We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fnl.11.67

The adult brain contains a reservoir of neural stem cells (NSCs) that generates functional neurons in a process called adult neurogenesis. Integration of new neurons into mature neural circuits maintains brain tissue homeostasis essential for learning, olfaction and behavior. Even subtle disruptions in NSC self-renewal/differentiation can result in substantial changes in neuronal production rates, contributing to neuropsychiatric symptoms, cognitive dysfunction and epilepsy. Recent studies have revealed pivotal roles for epigenetic regulators of gene expression. Epigenetic and genetic regulation allows a rich array of possibilities to fine-tune neuronal gene expression and offers potential therapeutic opportunities to modulate brain function related to adult neurogenesis. Here we discuss the role of epigenetic mechanisms underlying NSC fate and translational strategies for the future.

References

  • Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol.124(3),319–335 (1965).
  • Gage FH. Mammalian neural stem cells. Science287(5457),1433–1438 (2000).
  • Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci.28,223–250 (2005).
  • Alvarez-Buylla A, Seri B, Doetsch F. Identification of neural stem cells in the adult vertebrate brain. Brain Res. Bull.57(6),751–758 (2002).
  • Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron41(5),683–686 (2004).
  • Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol.425(4),479–494 (2000).
  • Shen Q, Wang Y, Kokovay E et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell3(3),289–300 (2008).
  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell97(6),703–716 (1999).
  • Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci.27(8),447–452 (2004).
  • 10  Lie DC, Colamarino SA, Song HJ et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature437(7063),1370–1375 (2005).▪ One of the first studies to demonstrate an extrinsic factor that controls adult neurogenesis.
  • 11  Mira H, Andreu Z, Suh H et al. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell7(1),78–89 (2010).
  • 12  Ables JL, Decarolis NA, Johnson MA et al. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J. Neurosci.30(31),10484–10492 (2010).
  • 13  Sahoo T, Del Gaudio D, German JR et al. Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet.40(6),719–721 (2008).
  • 14  Amir RE, Van Den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet.23(2),185–188 (1999).
  • 15  Mabb AM, Judson MC, Zylka MJ, Philpot BD. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci.34(6),293–303 (2011).
  • 16  Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet.33(Suppl.),245–254 (2003).
  • 17  Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell128(4),635–638 (2007).
  • 18  Waddington CH. The Strategy of the Genes. George Allen & Unwin, UK (1957).
  • 19  Bernstein BE, Mikkelsen TS, Xie X et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125(2),315–326 (2006).▪▪ Landmark paper describing the presence of both active and silent histone markers corresponding to lineage-specific genes in embryonic stem cells.
  • 20  Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet.9(6),465–476 (2008).
  • 21  Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet.43,143–166 (2009).
  • 22  Edwards CA, Ferguson-Smith AC. Mechanisms regulating imprinted genes in clusters. Curr. Opin. Cell Biol.19(3),281–289 (2007).
  • 23  Bartolomei MS, Ferguson-Smith AC. Mammalian genomic imprinting. Cold Spring Harb. Perspect. Biol.3(7),A002592 (2011).
  • 24  Erwin JA, Lee JT. New twists in X-chromosome inactivation. Curr. Opin. Cell Biol.20(3),349–355 (2008).
  • 25  Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem.74,481–514 (2005).
  • 26  Hermann A, Goyal R, Jeltsch A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J. Biol. Chem.279(46),48350–48359 (2004).
  • 27  Inano K, Suetake I, Ueda T et al. Maintenance-type DNA methyltransferase is highly expressed in post-mitotic neurons and localized in the cytoplasmic compartment. J. Biochem.128(2),315–321 (2000).
  • 28  Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell. Biol.11(9),607–620 (2010).
  • 29  Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99(3),247–257 (1999).
  • 30  Feng J, Chang H, Li E, Fan G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J. Neurosci. Res79(6),734–746 (2005).
  • 31  Ballestar E, Wolffe AP. Methyl-CpG-binding proteins. Targeting specific gene repression. Eur. J. Biochem.268(1),1–6 (2001).
  • 32  Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet.27(3),322–326 (2001).
  • 33  Collins AL, Levenson JM, Vilaythong AP et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet.13(21),2679–2689 (2004).
  • 34  Chahrour M, Jung SY, Shaw C et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science320(5880),1224–1229 (2008).
