).
    • 49 Mukherjee P, Sureka K, Datta P et al. Novel role of Wag31 in protection of mycobacteria under oxidative stress. Mol. Microbiol. 73(1), 103–119 (2009).
    • 50 Cao W, Tang S, Yuan H, Wang H, Zhao X, Lu H. Mycobacterium tuberculosis antigen Wag31 induces expression of C-chemokine XCL2 in macrophages. Curr. Microbiol. 57(3), 189–194 (2008).
    • 51 Maurya VK, Singh K, Sinha S. Suppression of Eis and expression of Wag31 and GroES in Mycobacterium tuberculosis cytosol under anaerobic culture conditions. Indian J. Exp. Biol. 52(8), 773–780 (2014).
    • 52 Shen H, Yang E, Wang F et al. Altered protein expression patterns of Mycobacterium tuberculosis induced by ATB107. J. Microbiol. 48(3), 337–346 (2010).
    • 53 Starck J, Kallenius G, Marklund BI, Andersson DI, Akerlund T. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology 150, 3821–3829 (2004).
    • 54 Oh TJ, Daniel J, Kim HJ, Sirakova TD, Kolattukudy PE. Identification and characterization of Rv3281 as a novel subunit of a biotin-dependent Acyl-CoA carboxylase in Mycobacterium tuberculosis H37Rv. J. Biol. Chem. 281(7), 3899–3908 (2006).
    • 55 Gago G, Kurth D, Diacovich L, Tsai S, Gramajo H. Biochemical and structural characterization of an essential acyl coenzyme-A carboxylase from Mycobacterium tuberculosis. Society 188(2), 477–486 (2006).
    • 56 Nataraj V, Varela C, Javid A, Singh A, Besra GS, Bhatt A. Mycolic acids: deciphering and targeting the Achilles’ heel of the tubercle bacillus. Mol. Microbiol. 98(1), 7–16 (2015).
    • 57 Nicholls C, Li H, Liu JP. GAPDH: a common enzyme with uncommon functions. Clin. Exp. Pharmacol. Physiol. 39(8), 674–679 (2012).
    • 58 Wolfson-Stofko B, Hadi T, Blanchard JS. Kinetic and mechanistic characterization of the glyceraldehyde 3-phosphate dehydrogenase from Mycobacterium tuberculosis. Arch. Biochem. Biophys. 540(1–2), 53–61 (2013).
    • 59 Singh A, Gopinath K, Sharma P et al. Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis from a patient with pulmonary tuberculosis turning from drug sensitive to multidrug resistant. Indian J. Med. Res. 141(1), 27–45 (2015).
    • 60 Singh A, Kumar Gupta A, Gopinath K, Sharma P, Singh S. Evaluation of 5 novel protein biomarkers for the rapid diagnosis of pulmonary and extra-pulmonary tuberculosis : preliminary results. Sci. Rep. 7, 44121 (2017).
    • 61 Kumar B, Sharma D, Sharma P, Katoch VM, Venkatesan K, Bisht D. Proteomic analysis of Mycobacterium tuberculosis isolates resistant to Kanamycin and Amikacin. J. Proteomics 94, 68–77 (2013).
    • 62 Ferraris DM, Spallek R, Oehlmann W, Singh M, Rizzi M. Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis. Proteins Struct. Funct. Bioinform. 83(2), 389–394 (2015).
    • 63 Lv Y, Kandale A, Tadrowski S et al. Crystal structure of Mycobacterium tuberculosis ketol-acid reductoisomerase at 1.00 Å resolution: a possible target for anti-tuberculosis drug discovery. FEBS J. 283(4), 1184–1196 (2016).
    • 64 Grandoni JA, Marta PT, Schloss JV. Inhibitors of branched-chain amino acid biosynthesis as potential antituberculosis agents. J. Antimicrob. Chemother. 42(4), 475–482 (1998).
    • 65 Sajid A, Arora G, Gupta M et al. Interaction of Mycobacterium tuberculosis elongation factor Tu with GTP is regulated by phosphorylation. J. Bacteriol. 193(19), 5347–5358 (2011).
