We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems

    Catherine Ladavière

    UMR CNRS 5223, IMP, Université Lyon 1, INSA de Lyon, 69100 Villeurbanne, France

    &
    Ruxandra Gref

    *Author for correspondence:

    E-mail Address: ruxandra.gref@u-psud.fr

    Institute of Molecular Sciences, UMR CNRS 8214, Université Paris-Saclay, 91400 Orsay, France

    Published Online:https://doi.org/10.2217/nnm.15.128

    Intracellular pathogenic bacteria can lead to some of the most life-threatening infections. By evolving a number of ingenious mechanisms, these bacteria have the ability to invade, colonize and survive in the host cells in active or latent forms over prolonged period of time. A variety of nanoparticulate systems have been developed to optimize the delivery of antibiotics. Main advantages of nanoparticulate systems as compared with free drugs are an efficient drug encapsulation, protection from inactivation, targeting infection sites and the possibility to deliver drugs by overcoming cellular barriers. Nevertheless, despite the great progresses in treating intracellular infections using nanoparticulate carriers, some challenges still remain, such as targeting cellular subcompartments with bacteria and delivering synergistic drug combinations. Engineered nanoparticles should allow controlling drug release both inside cells and within the extracellular space before reaching the target cells.

    References

    • 1 World Health Organization: Global Tuberculosis Report 2014. WHO Press, 1–171 (2014).
    • 2 Wilson M, Mcnab R, Henderson B. Bacterial Disease Mechanisms: An Introduction to Cellular Microbiology. Cambridge University Press, NY, USA (2002).
    • 3 Chmielnicki E, Jeffrey K, Stevens K. Research highlights, tuberculosis on the run. Nat. Med. 13, 911 (2007).
    • 4 Spellberg B. Rising Plague: The Global Threat from Deadly Bacteria and Our Dwindling Arsenal to Fight Them. Spellberg Prometheus Books, NY, USA (2009).
    • 5 Haas A. The phagosome: compartment with a license to kill. Traffic 8, 311–330 (2007).
    • 6 Gordon S. Elie Metchnikoff: father of natural immunity. Eur. J. Immunol. 38, 3257–3264 (2008).
    • 7 Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl Acad. Sci. USA 97, 8841–8848 (2000).
    • 8 Stuart LM, Ezekowitz RA. Phagocytosis and comparative innate immunity: learning on the fly. Nat. Rev. Immunol. 8, 131–141 (2008).
    • 9 Greenberg S, Grinstein S. Phagocytosis and innate immunity. Curr. Opin. Immunol. 14, 13–145 (2002).
    • 10 Portnoy DA, Auerbuch V, Glomski IJ. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 158, 409–414 (2002).
    • 11 Imbuluzqueta E, Gamazo C, Ariza J, Blanco-Prieto MJ. Drug delivery systems for potential treatment of intracellular bacterial infections. Front. Biosci. (Landmark Ed.) 15, 397–417 (2010).
    • 12 Celli J, Finlay BB. Bacterial avoidance of phagocytosis. Trends Microbiol. 10, 231–237 (2002).
    • 13 Pieters J. Evasion of host cell defense mechanisms by pathogenic bacteria. Curr. Opin. Immunol. 1, 37–44 (2001).
    • 14 Pieters J. Entry and survival of pathogenic mycobacteria in macrophages. Microbes Infect. 3, 249–255 (2001).
    • 15 Sansonetti P. Phagocytosis of bacterial pathogens: implications in the host response. Semin. Immunol. 13, 381–390 (2001).
    • 16 Bhavsar AP, Guttman JA, Finlay BB. Manipulation of host-cell pathways by bacterial pathogens. Nature 449, 827–834 (2007).
    • 17 Xiong M-H, Bao Y, Yang X-Z, Zhu Y-H, Wang J. Delivery of antibiotics with polymeric particles. Adv. Drug Deliv. Rev. 78, 63–76 (2014).
    • 18 Shegokar R, Al Shaal L, Mitri K. Present status of nanoparticle research for treatment of tuberculosis. J. Pharm. Pharm. Sci. 14, 100–116 (2011).
    • 19 Caminero JA, Sotgiu G, Zumla A, Migliori GB. Best drug treatment for multidrug resistant and extensively drug-resistant tuberculosis. Lancet Infect. Dis. 10, 621–629 (2010).
    • 20 Pandey R, Ahmad Z. Nanomedicine and experimental tuberculosis: facts, flaws, and future. Nanomedicine 7, 259–272 (2011).
    • 21 Small PM, Fujiwara PI. Management of tuberculosis in the United States. N. Engl. J. Med. 345, 189–200 (2001).
    • 22 Nguyen L, Pieters J. The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. Trends Cell. Biol. 15, 269–276 (2005).
