We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/17460913.1.1.89

Environmental pathogens are organisms that normally spend a substantial part of their lifecycle outside of human hosts, but when introduced into humans are capable of causing disease. Such organisms are often able to transition between disparate environments ranging from the soil to the cytosol of host cells. The food-borne bacterial pathogen Listeria monocytogenes serves as a model system for understanding how an environmental organism makes the transition into mammalian hosts. A transcriptional regulatory protein known as PrfA appears to serve as a critical switch, enabling L. monocytogenes to transition from the outside environment to life within the host cell cytosol. PrfA is required for the expression of many L. monocytogenes gene products associated with virulence, and multiple mechanisms serve to regulate the expression and activity of PrfA. Increasing evidence suggests that specific environmental stresses help prime L. monocytogenes for life within the host, and cross-talk between the stress response regulator σ-B and PrfA may mediate the transition from outside environment to cytosol. Once within the host cytosol, multiple changes in bacterial metabolism and gene expression help to complete the transformation of L. monocytogenes from soil dweller to intracellular pathogen.

Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

Bibliography

  • Gray ML, Killinger AH: Listeria monocytogenes and listeric infections. Bacteriol. Rev.30, 309–382 (1966).
  • Vazquez-Boland JA, Dominguez-Bernal G, Gonzalez-Zorn B, Kreft J, Goebel W: Pathogenicity islands and virulence evolution in Listeria. Microbes Infect.3, 571–584 (2001).
  • Farber JM, Peterkin PI: Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev.55, 476–511 (1991).
  • Glaser P, Frangeul L, Buchrieser C et al.: Comparative genomics of Listeria species. Science294, 849–852 (2001).
  • Grundling A, Burrack LS, Bouwer HG, Higgins DE: Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc. Natl Acad. Sci. USA101, 12318–12323 (2004).
  • Peel M, Donachie W, Shaw A: Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J. Gen. Microbiol.143, 2171–2178 (1988).
  • Way SS, Thompson LJ, Lopes JE et al.: Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity. Cell Microbiol.6, 235–242 (2004).
  • Seeliger HPR, Jones D: Genus Listeria Pirie 1940, (Vol. 2). The Williams & Wilkins Co., Baltimore, MD, USA (1986).
  • Anderson GL, Caldwell KN, Beuchat LR, Williams PL: Interaction of a free-living soil nematode, Caenorhabditis elegans, with surrogates of foodborne pathogenic bacteria. J. Food Prot.66, 1543–1549 (2003).
  • 10  Caldwell KN, Anderson GL, Williams PL, Beuchat LR: Attraction of a free-living nematode, Caenorhabditis elegans, to foodborne pathogenic bacteria and its potential as a vector of Salmonellapoona for preharvest contamination of cantaloupe. J. Food Prot.66, 1964–1971 (2003).
  • 11  Ly TM, Muller HE: Ingested Listeria monocytogenes survive and multiply in protozoa. J. Med. Microbiol.33, 51–54 (1990).
  • 12  Thomsen LE, Slutz SS, Tan MW, Ingmer H: Caenorhabditis elegans is a model host for Listeria monocytogenes. Appl. Environ. Microbiol.72, 1700–1701 (2006).
  • 13  Kreft J, Vazquez-Boland JA: Regulation of virulence genes in Listeria. Int. J. Med. Microbiol.291, 145–157 (2001).
  • 14  Vazquez-Boland JA, Kuhn M, Berche P et al.: Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev.14, 584–640 (2001).
  • 15  Sheehan B, Kocks C, Dramsi S et al. Molecular and genetic determinants of the Listeria monocytogenes infectious process. In: Current Topics in Microbiology and Immunology (Vol. 192, Bacterial Pathogenesis of Plants and Animals). Dangl JL (Ed.). Springer–Verlag, Berlin, Germany, 187–216 (1994).
  • 16  Lecuit M, Dramsi S, Gottardi C et al.: A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes.EMBO J.18, 3956–3963 (1999).
