We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

LncRNA-ENST00000421645 promotes T cells to secrete IFN-γ by sponging PCM1 in neurosyphilis

    Wen-Na Liu

    Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China

    Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Kai-Xuan Wu

    Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Xiao-Tong Wang

    Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China

    ,
    Li-Rong Lin

    Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China

    ,
    Man-Li Tong

    Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China

    &
    Li-Li Liu

    *Author for correspondence:

    E-mail Address: liulili@xmu.edu.cn

    Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China

    Published Online:https://doi.org/10.2217/epi-2021-0163

    Aim: Neurosyphilis patients exhibited significant expression of long noncoding RNA (lncRNA) in peripheral blood T lymphocytes. In this study, we further clarified the role of lncRNA-ENST00000421645 in the pathogenic mechanism of neurosyphilis. Methods: lncRNA-ENST00000421645 was transfected into Jurkat-E6-1 cells, namely lentivirus (Lv)-1645 cells. RNA pull-down assay, flow cytometry, RT-qPCR, ELISA (Neobioscience Technology Co Ltd, Shenzhen, China) and RNA immunoprecipitation chip assay were used to analyze the function of lncRNA-ENST00000421645. Results: The expression of IFN-γ in Lv-1645 cells was significantly increased compared to that in Jurkat-E6-1 cells stimulated by phorbol-12-myristate-13-acetate (PMA). Then, it was suggested that lncRNA-ENST00000421645 interacts with PCM1 protein. Silencing PCM1 significantly increased the level of IFN-γ in Lv-1645 cells stimulated by PMA. Conclusion: This study revealed that lncRNA-ENST00000421645 mediates the production of IFN-γ by sponging PCM1 protein after PMA stimulation.