    • 23 Liu PJ, Chen YS, Lin HH et al. Induction of mouse melioidosis with meningitis by CD11b+ phagocytic cells harboring intracellular B. pseudomallei as a Trojan horse. PLoS Negl. Trop. Dis. 7, e2363 (2013).
    • 24 Tan NC, Foreman A, Jardeleza C, Douglas R, Vreugde S, Wormald PJ. Intra-cellular Staphylococcus aureus: the Trojan horse of recalcitrant chronic rhinosinusitis? Int. Forum Allergy Rhinol. 3, 261–266 (2013).
    • 25 Drevets DA, Leenen PJ, Greenfield RA. Invasion of the central nervous system by intracellular bacteria. Clin. Microbiol. Rev. 17, 323–347 (2004).
    • 26 Briones E, Colino CI, Lanao JM. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control. Release 125, 210–227 (2008).
    • 27 Alonso MJ. Nanomedicines for overcoming biological barriers. Biomed. Pharmacother. 58, 168–172 (2004).
    • 28 Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J. Control. Release 136, 2–13 (2009).
    • 29 Hoyle BD, Costerton JW. Bacterial resistance to antibiotics: the role of biofilms. Prog. Drug Res. 37, 91–105 (1991).
    • 30 Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39 (2001).
    • 31 Thurlow LR, Hanke ML, Fritz T et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 186, 6585–6596 (2011).
    • 32 Sommer MO, Dantas G. Antibiotics and the resistant microbiome. Curr. Opin. Microbiol. 14, 556–563 (2011).
    • 33 Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin. Microbiol. Rev. 16, 430–450 (2003).
    • 34 Ristuccia AM, Cunha BA. The aminoglycosides. Med. Clin. North Am. 66, 303–312 (1982).
    • 35 Abraham AM, Walubo A. The effect of surface charge on the disposition of liposome-encapsulated gentamicin to the rat liver, brain, lungs and kidneys after intraperitoneal administration. Int. J. Antimicrob. Agents 25, 392–397 (2005).
    • 36 Lecaroz C, Gamazo C, Blanco-Prieto MJ. Nanocarriers with gentamicin to treat intracellular pathogens. J. Nanosci. Nanotechnol. 6, 3296–3302 (2006).
    • 37 Webber MA, Piddock LJV. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).
    • 38 Seral C, Carryn S, Tulkens PM, Van Bambeke F. Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by Listeria monocytogenes or Staphylococcus aureus. J. Antimicrob. Chemother. 51, 1167–1173 (2003).
    • 39 Couvreur P, Fattal E, Andremont A. Liposomes and nanoparticles in the treatment of intracellular bacterial infections. Pharm. Res. 8, 1079–1086 (1991).
    • 40 Easmon CS, Crane JP. Uptake of ciprofloxacin by human neutrophils. J. Antimicrob. Chemother. 16, 67–73 (1985).
    • 41 Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int. J. Antimicrob. Agents 13, 155–168 (2000).
    • 42 Tulkens PM. Intracellular distribution and activity of antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 10, 100–106 (1991).
    • 43 Tulkens PM. Intracellular pharmacokinetics and localization of antibiotics as predictors of their efficacy against intraphagocytic infections. Scand. J. Infect. Dis. Suppl. 74, 209–217 (1990).
    • 44 Vallet CM, Marquez B, Ngabirano E et al. Cellular accumulation of fluoroquinolones is not predictive of their intracellular activity: studies with gemifloxacin, moxifloxacin and ciprofloxacin in a pharmacokinetic/pharmacodynamic model of uninfected and infected macrophages. Int. J. Antimicrob. Agents 38(3), 249–256 (2011).
    • 45 Carryn S, Chanteux H, Seral C, Mingeot-Leclercq M-P, Van Bambeke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect. Dis. Clin. North Am. 17(3), 615–634 (2003).
    • 46 Gamazo C, Lecaroz MC, Prior S et al. Chemical and biological factors in the control of Brucella and brucellosis. Curr. Drug Deliv. 3, 359–365 (2006).
    • 47 Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 22, 4279–4287 (2012).
    • 48 Onyeji CO, Nightingale CH, Nicolau DP, Quintiliani R. Efficacies of liposome encapsulated clarithromycin and ofloxacin against Mycobacterium avium-M. intracellular complex in human macrophages. Antimicrob. Agents Chemother. 38, 523–527 (1994).
    • 49 Mitragotri S, Burke P, Langer R. Overcoming the challenges in administering biopharmaceutical drugs: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).
    • 50 Kamaly N, Xiao Z, Valencia PM, Radovic-Morenob AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012).
    • 51 Duncan R, Richardson SWC. Endocytosis and intracellular trafficking as gateways for nanomedicines delivery: opportunities and challenges. Mol. Pharm. 9, 2380–2402 (2012).
