We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Development and validation of an oxidative phosphorylation-related gene signature in lung adenocarcinoma

    Zihao Xu

    Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China

    Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China

    ,
    Zilong Wu

    Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China

    ,
    Jingtao Zhang

    Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China

    ,
    Ruihao Zhou

    Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, PR China

    ,
    Ling Ye

    Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, PR China

    ,
    Pingliang Yang

    *Author for correspondence:

    E-mail Address: pingliangyang@163.com

    Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Xindu, Sichuan, 610500, PR China

    &
    Bentong Yu

    **Author for correspondence:

    E-mail Address: yubentong@126.com

    Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China

    Published Online:https://doi.org/10.2217/epi-2020-0217

    Aim: To develop an oxidative phosphorylation (OXPHOS)-related gene signature of lung adenocarcinoma (LUAD). Materials & methods: We split The Cancer Genome Atlas LUAD cohort into a training set and a test set; we used the least absolute shrinkage and selection operator Cox method to structure the OXPHOS-related prognostic signature in the training set and verified in the test set and GSE30219 dataset. Meanwhile, the diagnostic model was constructed using the logistic Cox method. Results: The signature consisted of seven genes (LDHA, CFTR, HSPD1, SNHG3, MAP1LC3C, COX6B2, and TWIST1). LUAD patients were divided into high- and low-risk groups, demonstrating good diagnostic and prognostic capabilities. Conclusion: We developed the first-ever OXPHOS-related signature with both prognostic predictive power and diagnostic efficacy.

