We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

DNMT1: catalytic and non-catalytic roles in different biological processes

    Kommu Naga Mohan

    *Author for correspondence:

    E-mail Address: kommumohan@gmail.com

    E-mail Address:

    Department of Biological Sciences, Birla Institute of Technology & Science, Pilani – Hyderabad Campus, 500078, India

    Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani – Hyderabad Campus, 500078, India

    Published Online:https://doi.org/10.2217/epi-2022-0035

    DNMT1 is the main enzyme that uses the information on DNA methylation patterns in the parent strand and methylates the daughter strand in freshly replicated hemimethylated DNA. It is widely known that DNMT1 is a component of the epigenetic machinery mediating gene repression via increased promoter methylation. However, recent data suggest that DNMT1 can also modulate gene expression independent of its catalytic activity and participates in multiple processes including the cell cycle, DNA damage repair and stem cell function. This review summarizes the noncanonical functions of DNMT1, some of which are clearly independent of maintenance methylation. Finally, phenotypic data on altered DNMT1 levels suggesting that maintenance of optimal levels of DNMT1 is vital for normal development and health is presented.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Lodish H, Berk A, Kaiser CA et al. Molecular Biology of the Cell (8th Edition). W.H. Freeman and Co, NY, USA (2016).
    • 2. Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14(1), 9–25 (1975).
    • 3. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science 187(4173), 226–232 (1975).
    • 4. Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev. 3(2), 226–231 (1993).
    • 5. Jingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK. On the presence and role of gene-body DNA methylation. Oncotarget 3(4), 462–474 (2012).
    • 6. Skvortsov K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer. Essays Biochem. 63(6), 797–811 (2019).
    • 7. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19(2), 81–92 (2018).
    • 8. Mohan KN, Chaillet JR. Cell and molecular biology of DNA methyltransferase1. Int. Rev. Cell. Mol. Biol. 306, 1–42 (2013).
    • 9. Mohan KN. Stem cell models to investigate the role of DNA methylation machinery in development of neuropsychiatric disorders. Stem Cells Int. 2016, 4379425 (2016).
    • 10. Bashtrykov P, Jankevicius G, Smarandache A, Jurkowska RZ, Ragozin S, Jeltsch A. Specificity of Dnmt1 for methylation of hemimethylated CpG sites resides in its catalytic domain. Chem. Biol. 19(5), 572–578 (2012).
    • 11. Liu X, Gao Q, Li P et al. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat. Commun. 4, 1563 (2013).
    • 12. Zhao L, Sun MA, Li Z et al. The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome Res. 24(8), 1296–1302 (2014).
    • 13. Arand J, Speiler D, Karius T et al. In vivo control of CpG and non-CpG methylation by DNA methyltransferases. PLoS Genet. 8, e1002750 (2012).
    • 14. Wang Q, Yu D, Ming X et al. Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat. Genet. 52(8), 828–829 (2020). •• Highlights certain features in DNMT1 that improve the fidelity of maintenance methylation.
    • 15. Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification and comparison of de novo and maintenance methylation. J. Biol. Chem. 274(46), 33002–33010 (1999).
    • 16. Easwaran HP, Schermelleh L, Leonhardt H, Cardoso MC. Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep. 5(12), 1181–1186 (2004).
    • 17. Charlton J, Downingv TL, Smithv ZD et al. Global delay in nascent strand DNA methylation. Nat. Struct. Mol. Biol. 25(4), 327–332 (2018).
    • 18. Xu C, Corces VG. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science 359(6380), 1166–1170 (2018).
    • 19. Ming X, Zhang Z, Zou Z et al. Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Res. 30(11), 980–996 (2020).
    • 20. Kimura H, Nakamura T, Ogawa T et al. Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways. Nucleic Acids Res. 31(12), 3101–3113 (2003).
    • 21. Schneider K, Fuchs C, Dobay A et al. Dissection of cell-cycle-dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Res. 41(9), 4860–4876 (2013).
    • 22. Unterberger A, Andrews SD, Weaver ICG, Szyf M. DNA methyltransferase 1 knockdown activates a replication stress checkpoint. Mol. Cell. Biol. 26(20), 7575–7586 (2006). • One of the first reports showing the important role of DNMT1 in co-ordination between replication of methylation and the genome.
    • 23. Cirio MC, Ratnam S, Ding F, Reinhart B, Navara C, Chaillet JR. Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Dev. Biol. 8, 9 (2008).
    • 24. Howell CY, Bestor TH, Ding F et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104(6), 829–838 (2001).