  • 35  Lioy DT, Garg SK, Monaghan CE et al. A role for glia in the progression of Rett’s syndrome. Nature475(7357),497–500 (2011).
  • 36  Dean W, Santos F, Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Dev. Biol.14(1),93–100 (2003).
  • 37  Ooi SK, Bestor TH. The colorful history of active DNA demethylation. Cell133(7),1145–1148 (2008).
  • 38  Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324(5929),929–930 (2009).
  • 39  Munzel M, Globisch D, Bruckl T et al. Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew. Chem. Int. Ed. Engl.49(31),5375–5377 (2010).
  • 40  Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature466(7310),1129–1133 (2010).
  • 41  Tahiliani M, Koh KP, Shen Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science324(5929),930–935 (2009).▪ Identifies TET1 for the conversion 5´MeC to 5´OHMeC, suggesting a role of TET1 in active DNA demethylation.
  • 42  Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell145(3),423–434 (2011).
  • 43  Papathanasiou MA, Kerr NC, Robbins JH et al. Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol. Cell. Biol.11(2),1009–1016 (1991).
  • 44  Barreto G, Schafer A, Marhold J et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature445(7128),671–675 (2007).
  • 45  Ma DK, Jang MH, Guo JU et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science323(5917),1074–1077 (2009).
  • 46  Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature389(6648),251–260 (1997).
  • 47  Strahl BD, Allis CD. The language of covalent histone modifications. Nature403(6765),41–45 (2000).
  • 48  De Ruijter AJ, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J.370(Pt 3),737–749 (2003).
  • 49  Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology. implications for disease and therapy. Nat. Rev. Genet.10(1),32–42 (2009).
  • 50  Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends Genet.19(5),286–293 (2003).
  • 51  Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem.73,417–435 (2004).
  • 52  Macdonald JL, Roskams AJ. Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Dev. Dyn.237(8),2256–2267 (2008).
  • 53  Lessard J, Wu JI, Ranish JA et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron55(2),201–215 (2007).
  • 54  Wu JI, Lessard J, Olave IA et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron56(1),94–108 (2007).
  • 55  Yoo AS, Staahl BT, Chen L, Crabtree GR. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature460(7255),642–646 (2009).
  • 56  Costa FF. Non-coding RNAs: new players in eukaryotic biology. Gene357(2),83–94 (2005).
  • 57  Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2),281–297 (2004).
  • 58  Liu N, Olson EN. MicroRNA regulatory networks in cardiovascular development. Dev. Cell18(4),510–525 (2010).
  • 59  Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell136(2),215–233 (2009).
  • 60  Shi Y, Zhao X, Hsieh J et al. MicroRNA regulation of neural stem cells and neurogenesis. J. Neurosci.30(45),14931–14936 (2010).
  • 61  Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell136(4),629–641 (2009).
  • 62  Lee JT, Davidow LS, Warshawsky D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet.21(4),400–404 (1999).
  • 63  Jeon Y, Lee JT. YY1 Tethers Xist RNA to the inactive X nucleation center. Cell146(1),119–133 (2011).
  • 64  Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl Acad. Sci. USA105(2),716–721 (2008).
  • 65  Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet.9(2),115–128 (2008).
  • 66  Bonaguidi MA, Wheeler MA, Shapiro JS et al.In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell145(7),1142–1155 (2011).
  • 67  Encinas JM, Michurina TV, Peunova N et al. Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell8(5),566–579 (2011).
  • 68  Dranovsky A, Picchini AM, Moadel T et al. Experience dictates stem cell fate in the adult hippocampus. Neuron70(5),908–923 (2011).
  • 69  Gao Z, Ure K, Ding P et al. The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J. Neurosci.31(26),9772–9786 (2011).
  • 70  Ehm O, Goritz C, Covic M et al. RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J. Neurosci.30(41),13794–13807 (2010).
  • 71  Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J. Neurosci.30(9),3489–3498 (2010).
  • 72  Shimojo H, Ohtsuka T, Kageyama R. Dynamic expression of notch signaling genes in neural stem/progenitor cells. Front. Neurosci.5,78 (2011).
  • 73  Schmidt JV, Matteson PG, Jones BK, Guan XJ, Tilghman SM. The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev.14(16),1997–2002 (2000).