    Lay abstract

    The mechanisms underlying Treponema pallidum (a type of bacterium that causes syphilis) invasion into the CNS have not yet been established. In this study, we further clarified the role of long noncoding RNA (lncRNA) in the pathogenic process causing nerve damage. The results suggested that lncRNA-ENST00000421645 interacts with an important protein named PCM1. Suppressing the expression of PCM1 significantly increased the level of IFN-γ cytokines (substances secreted by immune cells that effect other cells) with an increased level of lncRNA-ENST00000421645 when immune cells were stimulated by phorbol-12-myristate-13-acetate a specific activator of the PKC signaling enzyme involved in gene transcription pathways. This study revealed that lncRNA-ENST00000421645 mediates the production of IFN-γ by interacting with PCM1 protein.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Collart P, Franceschini P, Durel P. Experimental rabbit syphilis. Br. J. Vener. Dis. 47(6), 389–400 (1971).
    • 2. Shi M, Peng RR, Gao Z et al. Risk profiles of neurosyphilis in HIV-negative patients with primary, secondary and latent syphilis: implications for clinical intervention. J. Eur. Acad. Dermatol. Venereol. 30(4), 659–666 (2016).
    • 3. Janier M, Unemo M, Dupin N, Tiplica GS, Potocnik M, Patel R. 2020 European guideline on the management of syphilis. J. Eur. Acad. Dermatol. Venereol. 35(3), 574–588 (2021). •• Guide to diagnosis of syphilis in clinical practice.
    • 4. Lukehart SA, Hook EW, Bakerzander SA, Collier AC, Critchlow CW, Handsfield HH. Invasion of the central nervous system by Treponema pallidum: implications for diagnosis and treatment. Ann. Intern. Med. 109(11), 855–862 (1988).
    • 5. Liu LL, Chao PL, Zhang HL et al. Analysis of lymphocyte subsets in HIV-negative neurosyphilis patients. Diagn. Microbiol. Infect. Dis. 75(2), 165–168 (2013).
    • 6. Rotman L, Luo X, Thompson A, Mackesy-Amiti ME, Young LR, Young JD. Risk of neurosyphilis in HIV-infected persons with syphilis lacking signs or symptoms of central nervous system infection. HIV. Med. 20(1), 27–32 (2019).
    • 7. Liu LL, Liu WN, Jiang XY et al. Changes of T lymphocyte subsets in patients with HIV-negative symptomatic neurosyphilis. Microb. Pathog. 130, 213–218 (2019). • The author comprehensively analyzed the immune status of patients with neurosyphilis.
    • 8. Stary G, Klein I, Bruggen MC et al. Host defense mechanisms in secondary syphilitic lesions: a role for IFN-gamma-/IL-17-producing CD8+ T cells? Am. J. Pathol. 177(5), 2421–2432 (2010).
    • 9. Buchacz K, Patel P, Taylor M et al. Syphilis increases HIV viral load and decreases CD4 cell counts in HIV-infected patients with new syphilis infections. AIDS. 18(15), 2075–2079 (2004).
    • 10. Li K, Wang C, Lu H, Gu X, Guan Z, Zhou P. Regulatory T cells in peripheral blood and cerebrospinal fluid of syphilis patients with and without neurological involvement. PLoS Negl. Trop. Dis. 7(11), e2528 (2013).
    • 11. Marra CM, Castro CD, Kuller L et al. Mechanisms of clearance of Treponema pallidum from the CSF in a nonhuman primate model. Neurology 51(4), 957–961 (1998).
    • 12. Hori A, Toda T. Regulation of centriolar satellite integrity and its physiology. Cell. Mol. Life. Sci. 74(2), 213–229 (2017).
    • 13. Chakravarthy B, Menard M, Brown L, Atkinson T, Whitfield J. Identification of protein kinase C inhibitory activity associated with a polypeptide isolated from a phage display system with homology to PCM-1, the pericentriolar material-1 protein. Biochem. Biophys. Res. Commun. 424(1), 147–151 (2012).
    • 14. Deb DK, Sassano A, Lekmine F et al. Activation of protein kinase C delta by IFN-gamma. J. Immunol. 171(1), 267–273 (2003).
    • 15. Bernardeschi C, Grange PA, Janier M et al. Treponema pallidum induces systemic Th17 and Th1 cytokine responses. Eur. J. Dermatol. 22(6), 797–798 (2012).
    • 16. Farina F, Gaillard J, Guerin C et al. The centrosome is an actin-organizing centre. Nat. Cell. Biol. 18(1), 65–75 (2016).
    • 17. Ge X, Frank CL, De Anda FC, Tsai L-H. Hook3 interacts with PCM1 to regulate pericentriolar material assembly and the timing of neurogenesis. Neuron. 65(2), 191–203 (2010).
    • 18. Chen D, Purohit A, Halilovic E, Doxsey SJ, Newton AC. Centrosomal anchoring of protein kinase C beta II by pericentrin controls microtubule organization, spindle function, and cytokinesis. J. Biol. Chem. 279(6), 4829–4839 (2004).
    • 19. Monroe T, Garrett M, Kousi M et al. PCM1 is necessary for focal ciliary integrity and is a candidate for severe schizophrenia. Nat. Commun. 11(1), 5903–5917 (2020).
    • 20. Chakravarthy B, Menard M, Brown L, Hewitt M, Atkinson T, Whitfield J. A synthetic peptide corresponding to a region of the human pericentriolar material 1 (PCM-1) protein binds -amyloid (A(1–42)) oligomers. J. Neurochem. 126(3), 415–424 (2013).
    • 21. Hubmann Rainer, Düchler Markus, Schnabl Susanne et al. NOTCH2 links protein kinase C delta to the expression of CD23 in chronic lymphocytic leukaemia (CLL) cells. Br. J. Haematol. 148(6), 868–78 (2010).
    • 22. Li-Li L, Shao-Gang Z, Xiao-Yong J et al. LncRNA expression in CD4+ T cells in neurosyphilis patients. Front. Cell. Infect. Microbiol. 7, 461–475 (2017). •• Comprehensive analysis of long noncoding RNA (lncRNA) expression of T lymphocytes in patients with neurosyphilis, the findings form the basis of current study.
    • 23. Wenbiao C, Chenhong L, Lan G et al. Comprehensive analysis of the mRNA-lncRNA co-expression profile and ceRNA networks patterns in chronic hepatitis B. Curr. Genomics 20(4), 231–245 (2019).
