We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Metformin in the era of new antidiabetics

    Ez Alddin Rajjoub Al-Mahdi

    *Author for correspondence: Tel.: +34 91 336 85 15;

    E-mail Address: erajal2010@gmail.com

    Department of Cardiology, University Hospital Ramon y Cajal, Madrid, Spain

    ,
    Vivencio Barrios

    Department of Cardiology, University Hospital Ramon y Cajal, Madrid, Spain

    Faculty of Medicine & Health Sciences, University of Alcalá, Madrid, Spain

    &
    Jose L Zamorano

    Department of Cardiology, University Hospital Ramon y Cajal, Madrid, Spain

    Faculty of Medicine & Health Sciences, University of Alcalá, Madrid, Spain

    Published Online:https://doi.org/10.2217/fca-2020-0195

    Type II diabetes mellitus is a known cardiovascular risk factor and its prevalence continues to increase. A revolution in the Type II diabetes mellitus treatment has occurred with the arrival of new antidiabetic drugs, which are thought to compromise metformin place. We aim to review the pharmacology, available evidence and clinical aspects of metformin use in the era of new antidiabetics.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Wang L, Gao P, Zhang M et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 317(24), 2515 (2017).
    • 2. IDF Diabetes Atlas (9th Edition). (2019). https://www.diabetesatlas.org/en/
    • 3. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care 43(Suppl. 1), S14–S31 (2020). • It includes concepts about diabetes that should be known.
    • 4. Guillausseau P-J, Meas T, Virally M, Laloi-Michelin M, Médeau V, Kevorkian J-P. Abnormalities in insulin secretion in Type 2 diabetes mellitus. Diabetes Metab. 34, S43–S48 (2008).
    • 5. Emerging Risk Factors Collaboration, Sarwar N, Gao P et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet Lond. Engl. 375(9733), 2215–2222 (2010).
    • 6. Sasaki A, Horiuchi N, Hasegawa K, Uehara M. Mortality and causes of death in Type 2 diabetic patients: a long-term follow-up study in Osaka District, Japan. Diabetes Res. Clin. Pract. 7(1), 33–40 (1989).
    • 7. Zinman B, Wanner C, Lachin JM et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N. Engl. J. Med. 373(22), 2117–2128 (2015).
    • 8. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and cardiovascular and renal events in Type 2 diabetes. N. Engl. J. Med. 377(7), 644–657 (2017).
    • 9. Wiviott SD, Raz I, Bonaca MP et al. Dapagliflozin and cardiovascular outcomes in Type 2 diabetes. N. Engl. J. Med. 380(4), 347–357 (2019).
    • 10. Zelniker TA, Wiviott SD, Raz I et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in Type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393(10166), 31–39 (2019).
    • 11. Cannon CP, Pratley R, Dagogo-Jack S et al. Cardiovascular outcomes with ertugliflozin in Type 2 diabetes. N. Engl. J. Med. 383(15), 1425–1435 (2020).
    • 12. McMurray JJV, Solomon SD, Inzucchi SE et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381(21), 1995–2008 (2019).
    • 13. Marso SP, Daniels GH, Brown-Frandsen K et al. Liraglutide and cardiovascular outcomes in Type 2 diabetes. N. Engl. J. Med. 375(4), 311–322 (2016).
    • 14. Marso SP, Bain SC, Consoli A et al. Semaglutide and cardiovascular outcomes in patients with Type 2 diabetes. N. Engl. J. Med. 375(19), 1834–1844 (2016).
    • 15. Gerstein HC, Colhoun HM, Dagenais GR et al. Dulaglutide and cardiovascular outcomes in Type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394(10193), 121–130 (2019).
    • 16. Hernandez AF, Green JB, Janmohamed S et al. Albiglutide and cardiovascular outcomes in patients with Type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392(10157), 1519–1529 (2018).
    • 17. Zelniker TA, Wiviott SD, Raz I et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in Type 2 diabetes mellitus: systematic review and meta-analysis of cardiovascular outcomes trials. Circulation 139(17), 2022–2031 (2019).
    • 18. Husain M, Birkenfeld AL, Donsmark M et al. Oral semaglutide and cardiovascular outcomes in patients with Type 2 diabetes. N. Engl. J. Med. 381(9), 841–851 (2019).
    • 19. Pasternak B, Wintzell V, Melbye M et al. Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: scandinavian cohort study. BMJ. 369, m1186 (2020).
    • 20. Pasternak B, Wintzell V, Eliasson B et al. Use of glucagon-like peptide 1 receptor agonists and risk of serious renal events: Scandinavian cohort study. Diabetes Care 43(6), 1326–1335 (2020).