  • 74  Ferron SR, Charalambous M, Radford E et al. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature475(7356),381–385 (2011).
  • 75  Doetsch F, Verdugo JM, Caille I, Alvarez-Buylla A, Chao MV, Casaccia-Bonnefil P. Lack of the cell-cycle inhibitor p27Kip1 results in selective increase of transit-amplifying cells for adult neurogenesis. J. Neurosci.22(6),2255–2264 (2002).
  • 76  Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425(6961),962–967 (2003).▪▪ Shows that neural stem cells and neural progenitor cells employ different mechanisms to control proliferation.
  • 77  Zhang CL, Zou Y, He W, Gage FH, Evans RM. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature451(7181),1004–1007 (2008).
  • 78  Shi Y, Chichung Lie D, Taupin P et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature427(6969),78–83 (2004).
  • 79  Zhao C, Sun G, Li S et al. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc. Natl Acad. Sci. USA107(5),1876–1881 (2010).
  • 80  Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat. Struct. Mol. Biol.16(4),365–371 (2009).
  • 81  Shibata M, Kurokawa D, Nakao H, Ohmura T, Aizawa S. MicroRNA-9 modulates Cajal–Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J. Neurosci.28(41),10415–10421 (2008).
  • 82  Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J. Neurosci.31(9),3407–3422 (2011).
  • 83  Shi Y, Lan F, Matson C et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119(7),941–953 (2004).
  • 84  Sun G, Alzayady K, Stewart R et al. Histone demethylase LSD1 regulates neural stem cell proliferation. Mol. Cell. Biol.30(8),1997–2005 (2010).
  • 85  Sun Y, Nadal-Vicens M, Misono S et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell104(3),365–376 (2001).
  • 86  Fan G, Martinowich K, Chin MH et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK–STAT signaling. Development132(15),3345–3356 (2005).
  • 87  Tsujimura K, Abematsu M, Kohyama J, Namihira M, Nakashima K. Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2. Exp. Neurol.219(1),104–111 (2009).
  • 88  Feng J, Zhou Y, Campbell SL et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci.13(4),423–430 (2010).
  • 89  Zhao X, Ueba T, Christie BR et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl Acad. Sci. USA100(11),6777–6782 (2003).
  • 90  Li X, Barkho BZ, Luo Y et al. Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J. Biol. Chem.283(41),27644–27652 (2008).
  • 91  Liu C, Teng ZQ, Santistevan NJ et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell6(5),433–444 (2010).
  • 92  Prozorovski T, Schulze-Topphoff U, Glumm R et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol.10(4),385–394 (2008).
  • 93  Hisahara S, Chiba S, Matsumoto H et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl Acad. Sci. USA105(40),15599–15604 (2008).
  • 94  Sierra A, Encinas JM, Deudero JJ et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell7(4),483–495 (2010).
  • 95  Gao Z, Ure K, Ables JL et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat. Neurosci.12(9),1090–1092 (2009).
  • 96  Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl Acad. Sci. USA101(47),16659–16664 (2004).
  • 97  Haberland M, Carrer M, Mokalled MH, Montgomery RL, Olson EN. Redundant control of adipogenesis by histone deacetylases 1 and 2. J. Biol. Chem.285(19),14663–14670 (2010).
  • 98  Ye F, Chen Y, Hoang T et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat. Neurosci.12(7),829–838 (2009).
  • 99  Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc. Natl Acad. Sci. USA106(19),7876–7881 (2009).
  • 100  Guan JS, Haggarty SJ, Giacometti E et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature459(7243),55–60 (2009).
  • 101  Jawerka M, Colak D, Dimou L et al. The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biol.6(2),93–107 (2010).
  • 102  Lim DA, Huang YC, Swigut T et al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature458(7237),529–533 (2009).▪▪ One of the first studies to show an essential role for a chromatin remodeling factor in adult subventricular zone neurogenesis.
  • 103  Long JE, Garel S, Alvarez-Dolado M et al. Dlx-dependent and -independent regulation of olfactory bulb interneuron differentiation. J. Neurosci.27(12),3230–3243 (2007).
  • 104  Issaeva I, Zonis Y, Rozovskaia T et al. Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol. Cell. Biol.27(5),1889–1903 (2007).
  • 105  Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA104(47),18439–18444 (2007).