    • 24. Yifeng Z, Jin Y, Chao L et al. LncRNA H19 induced by helicobacter pylori infection promotes gastric cancer cell growth via enhancing NF-κB-induced inflammation. J. Inflamm. (Lond.) 16, 23–31 (2019).
    • 25. Huang D, Chen J, Yang L et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat. Immunol. 19(10), 1112–1125 (2018).
    • 26. Wu J, Niu Q, Yuan J, Xu X, Cao L. lncRNA-CD160 decreases the immunity of CD8(+) T cells through epigenetic mechanisms in hepatitis B virus infection. Oncol. Lett. 20(1), 235–247 (2020).
    • 27. Wang J, Zhao H, Fan Z et al. Long Noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent m1 microglial polarization. Stroke 48(8), 2211–2221 (2017).
    • 28. Jiang Z-S, Zhang J-R. LncRNA SNHG5 enhances astrocytes and microglia viability via upregulating KLF4 in spinal cord injury. Int. J. Biol. Macromol. 120(Pt A), 66–72 (2018).
    • 29. Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines, 2015. MMWR. Recomm. Rep. 64(RR-03), 1–137 (2015). •• Guide to diagnosis of syphilis in clinical practice.
    • 30. Broad Institute. Gene Set Enrichment Analysis (2020). http://www.broadinstitute.org/gsea/index.jsp
    • 31. Chen H, Wang XY, Yan XT, Cheng XL, He XH, Zheng WZ. LncRNA MALAT1 regulates sepsis-induced cardiac inflammation and dysfunction via interaction with miR-125b and p38 MAPK/NF kappa B. Int. Immunopharmacol. 55, 69–76 (2018).
    • 32. Deng QC, Wang Y, Zhang YQ et al. Pseudomonas aeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome. Infect. Immun. 84(1), 56–66 (2016).
    • 33. Wang P, Xue Y, Han Y et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science. 344(6181), 310–313 (2014).
    • 34. Lin A, Li C, Xing Z et al. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat. Cell. Biol. 18(2), 213–224 (2016).
    • 35. Noh JH, Kim KM, Mcclusky WG, Abdelmohsen K, Gorospe M. Cytoplasmic functions of long noncoding RNAs. Wiley. Interdiscip. Rev. RNA. 9(3), e1471 (2018). •• Review of the literature on cytoplasmic functions of lncRNAs.
    • 36. Yi Z, Li J, Gao K, Fu Y. Identifcation of differentially expressed long non-coding RNAs in CD4(+) T cells response to latent tuberculosis infection. J. Infect. 69(6), 558–568 (2014).
    • 37. Wang C, Yang S-H, Niu N et al. lncRNA028466 regulates Th1/Th2 cytokine expression and associates with Echinococcus granulosus antigen P29 immunity. Parasit. Vectors. 14(1), 295–306 (2021).
    • 38. Li H, Chi X, Li R, Ouyang J, Chen Y. A novel lncRNA, AK130181, contributes to HIV-1 latency by regulating viral promoter-driven gene expression in primary CD4(+) T cells. Mol. Ther. Nucleic. Acids. 20, 754–763 (2020).
    • 39. Muxel SM, Laranjeira-Silva MF, Zampieri RA, Floeter-Winter LM. Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism. Sci. Rep. 7, 44141–44156 (2017).
    • 40. Duval M, Cossart P, Lebreton A. Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk. Semin. Cell. Dev. Biol. 65, 11–19 (2017).
    • 41. Gomez JA, Wapinski OL, Yang YW et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell. 152(4), 743–754 (2013).
    • 42. Westermann AJ, Forstner KU, Amman F et al. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature. 529(7587), 496–501 (2016).
    • 43. Yang R, Huang F, Fu J et al. Differential transcription profiles of long non-coding RNAs in primary human brain microvascular endothelial cells in response to meningitic Escherichia coli. Sci. Rep. 6, 38903–38918 (2016).
    • 44. Kaakoush NO, Deshpande NP, Man SM et al. Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus. Infect. Immun. 83(2), 832–845 (2015).
    • 45. Wu W, Choi EJ, Lee I, Lee YS, Bao X. Non-coding RNAs and their role in respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. Viruses. 12(3), 345–363 (2020).
    • 46. Fu Y, Gao K, Tao E, Li R, Yi Z. Aberrantly expressed long non-coding RNAs in CD8(+) T cells response to active tuberculosis. J. Cell. Biochem. 118(12), 4275–4284 (2017).
    • 47. Maciej P, Bogdan J, Dorota W-S, Andrzej KJ, Jacek Z et al. Elevated cerebrospinal fluid interleukin-17A and interferon-γ levels in early asymptomatic neurosyphilis. Sex. Transm. Dis. 40(10), 808–812 (2013).
    • 48. Shen WP, Falahati R, Stark R, Leitenberg D, Ladisch S. Modulation of CD4 Th cell differentiation by ganglioside G(D1a) in vitro. J. Immunol. 175(8), 4927–4934 (2005).
    • 49. Li Q, Wang B, Mu K, Zhang JA. The pathogenesis of thyroid autoimmune diseases: new T lymphocytes - cytokines circuits beyond the Th1-Th2 paradigm. J. Cell. Physiol. 234(3), 2204–2216 (2019).
    • 50. Primož R, Urban Š. The tolerogenic role of IFN-γ. Cytokine. Growth. Factor. Rev. 41, 40–53 (2018).
    • 51. Kai K, Hans C. IFN-γ: The T cell's license to kill stem cells in the inflamed intestine. Sci. Immunol. 4(42), eaaz6821–eaaz6822 (2019).
    • 52. Ziwen D, Lu Z, Qian T et al. Circulating levels of IFN-γ, IL-1, IL-17 and IL-22 in pre-eclampsia: a systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 248, 211–221 (2020).
    • 53. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 152(6), 1298–1307 (2013).
    • 54. Chen J, Wang Y, Wang C, Hu JF, Li W. LncRNA functions as a new emerging epigenetic factor in determining the fate of stem cells. Front. Genet. 11, 277–289 (2020).
    • 55. Cui R, Liu C, Lin P et al. LncRNA AC245100.4 binds HSP90 to promote the proliferation of prostate cancer. Epigenomics 12(15), 1257–1271 (2020).
    • 56. Han KJ, Wu Z, Pearson CG, Peng J, Song K, Liu CW. Deubiquitylase USP9X maintains centriolar satellite integrity by stabilizing pericentriolar material 1 protein. J. Cell. Sci. 132(2), jcs221663 (2019).
    • 57. Wang SH, Zhang WJ, Wu XC et al. The lncRNA MALAT1 functions as a competing endogenous RNA to regulate MCL-1 expression by sponging miR-363-3p in gallbladder cancer. J. Cell. Mol. Med. 20(12), 2299–2308 (2016).