    • 25. Cirio MC, Martel J, Mann M et al. DNA methyltransferase 1o functions during preimplantation development to preclude a profound level of epigenetic variation. Dev. Biol. 324(1), 139–150 (2008).
    • 26. Gaudet F, Rideout WM 3rd, Meissner A, Dausman J, Leonhardt H, Jaenisch R. Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol. Cell. Biol. 24(4), 1640–1648 (2004).
    • 27. Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463(7280), 563–567 (2010).
    • 28. D’Aiuto L, Di Maio R, Mohan KN et al. Mouse ES cells overexpressing DNMT1 produce abnormal neurons with upregulated NMDA/NR1 subunit. Differentiation 82(1), 9–17 (2011).
    • 29. Damelin M, Bestor TH. Biological functions of DNA methyltransferase 1 require its methyltransferase activity. Mol. Cell. Biol. 27(11), 3891–3899 (2007).
    • 30. Liao J, Karnik R, Gu H et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 47(5), 469–478 (2015).
    • 31. Loughery JEP, Dunne PD, O'Neill KM, Meehan RR, McDaid JR, Walsh CP. DNMT1 deficiency triggers mismatch repair defects in human cells through depletion of repair protein levels in a process involving the DNA damage response. Hum. Mol. Genet. 20(16), 3241–3255 (2011).
    • 32. Fan G, Beard C, Chen RZ, Csankovszki G et al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J. Neurosci. 21(3), 788–797 (2001).
    • 33. Trowbridge JJ, Snow JW, Kim J, Orkin SH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5(4), 442–449 (2009).
    • 34. Elliot EN, Sheaffer KL, Schug J, Stappenbeck TS, Kaestner KH. Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium. Development 142(12), 2163–2172 (2015).
    • 35. Liu R, Kim KY, Jung YW, Park IH. Dnmt1 regulates the myogenic lineage specification of muscle stem cells. Sci. Rep. 6, 35355 (2016).
    • 36. Fu X, Wu X, Djekidel MN, Zhang Y. Myc and Dnmt1 impede the pluripotent to totipotent state transition in embryonic stem cells. Nat. Cell Biol. 21(7), 835–844 (2019). •• Describes the role of DNMT1 in the transition from totipotent to pluripotent state in mouse preimplantation development.
    • 37. Zovkic IB, Guzman-Karlsson MC, Sweatt JD. Epigenetic regulation of memory formation and maintenance. Learn. Mem. 20(2), 61–74 (2013).
    • 38. Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron 53(6), 857–869 (2007).
    • 39. Miller CA, Gavin CF, White JA et al. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 13(6), 664–666 (2010).
    • 40. Halder R, Hennion M, Vidal RO et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat. Neurosci. 19(1), 102–110 (2016).
    • 41. Feng J, Zhou Y, Campbell SL et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13(4), 423–430 (2010).
    • 42. Sun W, Kong Q, Zhang M et al. Virus-mediated Dnmt1 and Dnmt3a deletion disrupts excitatory synaptogenesis and synaptic function in primary cultured hippocampal neurons. Biochem. Biophys. Res. Commun. 526(2), 361–367 (2020).
    • 43. Lee CW, Huang WC, Huang HD et al. DNA methyltransferases modulate hepatogenic lineage plasticity of mesenchymal stromal cells. Stem Cell Rep. 9(1), 247–263 (2017). • Clearly demonstrates the role of DNMT1 in cellular plasticity.
    • 44. Park YJ, Lee S, Lim S et al. DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics. Proc. Natl Acad. Sci. USA 118(11), e2021073118 (2021).
    • 45. Loeb LA, Monnat RJ. DNA polymerases and human disease. Nat. Rev. Genet. 9(8), 594–604 (2008).
    • 46. Guo G, Wang W, Bradley A. Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429(6994), 891–895 (2004).
    • 47. Wang KY, Chen CC, Tsai SF, Shen CKJ. Epigenetic enhancement of the post-replicative DNA mismatch repair of mammalian genomes by a hemi-mCpG-Np95-Dnmt1. Sci. Rep. 6, 37490 (2016).
    • 48. Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H. Recruitment of DNA methyltransferase I to DNA repair sites. Proc. Natl Acad. Sci. USA 102(25), 8905–8909 (2005).
    • 49. Boulton SJ, Jackson SP. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17(6), 1819–1828 (1998).
    • 50. Gonzalo S, Jaco I, Fraga MF et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat. Cell Biol. 8(4), 416–424 (2006).
    • 51. Young JI, Sedivy JM, Smith JR. Telomerase expression in normal human fibroblasts stabilizes DNA 5-methylcytosine transferase I. J. Biol. Chem. 278(22), 19904–19908 (2003).
    • 52. Zhang C, Mi J, Deng Y, Long D, Liu Z. DNMT1 enhances radiosensitivity of HPV-positive head and neck squamous cell carcinoma via downregulating SMG1. Oncotargets Ther. 13, 4201–4211 (2020).
    • 53. Ray D, Wu A, Willkinson EJ et al. Aging in heterozygous Dnmt1-deficient mice: effects on survival, the DNA methylation genes, and the development of amyloidosis. J. Gerontol. A Biol. Sci. Med. Sci. 61(2), 115–124 (2006).
    • 54. Yung R, Ray D, Eisenbraun JK et al. Unexpected effects of a heterozygous Dnmt1 null mutation on age-dependent hypomethylation and autoimmunity. J. Gerontol. A Biol. Sci. Med. Sci. 56(6), B268–B276 (2001).