  • 106  Renthal W, Nestler EJ. Epigenetic mechanisms in drug addiction. Trends Mol. Med.14(8),341–350 (2008).
  • 107  Lester BM, Tronick E, Nestler E et al. Behavioral epigenetics. Ann. NY Acad. Sci.1226(1),14–33 (2011).
  • 108  Scharfman HE, Hen R. Neuroscience. Is more neurogenesis always better? Science315(5810),336–338 (2007).
  • 109  Parent JM, Jessberger S, Gage FH, Gong C. Is neurogenesis reparative after status epilepticus? Epilepsia48(Suppl. 8),69–71 (2007).
  • 110  Perera TD, Park S, Nemirovskaya Y. Cognitive role of neurogenesis in depression and antidepressant treatment. Neuroscientist14(4),326–338 (2008).
  • 111  Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat. Neurosci.13(11),1338–1344 (2010).
  • 112  Covic M, Karaca E, Lie DC. Epigenetic regulation of neurogenesis in the adult hippocampus. Heredity105(1),122–134 (2010).
  • 113  Hsieh J, Eisch AJ. Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind. Neurobiol. Dis.39(1),73–84 (2010).
  • 114  Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat. Rev. Neurosci.7(5),395–406 (2006).
  • 115  Qureshi IA, Mehler MF. The emerging role of epigenetics in stroke: III. Neural stem cell biology and regenerative medicine. Arch. Neurol.68(3),294–302 (2011).
  • 116  Bensinger WI. The current status of hematopoietic stem cell transplantation for multiple myeloma. Clin. Adv. Hematol. Oncol.2(1),46–52 (2004).
  • 117  Mclaren A. Ethical and social considerations of stem cell research. Nature414(6859),129–131 (2001).
  • 118  Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4),663–676 (2006).
  • 119  Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell5(6),584–595 (2009).
  • 120  Marchetto MC, Carromeu C, Acab A et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell143(4),527–539 (2010).▪ Demonstrates an example of cutting-edge induced pluripotent stem cell technology to generate an in vitro model of Rett syndrome to study basic mechanisms.
  • 121  Brennand KJ, Simone A, Jou J et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature473(7346),221–225 (2011).
  • 122  Chin MH, Mason MJ, Xie W et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell5(1),111–123 (2009).
  • 123  Hussein SM, Batada NN, Vuoristo S et al. Copy number variation and selection during reprogramming to pluripotency. Nature471(7336),58–62 (2011).
  • 124  Gore A, Li Z, Fung HL et al. Somatic coding mutations in human induced pluripotent stem cells. Nature471(7336),63–67 (2011).
  • 125  Lister R, Pelizzola M, Kida YS et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature471(7336),68–73 (2011).
  • 126  Colbourne F, Sutherland GR, Auer RN. Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J. Neurosci.19(11),4200–4210 (1999).
  • 127  Beattie MS, Hermann GE, Rogers RC, Bresnahan JC. Cell death in models of spinal cord injury. Prog. Brain Res.137,37–47 (2002).
  • 128  Picard-Riera N, Decker L, Delarasse C et al. Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc. Natl Acad. Sci. USA99(20),13211–13216 (2002).
  • 129  Emre N, Coleman R, Ding S. A chemical approach to stem cell biology. Curr. Opin. Chem. Biol.11(3),252–258 (2007).
  • 130  Abematsu M, Tsujimura K, Yamano M et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J. Clin. Invest.120(9),3255–3266 (2010).
  • 131  Amariglio N, Hirshberg A, Scheithauer BW et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med.6(2),E1000029 (2009).
  • 132  Jin K, Minami M, Lan JQ et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc. Natl Acad. Sci. USA98(8),4710–4715 (2001).
  • 133  Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology55(3),310–318 (2008).
  • 134  Yamashita T, Ninomiya M, Hernandez Acosta P et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J. Neurosci.26(24),6627–6636 (2006).▪ Elegant demonstration of increased neurogenesis in a pathological condition, suggesting the existence of intrinsic repair mechanisms to promote recovery after stroke.
  • 135  Langley B, Brochier C, Rivieccio MA. Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke. Stroke40(8),2899–2905 (2009).
  • 136  Kim HJ, Leeds P, Chuang DM. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J. Neurochem.110(4),1226–1240 (2009).