    • 52 Harush-Frenkel O, Altschuler Y, Benita S. Nanoparticle–cell interactions: drug delivery implications. Crit. Rev. Ther. Drug Carrier Syst. 25, 485–544 (2008).
    • 53 Ranjan A, Pothayee N, Seleem MN et al. Nanomedicine for intracellular therapy. FEMS Microbiol. Lett. 332, 1–9 (2012).
    • 54 Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009).
    • 55 Sahay G, Alakhova Y, Kabanov AV. Endocytosis of nanomedicines. J. Control. Release 145, 182–195 (2010).
    • 56 Prokop A. Intracellular delivery: Fundamentals and Applications. Springer, NY, USA (2011).
    • 57 Wang X, Li S, Shi Y et al. The development of site-specific drug delivery nanocarriers based on receptor mediation. J. Control. Release 193, 139–153 (2014).
    • 58 Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40(1), 233–245 (2011).
    • 59 Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).
    • 60 Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478 (2003).
    • 61 Guo S, Huang L. Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J. Nanomater. doi:10.1155/2011/742895 (2011).
    • 62 Marsh M, Helenius A. Virus entry: open sesame. Cell 124, 729–740 (2006).
    • 63 Petros RA, Desimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).
    • 64 Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev. 59, 748–758 (2007).
    • 65 Lutwyche P, Cordeiro C, Wiseman DJ et al. Intracellular delivery and antibacterial activity of gentamicin encapsulated in pH-sensitive liposomes. Antimicrob. Agents Chemother. 42, 2511–2520 (1998).
    • 66 Gnanadhas DP, Ben Thomas M, Elango M, Raichur AM, Chakravortty D. Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J. Antimicrob. Chemother. 68, 2576–2586 (2013).
    • 67 Oh N, Park J-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine doi:10.2147/IJN.S26592 (2014) (Epub ahead of print).
    • 68 Sakhtianchi R, Minchin RF, Lee K-B, Alkilany AM, Serpooshan V, Mahmoudi M. Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv. Colloid Interface Sci. 201–202, 18–29 (2013).
    • 69 Lee HW. Interactions between antimicrobial agents, phagocytic cells and bacteria. Curr. Med. Chem. Anti-Infect. Agents 2, 73–82 (2003).
    • 70 Kreuter J. Liposomes and nanoparticles as vehicles for antibiotics. Infection 19(4), S224–S228 (1991).
    • 71 Griffiths G, Nyström B, Sable SB, Khuller GK. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat. Rev. Microbiol. 8, 827–834 (2010).
    • 72 De Faria TJ, Roman M, De Souza NM et al. An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrob. Agents Chemother. 56, 2259–2267 (2012).
    • 73 Bonventre PF, Gregoriadis G. Killing of intraphagocytic Staphylococcus aureus by dihydrostreptomycin entrapped within liposomes. Antimicrob. Agents Chemother. 13, 1049 (1978).
    • 74 Maya S, Indulekha S, Sukhithasri V et al. Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int. J. Biol. Macromol. 51, 392–399 (2012).
    • 75 Pumerantz A, Muppidi K, Agnihotri S et al. Preparation of liposomal vancomycin and intracellular killing of methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents 37, 140–144 (2011).
    • 76 Akbari V, Abedi D, Pardakhty A, Sadeghi-Aliabadi H. Ciprofloxacin nanoniosomes for targeting intracellular infections: an in vitro evaluation. J. Nanoparticle Res. 15, 1–14 (2013).
    • 77 Bermudez LE, Wu M, Young LS. Intracellular killing of Mycobacterium avium complex by rifapentine and liposome-encapsulated amikacin. J. Infect. Dis. 156, 510–513 (1987).
    • 78 Bermudez LE, Vau-Young AO, Lin JP, Cogger J, Young LS. Treatment of disseminated Mycobacterium avium complex infection of beige mice with liposome encapsulated aminoglycosides. J. Infect. Dis. 161, 1262–1268 (1990).
    • 79 Dees C, Schultz RD. The mechanism of enhanced intraphagocytic killing of bacteria by liposomes containing antibiotics. Vet. Immunol. Immunopathol. 24, 135–146 (1990).
    • 80 Majumdar S, Flasher D, Friend DS et al. Efficacies of liposome-encapsulated streptomycin and ciprofloxacin against Mycobacterium avium-M. intracellulare complex infections in human peripheral blood monocyte/macrophages. Antimicrob. Agents Chemother. 36, 2808–2815 (1992).
    • 81 Onyeji CO, Nightingale CH, Nicolau DP, Quintiliani R. Activities of liposome encapsulated azithromycin and rifabutin compared with that of clarithromycin against Mycobacterium avium-intracellulare complex in human macrophages. Int. J. Antimicrob. Agents 4, 281–289 (1994).