    • 21. Cosentino F, Grant PJ, Aboyans V et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 41(2), 255–323 (2020). • Its comes from the European Society of Cardiology and the European Association for the study of Diabetes Task force and it aims to guide management of diabetes and prediabetes specifically in patients with cardiovascular disease.
    • 22. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes—2020. Diabetes Care 43(Suppl. 1), S98–S110 (2020). • Its reading cannot be ignored, as it reflects the evidence and therapeutic practice recommendations of American Diabetes Association. It is a well-done document to review pharmacologic treatment of Type 2 diabetes mellitus and it collects the new evidence that endorses of SGLT2i and GLP1-RA use. Practical recommendations of metformin use are also reflected.
    • 23. Scheen AJ. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 30(5), 359–371 (1996).
    • 24. Graham GG, Punt J, Arora M et al. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 50(2), 81–98 (2011).
    • 25. Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in Type 2 diabetes mellitus. Nat. Rev. Endocrinol. 15(10), 569–589 (2019). • We chose this work because of its comprehensive review of pathways involved in the action of metformin.
    • 26. Wu T, Horowitz M, Rayner CK. New insights into the anti-diabetic actions of metformin: from the liver to the gut. Expert Rev. Gastroenterol. Hepatol. 11(2), 157–166 (2017).
    • 27. Tucker G, Casey C, Phillips P, Connor H, Ward J, Woods H. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br. J. Clin. Pharmacol. 12(2), 235–246 (1981).
    • 28. Wu T, Thazhath SS, Bound MJ, Jones KL, Horowitz M, Rayner CK. Mechanism of increase in plasma intact GLP-1 by metformin in Type 2 diabetes: stimulation of GLP-1 secretion or reduction in plasma DPP-4 activity? Diabetes Res. Clin. Pract. 106(1), e3–e6 (2014).
    • 29. Wilcox T, De Block C, Schwartzbard Arthur Z, Newman Jonathan D. Diabetic agents, from metformin to SGLT2 inhibitors and GLP1 receptor agonists. J. Am. Coll. Cardiol. 75(16), 1956–1974 (2020).
    • 30. Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL. Efficacy of metformin in Type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am. J. Med. 103(6), 491–497 (1997).
    • 31. Piera-Mardemootoo C, Lambert P, Faillie J-L. Efficacy of metformin on glycemic control and weight in drug-naive Type 2 diabetes mellitus patients: a systematic review and meta-analysis of placebo-controlled randomized trials. Thérapie doi: 10.1016/j.therap.2018.01.006 (2018) (Epub ahead of print).
    • 32. Hirst JA, Farmer AJ, Ali R, Roberts NW, Stevens RJ. Quantifying the effect of metformin treatment and dose on glycemic control. Diabetes Care 35(2), 446–454 (2012).
    • 33. Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D. Metformin monotherapy for Type 2 diabetes mellitus. Cochrane Database Syst. Rev. (3), CD002966 (2005).
    • 34. Hallsten K, Virtanen KA, Lonnqvist F et al. Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed Type 2 diabetes. Diabetes 51(12), 3479–3485 (2002).
    • 35. Malin SK, Kashyap SR. Effects of metformin on weight loss: potential mechanisms. Curr. Opin. Endocrinol. Diabetes Obes. 21(5), 323–329 (2014).
    • 36. Mach F, Baigent C, Catapano AL et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 41(1), 111–188 (2020).
    • 37. Xu T, Brandmaier S, Messias AC et al. Effects of metformin on metabolite profiles and LDL cholesterol in patients with Type 2 diabetes. Diabetes Care 38(10), 1858–1867 (2015).
    • 38. Jager JD, Kooy A, Lehert P et al. Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in Type 2 diabetes mellitus: a randomized, placebo-controlled trial. J. Intern. Med. 257(1), 100–109 (2005).
    • 39. Preiss D, Lloyd SM, Ford I et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2(2), 116–124 (2014).
    • 40. Lin SH, Cheng PC, Tu ST, Hsu SR, Cheng YC, Liu YH. Effect of metformin monotherapy on serum lipid profile in statin-naïve individuals with newly diagnosed Type 2 diabetes mellitus: a cohort study. PeerJ. 6, e4578 (2018).
    • 41. Wulffelé MG, Kooy A, de Zeeuw D, Stehouwer CDA, Gansevoort RT. The effect of metformin on blood pressure, plasma cholesterol and triglycerides in Type 2 diabetes mellitus: a systematic review. J. Intern. Med. 256(1), 1–14 (2004).