    References

    • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018).
    • 2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 70(1), 7–30 (2020).
    • 3. Shi J, Hua X, Zhu B et al. Somatic genomics and clinical features of lung adenocarcinoma: a retrospective study. PLoS Med. 13(12), e1002162 (2016).
    • 4. Liang Y, Wakelee HA. Adjuvant chemotherapy of completely resected early stage non-small cell lung cancer (NSCLC). Transl. Lung Cancer Res. 2(5), 403–410 (2013).
    • 5. Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and prospects of early detection in lung cancer. Open Biol. 7(9), 170070 (2017).
    • 6. Carter BW, Lichtenberger JP, Benveniste MK et al. Revisions to the TNM staging of lung cancer: rationale, significance, and clinical application. Radiographics 38(2), 374–391 (2018).
    • 7. Sica V, Bravo-San Pedro JM, Stoll G, Kroemer G. Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Int. J. Cancer 146(1), 10–17 (2020).
    • 8. Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. 24(11), 2482–2490 (2018).
    • 9. Kuntz EM, Baquero P, Michie AM et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat. Med. 23(10), 1234–1240 (2017).
    • 10. Nayak AP, Kapur A, Barroilhet L, Patankar MS. Oxidative phosphorylation: a target for novel therapeutic strategies against ovarian cancer. Cancers 10(9), 337 (2018).
    • 11. Rao S, Mondragón L, Pranjic B et al. AIF-regulated oxidative phosphorylation supports lung cancer development. Cell Res. 29(7), 579–591 (2019).
    • 12. Seijo LM, Peled N, Ajona D et al. Biomarkers in lung cancer screening: achievements, promises, and challenges. J. Thorac. Oncol. 14(3), 343–357 (2019).
    • 13. Kwa M, Makris A, Esteva FJ. Clinical utility of gene-expression signatures in early stage breast cancer. Nat. Rev. Clin. Oncol. 14(10), 595–610 (2017).
    • 14. Zhu X, Tian X, Yu C et al. A long non-coding RNA signature to improve prognosis prediction of gastric cancer. Mol. Cancer 15(1), 60 (2016).
    • 15. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19(1A), A68 (2015).
    • 16. Colaprico A, Silva TC, Olsen C et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44(8), e71 (2016).
    • 17. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002).
    • 18. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23(14), 1846–1847 (2007).
    • 19. Brown GR, Hem V, Katz KS et al. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res. 43(D1), D36–D42 (2015).
    • 20. Robinson JL, Kocabaş P, Wang H et al. An atlas of human metabolism. Sci. Signal. 13(624), eaaz1482 (2020).
    • 21. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010).
    • 22. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B Methodol. 57(1), 289–300 (1995).
    • 23. Wickham H. ggplot2: Elegant Graphics for Data Analysis (2nd Edition). Springer, Cham, Switzerland (2016).
    • 24. Kolde R. Pheatmap: pretty heatmaps. R package version 61, 617 (2012).
    • 25. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5), 284–287 (2012).
    • 26. Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31(17), 2912–2914 (2015).
    • 27. Kuhn M. Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008).
    • 28. Gordon M, Lumley T. forestplot: advanced forest plot using ‘grid’graphics. R package version 1(2), 70 (2017).
    • 29. Friedman J, Hastie T, Tibshirani R. glmnet: lasso and elastic-net regularized generalized linear models. R package version 1(4), (2009). http://CRAN.R-project.org/package=glmnet
    • 30. Heagerty P, Saha P. SurvivalROC: time-dependent ROC curve estimation from censored survival data. Biometrics 56(2), 337–344 (2000).
    • 31. Harrell FE Jr. rms: regression modeling strategies. R package version 5(2), (2016). http://CRAN.R-project.org/package=rms
    • 32. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28(11), 1747–1756 (2018).
    • 33. Robin X, Turck N, Hainard A et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12(1), 77 (2011).
    • 34. Sun W, Hu S, Zu Y, Deng Y. KLF3 is a crucial regulator of metastasis by controlling STAT3 expression in lung cancer. Mol. Carcinog. 58(11), 1933–1945 (2019).
    • 35. Chen Y-J, Guo Y-N, Shi K et al. Down-regulation of microRNA-144-3p and its clinical value in non-small cell lung cancer: a comprehensive analysis based on microarray, miRNA-sequencing, and quantitative real-time PCR data. Respir. Res. 20(1), 48 (2019).
    • 36. Zhang J-X, Song W, Chen Z-H et al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol. 14(13), 1295–1306 (2013).
    • 37. Liu N, Chen N-Y, Cui R-X et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol. 13(6), 633–641 (2012).
    • 38. Zhang L, Zhang Z, Yu Z. Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma. J. Transl. Med. 17(1), 423 (2019).
    • 39. Gu Y, Li P, Peng F et al. Autophagy-related prognostic signature for breast cancer. Mol. Carcinog. 55(3), 292–299 (2016).
    • 40. Shen S, Wang G, Zhang R et al. Development and validation of an immune gene-set based prognostic signature in ovarian cancer. EBioMedicine 40, 318–326 (2019).
    • 41. Xu X-H, Bao Y, Wang X et al. Hypoxic-stabilized EPAS1 proteins transactivate DNMT1 and cause promoter hypermethylation and transcription inhibition of EPAS1 in non-small cell lung cancer. FASEB J. doi:10.1096/fj.201700715 (2018) (Epub ahead of print).
    • 42. Yang S, Liu Y, Li M-Y et al. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol. Cancer 16(1), 124 (2017).
    • 43. Nagano H, Hashimoto N, Nakayama A et al. p53-inducible DPYSL4 associates with mitochondrial supercomplexes and regulates energy metabolism in adipocytes and cancer cells. Proc. Natl Acad. Sci. U S A 115(33), 8370–8375 (2018).
    • 44. Warfel NA, El-Deiry WS. HIF-1 signaling in drug resistance to chemotherapy. Curr. Med. Chem. 21(26), 3021–3028 (2014).
    • 45. Von Morze C, Merritt ME. Cancer in the crosshairs: targeting cancer metabolism with hyperpolarized carbon-13 MRI technology. NMR Biomed. 32(10), e3937 (2019).
    • 46. Fu H, Zhu Y, Wang Y et al. Identification and validation of stromal immunotype predict survival and benefit from adjuvant chemotherapy in patients with muscle-invasive bladder cancer. Clin. Cancer Res. 24(13), 3069–3078 (2018).
    • 47. Sohn I, Kim J, Jung S-H, Park C. Gradient lasso for Cox proportional hazards model. Bioinformatics 25(14), 1775–1781 (2009).
    • 48. Yan S, Wang Y, Chen M, Li G, Fan J. Deregulated SLC2A1 promotes tumor cell proliferation and metastasis in gastric cancer. Int. J. Mol. Sci. 16(7), 16144–16157 (2015).
    • 49. Jin L, Chun J, Pan C et al. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene 36(27), 3797–3806 (2017).
    • 50. Pathria G, Scott DA, Feng Y et al. Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. EMBO J. 37(20), e99735 (2018).
    • 51. Amaral MD, Quaresma MC, Pankonien I. What role does CFTR play in development, differentiation, regeneration and cancer? Int. J. Mol. Sci. 21(9), 3133 (2020).
    • 52. Li Y, Sun Z, Wu Y et al. Cystic fibrosis transmembrane conductance regulator gene mutation and lung cancer risk. Lung Cancer 70(1), 14–21 (2010).
    • 53. Kim S-K, Kim K, Ryu J-W et al. The novel prognostic marker, EHMT2, is involved in cell proliferation via HSPD1 regulation in breast cancer. Int. J. Oncol. 54(1), 65–76 (2019).
    • 54. Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 22(1), 90–106 (2012).
    • 55. Pan J, Fang S, Tian H et al. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol. Cancer 19(1), 9 (2020).
    • 56. Shi J, Li J, Yang S et al. LncRNA SNHG3 is activated by E2F1 and promotes proliferation and migration of non-small-cell lung cancer cells through activating TGF-β pathway and IL-6/JAK2/STAT3 pathway. J. Cell. Physiol. 235(3), 2891–2900 (2020).