  • 17  Lecuit M, Vandormael-Pournin S, Lefort J et al.: A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science292, 1722–1725 (2001).
  • 18  Cossart P, Lecuit M: Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J.17, 3797–3806 (1998).
  • 19  Gedde MM, Higgins DE, Tilney LG, Portnoy DA: Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect. Immun.68, 999–1003 (2000).
  • 20  Kuhn M, Kathariou S, Goebel W: Hemolysin supports survival but not entry of the intracellular bacterium Listeria monocytogenes. Infect. Immun.56, 79–82 (1988).
  • 21  Portnoy DA, Jacks PS, Hinrichs DJ: Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med.167, 1459–1471 (1988).
  • 22  Wadsworth SJ, Goldfine H: Listeria monocytogenes phospholipase C-dependent calcium signaling modulates bacterial entry into J774 macrophage-like cells. Infect. Immun.67, 1770–1778 (1999).
  • 23  Goldfine H, Wadsworth SJ, Johnston NC: Activation of host phospholipases C and D in macrophages after infection with Listeria monocytogenes. Infect. Immun.68, 5735–5741 (2000).
  • 24  Wadsworth SJ, Goldfine H: Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect. Immun.70, 4650–4660 (2002).
  • 25  Tilney LG, Portnoy DA: Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol.109, 1597–1608 (1989).
  • 26  Tilney LG, Connelly, PS, Portnoy DA: The nucleation of actin filaments by the bacterial intracellular pathogen, Listeria monocytogenes. J. Cell Biol.111, 2979–2988 (1990).
  • 27  Kocks C, Gouin E, Tabouret M et al.: L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell68, 521–531 (1992).
  • 28  Kocks C, Hellio R, Gounon P, Ohayon H, Cossart P: Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. J. Cell Science105, 699–710 (1993).
  • 29  Domann E, Wehland J, Rohde M et al.: A novel bacterial gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J.11, 1981–1990 (1992).
  • 30  Vazquez-Boland J, Kocks C, Dramsi S et al.: Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect. Immun.60, 219–230 (1992).
  • 31  Marquis H, Hager EJ: pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes. Mol. Microbiol.35, 289–298 (2000).
  • 32  Smith GA, Marquis H, Jones S et al.: The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect. Immun.63, 4231–4237 (1995).
  • 33  Poyart C, Abachin E, Razafimanantsoa I, Berche P: The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect. Immun.61, 1576–1580 (1993).
  • 34  Raveneau J, Geoffroy C, Beretti J et al.: Reduced virulence of a Listeria monocytogenes phospholipase-deficient mutant obtained by transposon insertion into the zinc metalloprotease gene. Infect. Immun.60, 916–921 (1992).
  • 35  Yeung PS, Zagorski N, Marquis H: The metalloprotease of Listeria monocytogenes controls cell wall translocation of the broad-range phospholipase C. J. Bacteriol.187, 2601–2608 (2005).
  • 36  Chakraborty T, Leimeister-Wachter M, Domann E et al.: Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J. Bacteriol.174, 568–574 (1992).
  • 37  Freitag NE, Youngman P, Portnoy DA: Transcriptional activation of the Listeria monocytogenes hemolysin gene in Bacillus subtilis. J. Bacteriol.174, 1293–1298 (1992).
  • 38  Mengaud J, Dramsi S, Gouin E et al.: Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol. Microbiol.5, 2273–2283 (1991).
  • 39  Milohanic E, Glaser P, Coppee JY et al.: Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol.47, 1613–1625 (2003).• Indicates cross-talk between stress responses in Listeria monocytogenes and virulence gene expression.
  • 40  Leimeister-Wachter M, Haffner C, Domann E, Goebel W, Chakraborty T: Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc. Natl. Acad. Sci. USA87, 8336–8340 (1990).
  • 41  Freitag NE, Rong L, Portnoy DA: Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect. Immun.61, 2537–2544 (1993).
  • 42  Begley M, Sleator RD, Gahan CG, Hill C: Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immun.73, 894–904 (2005).