    • 55. Woodcock DM, Adams JK, Cooper JA. Characteristics of enzymatic DNA methylation in cultured cells of human and hamster origin, and the effect of DNA replication inhibition. Biochim. Biophys. Acta 696(1), 15–22 (1982).
    • 56. Boyes J, Bird AP. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence of involvement of a methyl-CpG binding protein. EMBO J. 11(1), 327–333 (1992).
    • 57. Ioshikhes IP, Zhang MQ. Large-scale human promoter mapping using CpG islands. Nat. Genet. 26(1), 61–63 (2000).
    • 58. Rhee I, Jair KW, Yen RW et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404(6781), 1003–1007 (2000).
    • 59. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PA, Wolffe AP. DNMT1 forms complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet. 25(3), 338–342 (2000).
    • 60. Clements EG, Mohammad HP, Leadem BR et al. DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes. Nucleic Acids Res. 40(10), 4334–4346 (2012). • A detailed description of genes regulated by DNMT1 in a catalytic activity-independent manner.
    • 61. Espada J, Peinado H, Lopez-Serra L et al. Regulation of SNAIL1 and E-cadherin function by DNMT1 in a DNA methylation-independent context. Nucleic Acids Res. 39(21), 9194–9205 (2011).
    • 62. Tweedie S, Charlton J, Clark V, Bird A. Methylation of genomes and genes at the invertebrate–vertebrate boundary. Mol. Cell. Biol. 17(3), 469–475 (1997).
    • 63. Schulz NKE, Wagner CI, Ebeling J et al. Dnmt1 has an essential function despite the absence of CpG methylation in the red flour beetle Tribolium castaneum. Sci. Rep. 8(1), 16462 (2018).
    • 64. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6), 915–926 (1992).
    • 65. Biniszkiewicz D, Gribnau J, Ramsahoye B et al. Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell. Biol. 22(7), 2124–2135 (2002).
    • 66. Gaudet F, Hodgson JG, Eden A et al. Induction of tumors in mice by genomic hypomethylation. Science 300(5618), 489–492 (2003).
    • 67. Klein CJ, Botuyan MV, Wu Y et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat. Genet. 43(6), 595–600 (2011). •• First clinical description of the consequences of a dominant mutation resulting in reduced activity of DNMT1.
    • 68. Fellinger K, Rothbauer U, Felle M, Längst G, Leonhardt H. Dimerization of DNMT1 is mediated by its regulatory domain. J. Cell. Biochem. 106(4), 521–528 (2009).
    • 69. Wang W, Zhao X, Shao Y et al. Mutation-induced DNMT1 cleavage drives neurodegenerative disease. Sci. Adv. 7, eabae8511 (2021).
    • 70. Sun Z, Wu Y, Ordog T et al. Aberrant signature methylome by DNMT1 hot spot mutation in hereditary sensory and autonomic neuropathy 1E. Epigenetics 9(8), 1184–1193 (2014).
    • 71. Maresca A, Dotto VD, Capristo M et al. DNMT1 mutations leading to neurodegeneration paradoxically reflect on mitochondrial metabolism. Hum. Mol. Genet. 29(11), 1864–1881 (2020).
    • 72. Liu L, Groen TV, Kadish I et al. Insufficient DNA methylation affects healthy aging and promotes age-related health problems. Clin. Epigenet. 2(2), 349–360 (2011).
    • 73. Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc. Natl Acad. Sci. USA 102(6), 2152–2157 (2005). •• One of the first reports to show the association of increased DNMT1 levels with psychotic disorders.
    • 74. Zhu Q, Wang L, Zhang Y et al. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J. Mol. Neurosci. 46(2), 420–426 (2012).
    • 75. Borowczyk E, Mohan KN, D'Aiuto L, Cirio MC, Chaillet JR. Identification of a region of the DNMT1 methyltransferase that regulates the maintenance of genomic imprints. Proc. Natl Acad. Sci. USA 106(49), 20806–20811 (2009).
    • 76. Saxena S, Maroju PA, Choudhury S, Anne A, Mohan KN. Analysis of transcript levels of a few schizophrenia candidate genes in neurons from a transgenic mouse embryonic stem cell model overexpressing DNMT1. Gene 757, 144934 (2020).
    • 77. Saxena S, Choudhury S, Maroju PA, Anne A, Kumar L, Mohan KN. Dysregulation of schizophrenia-associated genes and genome-wide hypomethylation in neurons overexpressing DNMT1. Epigenomics 13(19), 1539–1555 (2021). • Describes in detail the effects of DNMT1 overexpression on schizophrenia-associated genes and demonstrates that dysregulation does not involve alterations in the levels of DNA methylation.
    • 78. Cui J, Zheng L, Zhang Y, Xue M. Bioinformatics analysis of DNMT1 expression and its role in head and neck squamous cell carcinoma prognosis. Sci. Rep. 11(1), 2267 (2021).
    • 79. Pathania R, Ramachandran S, Elangovan S et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat. Commun. 6, 6910 (2015).
    • 80. Zagorac S, Alcala S, Bayon GF et al. DNMT1 inhibition reprograms pancreatic cancer stem cells via upregulation of the miR-17-92 cluster. Cancer Res. 76(15), 4546–4558 (2016).
    • 81. Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH. Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev. 26(4), 344–349 (2012).