    • 66 Tripathi D, Chandra H, Bhatnagar R et al. Poly-L-glutamate/glutamine synthesis in the cell wall of Mycobacterium bovis is regulated in response to nitrogen availability. BMC Microbiol. 13(1), 226 (2013).
    • 67 Kumar A, Toledo JC, Patel RP, Lancaster JR, Steyn AJC. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl Acad. Sci. USA 104(28), 11568–11573 (2007).
    • 68 Shiloh MU, Manzanillo P, Cox JS. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3(5), 323–330 (2008).
    • 69 Voskuil MI, Schnappinger D, Visconti KC et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198(5), 705–713 (2003).
    • 70 Hozumi H, Tsujimura K, Yamamura Y et al. Immunogenicity of dormancy-related antigens in individuals infected with Mycobacterium tuberculosis in Japan. Int. J. Tuberc. Lung Dis. 17(6), 818–824 (2013).
    • 71 Schertzer JW, Whiteley M. Bacterial outer membrane vesicles in trafficking, communication and the host-pathogen interaction. J. Mol. Microbiol. Biotechnol. 23(1–2), 118–130 (2013).
    • 72 Prados-Rosales R, Baena A, Martinez LR et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J. Clin. Invest. 121(4), 1471–1483 (2011).
    • 73 Lopes RL, Borges TJ, Zanin RF, Bonorino C. IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial DnaK (heat shock protein 70). Cytokine 85, 123–129 (2016).
    • 74 Lopes RL, Borges TJ, Araújo JF et al. Extracellular mycobacterial DnaK polarizes macrophages to the M2-like phenotype. PLoS ONE 9(11), e113441 (2014).
    • 75 Sharma P, Kumar B, Gupta Y et al. Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis. Proteome Sci. 8(1), 59 (2010).
    • 76 Sharma P, Kumar B, Singhal N. Streptomycin induced protein expression analysis in Mycobacterium tuberculosis by two-dimensional gel electrophoresis & mass spectrometry. Indian J. Med. Res. 132, 400–408 (2010).
    • 77 Puniya BL, Kulshreshtha D, Verma SP, Kumar S, Ramachandran S. Integrated gene co-expression network analysis in the growth phase of Mycobacterium tuberculosis reveals new potential drug targets. Mol. Biosyst. 9(11), 2798–2815 (2013).
    • 78 He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet. 2(6), e88 (2006).
    • 79 Burton RL, Chen S, Xu XL, Grant GA. A novel mechanism for substrate inhibition in Mycobacterium. J. Biol Chem. 282(43), 31517–31524 (2007).
    • 80 Grant GA. Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Arch. Biochem. Biophys. 519(2), 175–185 (2012).
    • 81 Dey S, Burton RL, Grant GA, Sacchettini JC. Structural analysis of substrate and effector binding in mycobacterium tuberculosis d-3-phosphoglycerate dehydrogenase. Biochemistry 47(32), 8271–8282 (2009).
    • 82 Dey S, Grant GA, Sacchettini JC. Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. J. Biol. Chem. 280(15), 14892–14899 (2005).
    • 83 Babu R, Krishnamoorthy P, Gayathri G. Identification of drug target site on citrate synthase of food pathogen – Campylobacter jejuni. Res. J. Pharm. Biol. Chem. Sci. 4(1), 618–623 (2013).
    • 84 Tilton F, Priya L, Nair A. In silico metabolic pathway analysis for potential drug target in Campylobacter jejuni. Int. J. Healthcare Pharm. Res. 3(3), 29–32 (2014).
    • 85 Timson DJ. Metabolic enzymes of helminth parasites: potential as drug targets. Curr. Protein Pept. Sci. 17(3), 280–295 (2016).
    • 86 Mir SA, Sharma S. Immunotherapeutic potential of N-formylated peptides of ESAT-6 and glutamine synthetase in experimental tuberculosis. Int. Immunopharmacol. 18(2), 298–303 (2014).
    • 87 Lu P, Lill H, Bald D. ATP synthase in mycobacteria: special features and implications for a function as drug target. Biochim. Biophys. Acta 1837(7), 1208–1218 (2014).