    • 82 Zaru M, Sinico C, De Logu A et al. Rifampicinloaded liposomes for the passive targeting to alveolar macrophages: in vitro and in vivo evaluation. J. Liposome Res. 19, 68–76 (2009).
    • 83 Duzgunes N, Flasher D, Reddy MV, Luna-Herrera J, Gangadharam PRJ. Treatment of intracellular Mycobacterium avium complex infection by free and liposome-encapsulated sparfloxacin. Antimicrob. Agents Chemother. 40, 2618–2621 (1996).
    • 84 Oh YK, Nix DE, Straubinger RM. Formulation and efficacy of liposome encapsulated antibiotics for therapy of intracellular Mycobacterium avium infection. Antimicrob. Agents Chemother. 39, 2104–2111 (1995).
    • 85 Onyeji CO, Nightingale CH, Tessier PR, Nicolau DP, Bow LM. Activities of clarithromycin, azithromycin, and ofloxacin in combination with liposomal or unencapsulated granulocyte-macrophage colony-stimulating factor against intramacrophage Mycobacterium avium-Mycobacterium intracellular. J. Infect. Dis. 172, 810–816 (1995).
    • 86 Gomez-Flores R, Hsia R, Tamez-Guerra R, Mehta RT. Enhanced intramacrophage activity of resorcinomycin A against Mycobacterium avium–Mycobacterium intracellulare complex after liposome encapsulation. Antimicrob. Agents Chemother. 40, 2545–2549 (1996).
    • 87 Changsan N, Nilkaeo A, Pungrassami P, Srichana T. Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Mycobacterium bovis in alveolar macrophages. J. Drug Target. 17, 751–762 (2009).
    • 88 Anisimova YV, Gelperina SI, Peloquin CA, Heifets LB. Nanoparticles as antituberculosis drugs carriers: effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. J. Nanoparticle Res. 2, 165–171 (2000).
    • 89 Kisich KO, Gelperina S, Higgins MP et al. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int. J. Pharm. 345, 154–162 (2007).
    • 90 Shipulo EV, Lyubimov II, Maksimenko OO et al. Development of a nanosomal formulation of moxifloxacin based on poly(butyl-2-cyanoacrylate). Pharm. Chem. J 42, 145–149 (2008).
    • 91 Clemens DL, Lee B-Y, Xue M et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-Infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob. Agents Chemother. 56(5), 2535–2545 (2012).
    • 92 Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J. Control. Release 127, 50–58 (2008).
    • 93 O'hara P, Hickey AJ. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm. Res. 17, 955–961 (2000).
    • 94 Muttil P, Kaur J, Kumar K, Yadav AB, Sharma R, Misra A. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci. 32, 140–150 (2007).
    • 95 Saraogi GK, Gupta P, Gupta UD, Jain NK, Agrawal GP. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int. J. Pharm. 385, 143–149 (2010).
    • 96 Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother. 54, 761–766 (2004).
    • 97 Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother. 52, 981–986 (2003).
    • 98 Ahmad S, Sharma G, Khuller K. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int. J. Antimicrob. Agents 26, 298–303 (2005).
    • 99 Pourshahab PS, Gilani K, Moazeni E, Eslahi H, Fazeli MR, Jamalifar H. Preparation and characterization of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid. J. Microencapsul. 28, 605–613 (2011).
    • 100 Saraogi GK, Sharma B, Joshi B et al. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J. Drug Target. 19, 219–227 (2011).
    • 101 Pandey R, Khuller GK. Antitubercular inhaled therapy: opportunities, progress and challenges. J. Antimicrob. Chemother. 55, 430–435 (2005).
    • 102 Desiderio JV, Campbell SG. Intraphagocytic killing of Salmonella typhimurium by liposome-encapsulated cephalothin. J. Infect. Dis. 148, 563–570 (1983).
    • 103 Desiderio JV, Campbell SG. Liposome-encapsulated cephalothin in the treatment of experimentalmurine salmonellosis. J. Reticuloendothel. Soc. 34, 279–287 (1983).
    • 104 Pinto-Alphandary H, Balland O, Laurent M, Andremont A, Puisieux F, Couvreur P. Intracellular visualization of ampicillin-loaded nanoparticles in peritoneal macrophages infected in vitro with Salmonella typhimurium. Pharm. Res. 11, 38–46 (1994).
    • 105 Balland O, Pinto-Alphandary H, Pecquet S, Andremont A, Couvreur P. The uptake of ampicillin-loaded nanoparticles by murine macrophages infected with Salmonella typhimurium. J. Antimicrob. Chemother. 33, 509–522 (1994).