    • 42. Saran R, Robinson B, Abbott KC et al. US renal data system 2018 Annual Data Report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 73(3), A7–A8 (2019).
    • 43. American Diabetes Association. 11. Microvascular complications and foot care: standards of medical care in diabetes−2020. Diabetes Care 43(Suppl. 1), S135–S151 (2020).
    • 44. Kwon S, Kim YC, Park JY et al. The long-term effects of metformin on patients with Type 2 diabetic kidney disease. Diabetes Care 43(5), 948–955 (2020).
    • 45. Lalau J-D, Kajbaf F, Bennis Y, Hurtel-Lemaire A-S, Belpaire F, Broe MED. Metformin treatment in patients with Type 2 diabetes and chronic kidney disease stages 3A, 3B, or 4. Diabetes Care 41(3), 547–553 (2018).
    • 46. Rajani R, Pastor-Soler NM, Hallows KR. Role of AMP-activated protein kinase in kidney tubular transport, metabolism, and disease. Curr. Opin. Nephrol. Hypertens. 26(5), 375–383 (2017).
    • 47. Salpeter SR, Buckley NS, Kahn JA, Salpeter EE. Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am. J. Med. 121(2), 149–157.e2 (2008).
    • 48. American Diabetes Association. 3. Prevention or delay of Type 2 diabetes: standards of medical care in diabetes—2020. Diabetes Care 43(Suppl. 1), S32–S36 (2020).
    • 49. Griffin SJ, Bethel MA, Holman RR et al. Metformin in non-diabetic hyperglycaemia: the GLINT feasibility RCT. Health Technol. Assess. Winch. Engl. 22(18), 1–64 (2018).
    • 50. Luo F, Das A, Chen J, Wu P, Li X, Fang Z. Metformin in patients with and without diabetes: a paradigm shift in cardiovascular disease management. Cardiovasc. Diabetol. 18(1), 54 (2019).
    • 51. Petrie JR, Chaturvedi N, Ford I et al. Cardiovascular and metabolic effects of metformin in patients with Type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 5(8), 597–609 (2017).
    • 52. Seifarth C, Schehler B, Schneider HJ. Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp. Clin. Endocrinol. Diabetes 121(1), 27–31 (2013).
    • 53. Nestler JE, Jakubowicz DJ, Evans WS, Pasquali R. Effects of Metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. N. Engl. J. Med. 338(26), 1876–1880 (1998).
    • 54. Lord JM, Flight IHK, Norman RJ. Insulin-sensitising drugs (metformin, troglitazone, rosiglitazone, pioglitazone, D-chiro-inositol) for polycystic ovary syndrome. Cochrane Database Syst. Rev. (3), CD003053 (2003).
    • 55. Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, Ford LG. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 60(9), 1639–1647 (2017).
    • 56. Aljofan M, Riethmacher D. Anticancer activity of metformin: a systematic review of the literature. Future Sci. OA 5(8), FSO410 (2019).
    • 57. Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an anticancer agent. Trends Pharmacol. Sci. 39(10), 867–878 (2018).
    • 58. Pereira FV, Melo ACL, Low JS et al. Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget. 9(40), 25808–25825 (2018).
    • 59. Coyle C, Cafferty FH, Vale C, Langley RE. Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 27(12), 2184–2195 (2016).
    • 60. Saraei P, Asadi I, Kakar MA, Moradi-Kor N. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag. Res. 11, 3295–3313 (2019).
    • 61. Lv Z, Guo Y. Metformin and its benefits for various diseases. Front. Endocrinol. 11, 191 (2020).
    • 62. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with Type 2 diabetes (UKPDS 34). Lancet 352(9131), 854–865 (1998). • It is a classical trial that supports metformin use and analyze cardiovascular outcomes.
    • 63. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in Type 2 diabetes. N. Engl. J. Med. 359(15), 1577–1589 (2008).
    • 64. Kooy A, de Jager J, Lehert P et al. Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with Type 2 diabetes mellitus. Arch. Intern. Med. 169(6), 616–625 (2009).
    • 65. Hong J, Zhang Y, Lai S et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with Type 2 diabetes and coronary artery disease. Diabetes Care 36(5), 1304–1311 (2013).
    • 66. Maruthur NM, Tseng E, Hutfless S et al. Diabetes medications as monotherapy or metformin-based combination therapy for Type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 164(11), 740–751 (2016).
    • 67. Han Y, Xie H, Liu Y, Gao P, Yang X, Shen Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc. Diabetol. 18(1), 96 (2019).