    • 106 Balland O, Pinto-Alphandary H, Viron A, Puvion E, Andremont A, Couvreur P. Intracellular distribution of ampicillin in murine macrophages infected with Salmonella typhimurium and treated with (3H) ampicillin-loaded nanoparticles. Antimicrob. Chemother. 37, 105–115 (1996).
    • 107 Zaki NM, Hafez MM. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech 13, 411–421 (2012).
    • 108 Cordeiro C, Wiseman DJ, Lutwyche P et al. Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella enterica serovar Typhimurium intracellular infection model. Antimicrob. Agents Chemother. 44, 533–539 (2000).
    • 109 Ranjan A, Pothayee N, Seleem MN et al. In vitro trafficking and efficacy of core-shell nanostructures for treating intracellular Salmonella infections. Antimicrob. Agents Chemother. 53, 3985–3988 (2009).
    • 110 Anderson JC, Kirby CJ. The effect of incorporation of cloxacillin in liposomes on treatment of experimental staphylococcal mastitis in mice. J. Vet. Pharmacol. Ther. 9, 303–309 (1986).
    • 111 Bakker-Woudenberg IA, Lokerse AF, Roerdink FH. Effect of lipid composition on activity of liposome-entrapped ampicillin against intracellular Listeria monocytogenes. Antimicrob. Agents Chemother. 32, 1560–1564 (1988).
    • 112 Forestier F, Gerrier P, Chaumard C, Quero AM, Couvreur P, Labarre C. Effect of nanoparticle-bound ampicillin on the survival of Listeria monocytogenes in mouse peritoneal macrophages. J. Antimicrob. Chemother. 30, 173–179 (1992).
    • 113 Stevenson M, Baillie AJ, Richards RM. Enhanced activity of streptomycin and chloramphenicol against intracellular Escherichia coli in the J774 macrophage cell line mediated by liposome delivery. Antimicrob. Agents Chemother. 24, 742–749 (1983).
    • 114 Dees C, Fountain MW, Taylor JR, Schultz RD. Enhanced intraphagocytic killing of Brucella abortus in bovine mononuclear cells by liposomes-containing gentamicin. Vet. Immunol. Immunopathol. 8, 171–182 (1985).
    • 115 Fountain MW, Weiss SJ, Fountain AG, Shen A, Lenk RP. Treatment of Brucella canis and Brucella abortus in vitro and in vivo by stable plurilamellar vesicle encapsulated aminoglycosides. J. Infect. Dis. 152, 529–535 (1985).
    • 116 Vitas AI, Diaz R, Gamazo C. Effect of composition and method of preparation of liposomes on their stability and interaction with murine monocytes infected with Brucella abortus. Antimicrob. Agents Chemother. 40, 146–151 (1996).
    • 117 Imbuluzqueta E, Lemaire S, Gamazo C et al. Cellular pharmacokinetics and intracellular activity against Listeria monocytogenes and Staphylococcus aureus of chemically modified and nanoencapsulated gentamicin. J. Antimicrob. Chemother. 67, 2158–2164 (2012).
    • 118 Pothayee N, Jain N, Vadala TP et al. Block ionomer complexes containing cationic antibiotics to kill intracellular Brucella melitensis in vitro. Polym. Adv. Technol. 23, 1484–1493 (2012).
    • 119 Lecaroz C, Blanco-Prieto MJ, Burrell MA, Gamazo C. Intracellular killing of Brucella melitensis in human macrophages with microsphere-encapsulated gentamicin. J. Antimicrob. Chemother. 58, 549–556 (2006).
    • 120 Van Etten EWM, Van Vianen W, Hak J, Bakker-Woudenberg IaJM. Activity of liposomal amphotericin b with prolonged circulation in blood versus those of ambisome and fungizone against intracellular Candida albicans in murine peritoneal macrophages. Antimicrob. Agents Chemother. 42(9), 2437–2439 (1998).
    • 121 Toti US, Guru BR, Hali M et al. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials 32, 6606–6613 (2011).
    • 122 Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 172, 1487–1490 (2005).
    • 123 Dillen K, Vandervoort J, Van Den Mooter G, Ludwig A. Evaluation of ciprofloxacin-loaded Eudragit RS100 or RL100/PLGA nanoparticles. Int. J. Pharm. 314, 72–82 (2006).
    • 124 Swenson CE, Stewart KA, Hammett JL, Fitzsimmons WE, Ginsberg RS. Pharmacokinetics and in vivo activity of liposome-encapsulated gentamicin. Antimicrob. Agents Chemother. 34, 235–240 (1990).
    • 125 Wong JP, Yang H, Blasetti KL, Schnell G, Conley J, Schofield LN. Liposome delivery of ciprofloxacin against intracellular Francisella tularensis infection. J. Control. Release 92, 265–273 (2003).