    • 68. Bergmark Brian A, Bhatt Deepak L, McGuire Darren K et al. Metformin use and clinical outcomes among patients with diabetes mellitus with or without heart failure or kidney dysfunction. Circulation 140(12), 1004–1014 (2019).
    • 69. Roumie CL, Chipman J, Min JY et al. Association of treatment with metformin vs sulfonylurea with major adverse cardiovascular events among patients with diabetes and Reduced kidney function. JAMA 1–11 (2019).
    • 70. Varas-Lorenzo C, Margulis AV, Pladevall M et al. The risk of heart failure associated with the use of noninsulin blood glucose-lowering drugs: systematic review and meta-analysis of published observational studies. BMC Cardiovasc. Disord. 14, 129 (2014).
    • 71. Tseng C. Metformin use is associated with a lower risk of hospitalization for heart failure in patients with Type 2 diabetes mellitus: a retrospective cohort analysis. J. Am. Heart Assoc. 8(21), e011640 (2019). • A good retrospective cohort to review the potential role of metformin in reducing heart failure hospitalization.
    • 72. Vantrimpont P, Rouleau JL, Wun C-C et al. Additive beneficial effects of beta-blockers to angiotensin-converting enzyme inhibitors in the survival and ventricular enlargement (SAVE) study fn1fn1 this study was supported by a University-Industry grant from the Medical Research Council, Ottawa, Ontario, Canada and Bristol Myers Squibb, Montreal, Quebec, Canada. J. Am. Coll. Cardiol. 29(2), 229–236 (1997).
    • 73. Williams B, Mancia G, Spiering W et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 39(33), 3021–3104 (2018).
    • 74. Wulffelé MG, Kooy A, Lehert P et al. Combination of insulin and metformin in the treatment of Type 2 diabetes. Diabetes Care 25(12), 2133–2140 (2002).
    • 75. Cook MN, Girman CJ, Stein PP, Alexander CM. Initial monotherapy with either metformin or sulphonylureas often fails to achieve or maintain current glycaemic goals in patients with Type 2 diabetes in UK primary care. Diabet. Med. J. Br. Diabet. Assoc. 24(4), 350–358 (2007).
    • 76. Matthews DR, Paldánius PM, Proot P et al. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed Type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet Lond. Engl. 394(10208), 1519–1529 (2019).
    • 77. Rosenstock J, Chuck L, González-Ortiz M et al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-naïve Type 2 diabetes. Diabetes Care 39(3), 353–362 (2016).
    • 78. Henry RR, Murray AV, Marmolejo MH, Hennicken D, Ptaszynska A, List JF. Dapagliflozin, metformin XR, or both: initial pharmacotherapy for Type 2 diabetes, a randomised controlled trial. Int. J. Clin. Pract. 66(5), 446–456 (2012).
    • 79. Hadjadj S, Rosenstock J, Meinicke T, Woerle HJ, Broedl UC. Initial combination of empagliflozin and metformin in patients with Type 2 diabetes. Diabetes Care 39(10), 1718–1728 (2016).
    • 80. Gu J, Meng X, Guo Y et al. The efficacy and safety of liraglutide added to metformin in patients with diabetes: a meta-analysis of randomized controlled trials. Sci. Rep. 6(1), 32714 (2016).
    • 81. Freeman VS. Glucose and hemoglobin A 1c. Lab. Med. 45(1), e21–e24 (2014).
    • 82. 6. Glycemic targets: standards of medical care in diabetes—2020. 43, 11 (2020).
    • 83. Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 Years: overview. Diabetes Care 37(1), 9–16 (2014).
    • 84. Vasilakou D, Karagiannis T, Athanasiadou E et al. Sodium-glucose cotransporter 2 inhibitors for Type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159(4), 262–274 (2013).
    • 85. Hinnen D. Glucagon-like peptide 1 receptor agonists for Type 2 diabetes. Diabetes Spectr. 30(3), 202–210 (2017).
    • 86. Zelniker Thomas A, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors. J. Am. Coll. Cardiol. 75(4), 422–434 (2020).
    • 87. Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in Type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc. Diabetol. 17(1), 157 (2018).
    • 88. Salpeter SR, Greyber E, Pasternak GA, Salpeter Posthumous EE. Risk of fatal and nonfatal lactic acidosis with metformin use in Type 2 diabetes mellitus. Cochrane Database Syst. Rev. (1), CD002967 (2010).
    • 89. Longato E, Camillo BD, Sparacino G, Gubian L, Avogaro A, Fadini GP. Cardiovascular outcomes of Type 2 diabetic patients treated with SGLT-2 inhibitors versus GLP-1 receptor agonists in real-life. BMJ Open Diabetes Res. Care. 8(1), e001451 (2020).
    • 90. Chow CK, Meng Q. Polypills for primary prevention of cardiovascular disease. Nat. Rev. Cardiol. 16(10), 602–611 (2019).