    • 126 Bakker-Woudenberg IA, Schiffelers RM, Storm G, Becker MJ, Guo L. Long circulating sterically stabilized liposomes in the treatment of infections. Methods Enzymol. 391, 228–260 (2005).
    • 127 Schiffelers RM, Storm G, Bakker-Woudenberg IA. Host factors influencing the preferential localization of sterically stabilized liposomes in Klebsiella pneumoniae-infected rat lung tissue. Pharm. Res. 18, 780–787 (2001).
    • 128 Abrahams GL, Hensel M. Manipulating cellular transport and immune responses: dynamic interactions between intracellular Salmonella enterica and its host cells. Cell. Microbiol. 8, 728–737 (2006).
    • 129 Fierer J, Hatlen L, Lin JP, Estrella D, Mihalko P, Yau-Young A. Successful treatment using gentamicin liposomes of Salmonella Dublin infections in mice. Antimicrob. Agents Chemother. 34, 343–348 (1990).
    • 130 Mingeot-Leclercq MP, Brasseur R, Schanck A. Molecular parameters involved in aminoglycoside nephrotoxicity. J. Toxicol. Environ. Health 44, 263–300 (1995).
    • 131 Ahmad Z, Sharma S, Khuller GK. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine 3, 239–243 (2007).
    • 132 De Steenwinkel JE, Van Vianen W, Ten Kate MT et al. Targeted drug delivery to enhance efficacy and shorten treatment duration in disseminated Mycobacterium avium infection in mice. J. Antimicrob. Chemother. 60, 1064–1073 (2007).
    • 133 Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 25(12), 563–570 (2007).
    • 134 Mitchison D, Davies G. The chemotherapy of tuberculosis: past, present and future. Int. J. Tuberc. Lung Dis. 16(6), 724–732 (2012).
    • 135 Cipolla D, Shekunov B, Blanchard J, Hickey A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv. Drug Deliv. Rev. 75, 53–80 (2014).
    • 136 Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med. Res. Rev. 29(1), 196–212 (2009).
    • 137 D'angelo I, Conte C, Miro A, Quaglia F, Ungaro F. Pulmonary drug delivery: a role for polymeric nanoparticles? Curr. Top Med. Chem. 15(4), 386–400 (2015).
    • 138 Fountain MW, Dees C, Schultz RD. Enhanced intracellular killing of Staphylococcus aureus by canine monocytes treated with liposomes containing amikacin, gentamicin, kanamycin, and tobramycin. Curr. Microbiol. 6, 373–376 (1981).
    • 139 Macleod DL, Prescott JF. The use of liposomally-entrapped gentamicin in the treatment of bovine Staphylococcus aureus mastitis. Can. J. Vet. Res. 52, 445–450 (1988).
    • 140 Kesavalu L, Goldstein JA, Debs RJ, Duzgunes N, Gangadharam PR. Differential effects of free and liposome encapsulated amikacin on the survival of Mycobacterium avium complex in mouse peritoneal macrophages. Tubercle 71, 215–217 (1990).
    • 141 Ashtekar D, Duzgunes N, Gangadharam PR. Activity of free and liposome encapsulated streptomycin against Mycobacterium avium complex (MAC) inside peritoneal macrophages. J. Antimicrob. Chemother. 28, 615–617 (1991).
    • 142 Chono S, Tanino T, Seki T, Morimoto K. Efficient drug delivery to alveolar macrophages and lung epithelial lining fluid following pulmonary administration of liposomal ciprofloxacin in rats with pneumonia and estimation of its antibacterial effects. Drug Dev. Ind. Pharm. 34, 1090–1096 (2008).
    • 143 Salem I, Duzgunes N. Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages. Int. J. Pharmaceut. 250, 345–352 (2003).
    • 144 Onyeji CO, Nightingale CH, Marangos MN. Enhanced killing of methicillin resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection 22, 338–342 (1994).
    • 145 Golyshevskaia VI, Selishcheva AA, Martynova LP et al. Evaluation of the efficiency of activity of the liposomal form of isoniazid against different types of mycobacteria in vitro. Probl. Tuberk. Bolezn. Legk. 8, 61–64 (2006).
    • 146 Lira MCB, Siqueira-Moura MP, Rolim-Santos HML et al. In vitro uptake and antimycobacterial activity of liposomal usnic acid formulation. J. Liposome Res. 19, 49–58 (2009).
    • 147 Yazar E, Bas AL, Birdane YO, Yapar K, Elmas M, Tras B. Determination of intracellular (neutrophil and monocyte) concentrations of free and liposome encapsulated ampicillin in sheep. Vet. Med. 51, 51–54 (2006).
    • 148 Bakker-Woudenberg IA, Lokerse AF, Vink-Van Den Berg JC, Roerdink FH. Liposome-encapsulated ampicillin against Listeria monocytogenes in vivo and in vitro. Infection 16(Suppl. 2), S165–S170 (1988).
    • 149 Schiffelers RM, Storm G, Ten Kate MT et al. In vivo synergistic interaction of liposome-coencapsulated gentamicin and ceftazidime. J. Pharmacol. Exp. Ther. 298, 369–375 (2001).
    • 150 Alipour M, Suntres ZE, Lafrenie RM, Omri A. Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes. J. Antimicrob. Chemother. 65, 684–693 (2010).
    • 151 Halwani M, Yebio B, Suntres ZE, Alipour M, Azghani AO, Omri A. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 62, 1291–1297 (2008).
    • 152 Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int. J. Antimicrob. Agents 43, 485–496 (2014).
    • 153 Youssef M, Fattal E, Alonso MJ et al. Effectiveness of nanoparticle-bound ampicillin in the treatment of Listeria monocytogenes infection in athymic nude mice. Antimicrob. Agents Chemother. 32(8), 1204–1207 (1988).
    • 154 Kalluru R, Fenaroli F, Westmoreland D et al. Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J. Cell. Sci. 126, 3043–3054 (2013).
    • 155 Hirota K, Hasegawa T, Nakajima T et al. Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J. Control. Release 142, 339–346 (2010).
    • 156 Yoshida A, Matumoto M, Hshizume H et al. Selective delivery of rifampicin incorporated into poly(DL-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette–Guérin. Microbes Infect. 8, 2484–2491 (2006).
    • 157 Quenelle DC, Winchester GA, Staas JK, Barrow EL, Barrow WW. Treatment of tuberculosis using a combination of sustained-release rifampin-loaded microspheres and oral dosing with isoniazid. Antimicrob. Agents Chemother. 45, 1637–1644 (2001).
    • 158 Ranjan A, Pothayee N, Seleem MN et al. Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella model. Int. J. Nanomedicine 4, 289–297 (2009).
    • 159 Zhang Q, Liao G, Wei D, Nagai T. Increase in gentamicin uptake by cultured mouse peritoneal macrophages and rat hepatocytes by its binding to polybutylcyanoacrylate nanoparticles. Int. J. Pharm. 164, 21–27 (1998).
    • 160 Bakker-Woudenberg IA, Lokerse AF, Vink-Van Den Berg JC, Roerdink FH, Michel MF. Effect of liposome-entrapped ampicillin on survival of Listeria monocytogenes in murine peritoneal macrophages. Antimicrob. Agents Chemother. 30, 295–300 (1986).
    • 161 Couvreur P, Fattal E, Alphandary H, Puisieux F, Andremont A. Intracellular targeting of antibiotics by means of biodegradable nanoparticles. J. Control. Release 19, 259–267 (1992).
    • 162 Seleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N. Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol. Lett 294, 24–31 (2009).
    • 163 Mishra MK, Kotta K, Hali M et al. PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomedicine 7, 935–944 (2011).
    • 164 Bosnjakovic A, Mishra MK, Ren W et al. Poly(amidoamine) dendrimer-erythromycin conjugates for drug delivery to macrophages involved in periprosthetic inflammation. Nanomedicine 7, 284–294 (2011).
    • 165 Hajipour MJ, Fromm KM, Ashkarran AA et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012).
    • 166 Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 156, 128–145 (2011).
    • 167 Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomedicine 7, 2767–2781 (2012).
    • 168 Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 65, 1803–1815 (2013).
    • 169 Kalishwaralal K, Barathmanikanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B Biointerfaces 79, 340–344 (2010).
    • 170 Knetsch ML, Koole LH. New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3, 340–366 (2011).
    • 171 Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB. Antimicrobial surface functionalization of plastic catheters by silver nanoparticle. J. Antimicrob. Chemother. 61, 869–876 (2008).
    • 172 Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Advances 2, 2314–2321 (2012).
    • 173 Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E. Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int. J. Nanomedicine 7, 1175–1188 (2012).
    • 174 Mahmoudi M, Serpooshan V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6, 2656–2664 (2012).
    • 175 Park H, Park H-J, Kim JA et al. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J. Microbiol. Methods 84, 41–45 (2011).
    • 176 Naqvi SZH, Kiran U, Ali MI et al. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomedicine 8, 3187–3195 (2013).
    • 177 Li P, Li J, Wu C, Wu Q, Li J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16, 1912–1917 (2005).
    • 178 Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3, 168–171 (2007).
    • 179 Dhas SP, Mukherjee A, Chandrasekaran N. Synergistic effect of biogenic silver nanocolloid in combination with antibiotics: a potent therapeutic agent. Int. J. Pharm. Pharm. Sci. 5, 292–295 (2013).
    • 180 Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6, 103–109 (2010).
    • 181 Chellat F, Merhi Y, Moreau A, Yahia L. Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 26, 7260–7275 (2005).
    • 182 Kelly C, Jefferies C, Cryan S-A. Targeted liposomal drug delivery to monocytes and macrophages. J. Drug Deliv. doi:10.1155/2011/727241 (2011).
    • 183 Vyas SP, Kannan ME, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolarmacrophages. Int. J. Pharm. 269, 37–49 (2004).
    • 184 Xiong M-H, Li Y-J, Bao Y, Yang XZ, Hu B, Wang J. Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery. Adv. Mater. 24, 6175–6180 (2012).
    • 185 Chono S, Tanino T, Seki T, Morimoto K. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J. Pharm. Pharmacol. 59, 75–80 (2007).
    • 186 Chakraborty SP, Sahu SK, Mahapatra SK et al. Nanoconjugated vancomycin. new opportunities for the development of anti-VRSA agents. Nanotechnology 21, 105103 (2010).
    • 187 Gao W, Thamphiwatana S, Angsantikul P, Zhang L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 532–547 (2014).
    • 188 Pornpattananangkul D, Zhang L, Olson S et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J. Am. Chem. Soc. 133, 4132–4139 (2011).
    • 189 Xiong M-H, Bao Y, Yang X-Z, Wang Y-C, Sun B, Wang J. Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J. Am. Chem. Soc. 134, 4355–4362 (2012).
    • 190 Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).
    • 191 Komnatnyy VV, Chiang W-C, Tolker-Nielsen T, Givskov M, Nielsen TE. Bacteria-triggered release of antimicrobial agents. Angew. Chem. Int. Ed. Engl. 53, 439–441 (2014).
    • 192 Sémiramoth N, Di Meo C, Zouhiri F et al. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano 6, 3820–3831 (2012).
    • 193 Wang C, Huang X, Deng W, Chang C, Hang R, Tang B. A nano-silver composite based on the ion-exchange response for the intelligent antibacterial applications. Mater. Sci. Eng. C Mater. Biol. Appl. 41, 134–141 (2014).
    • 194 Barrios-Payán J, Saqui-Salces M, Jeyanathan M et al. Extrapulmonary locations of Mycobacterium tuberculosis DNA during latent infection. J. Infect. Dis. 206, 1194–1205 (2012).
    • 195 Barbuddhe SB, Chakraborty T. Listeria as an enteroinvasive gastrointestinal pathogen. Curr. Top. Microbiol. Immunol. 337, 173–195 (2009).
    • 196 Bokil NJ, Totsika M, Carey AJ et al. Intra-macrophage survival of uropathogenic Escherichia coli: differences between diverse clinical isolates and between mouse and human macrophages. Immunobiology 216, 1164–1171 (2011).
    • 197 Degang Y, Nakamura K, Akama T et al. Leprosy as a model of immunity. Future Microbiol. 9, 43–54 (2014).
    • 198 Schmiedl A, Kerber-Momot T, Munder A, Pabst R, Tschernig T. Bacterial distribution in lung parenchyma early after pulmonary infection with Pseudomonas aeruginosa. Cell Tissue Res. 342, 67–73 (2010).
    • 199 Santos RL, Bäumler AJ. Cell tropism of Salmonella enterica. Int. J. Med. Microbiol. 294, 225–233 (2004).
    • 200 Heifets L. Microbiological aspects of rifapentine. Drugs Today 35, 7–15 (1999).
    • 201 Kaprelyants AS, Gottschal JC, Kell DB. Dormancy in non-sporulating bacteria. FEMS Microbiol. Rev. 10, 271–285 (1993).
    • 202 Page-Clisson ME, Pinto-Alphandary H, Chachaty E, Couvreur P, Andremont A. Drug targeting by polyalkylcyanoacrylate nanoparticles is not efficient against persistent Salmonella. Pharm Res. 15, 544–549 (1998).
    • 203 Carlier MB, Scorneaux B, Zenebergh A, Desnottes JF, Tulkens PM. Cellular uptake, localization and activity of fluoroquinolones in uninfected and infected macrophages. J. Antimicrob. Chemother. 26(Suppl. B), 27–39 (1990).
    • 204 Lee CM, Tannock IF. Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration. Br. J. Cancer 94, 863–869 (2006).
    • 205 Delehanty JB, Bradburne CE, Boeneman K et al. Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system. Integr. Biol. (Camb.) 2, 265–277 (2010).
    • 206 Moon C, Kwon YM, Lee WK, Park YJ, Yang VC. in vitro assessment of a novel polyrotaxane-based drug delivery system integrated with a cell-penetrating peptide. J. Control. Release 124, 43–50 (2007).
    • 207 Reddy JA, Low PS. Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation. J. Control. Release 64, 27–37 (2000).
    • 208 Torchilin VP. Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 90, 604–610 (2008).