  • 43  Dussurget O, Cabanes D, Dehoux P et al.: Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol.45, 1095–1106 (2002).
  • 44  Sleator RD, Wemekamp-Kamphuis HH, Gahan CG, Abee T, Hill C: A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes. Mol. Microbiol.55, 1183–1195 (2005).
  • 45  Hardy J, Francis KP, DeBoer M et al.: Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science303, 851–853 (2004).• Describes a new lifestyle and potential new reservoir for L. monocytogenes.
  • 46  Freitag NE, Portnoy DA: Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol. Microbiol.12, 845–853 (1994).
  • 47  Camilli A, Tilney LG, Portnoy DA: Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol.8, 143–157 (1993).
  • 48  Greene SL, Freitag NE: Negative regulation of PrfA, the key activator of Listeria monocytogenes virulence gene expression, is dispensable for bacterial pathogenesis. Microbiology149, 111–120 (2003).
  • 49  Johansson J, Mandin P, Renzoni A, et al.: An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell110, 551 (2002).•• First description of the post-transcriptional mechanism leading to temperature-dependent synthesis of PrfA.
  • 50  Cheng LW, Portnoy DA: Drosophila S2 cells: an alternative infection model for Listeria monocytogenes. Cell Microbiol.5, 875–885 (2003).
  • 51  Mansfield BE, Dionne MS, Schneider DS, Freitag NE: Exploration of host–pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol.5, 901–911 (2003).
  • 52  Shen A, Higgins DE: The 5' untranslated region-mediated enhancement of intracellular listeriolysin O production is required for Listeria monocytogenes pathogenicity. Mol. Microbiol.57, 1460–1473 (2005).
  • 53  Stritzker J, Schoen C, Goebel W: Enhanced synthesis of internalin A in aro mutants of Listeria monocytogenes indicates posttranscriptional control of the inlAB mRNA. J. Bacteriol.187, 2836–2845 (2005).
  • 54  Wong KK, Bouwer HG, Freitag NE: Evidence implicating the 5' untranslated region of Listeria monocytogenes actA in the regulation of bacterial actin-based motility. Cell Microbiol.6, 155–166 (2004).
  • 55  Korner H, Sofia HJ, Zumft WG: Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev.27, 559–592 (2003).
  • 56  Vega Y, Dickneite C, Ripio M-Tet al.: Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein: the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J. Bacteriol.180, 6655–6660 (1998).•• Highlights the similarities between PrfA and Crp and identifies a functional consequence of a PrfA* mutation.
  • 57  Renzoni A, Klarsfeld A, Dramsi S, Cossart P: Evidence that PrfA, the pleitropic activator of virulence genes in Listeria monocytogenes can be present but inactive. Infect. Immun.65, 1515–1518 (1997).
  • 58  Ripio M-T, Dominguez-Bernal G, Lara M, Suarez M, Vazquez-Boland J-A: A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J. Bacteriol.179, 1533–1540 (1997).
  • 59  Harman JG: Allosteric regulation of the cAMP receptor protein. Biochim. Biophys. Acta1547, 1–17 (2001).
  • 60  Eiting M, Hageluken G, Schubert WD, Heinz DW: The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif. Mol. Microbiol.56, 433–446 (2005).•• Beautiful structural analysis of PrfA.
  • 61  Moors MA, Levitt B, Youngman P, Portnoy DA: Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect. Immun.67, 131–139 (1999).
  • 62  Shetron-Rama LM, Marquis H, Bouwer HGA, Freitag NE: Intracellular induction of Listeria monocytogenesactA expression. Infect Immun.70, 1087–1096 (2002).
  • 63  Conte MP, Longhi C, Petrone G et al.: Modulation of actA gene expression in Listeria monocytogenes by iron. J. Med. Microbiol.49, 681–683 (2000).
  • 64  Cowart R, Foster B: The role of iron in the production of haemolysin by Listeria monocytogenes. Curr. Microbiol.6, 287–290 (1981).
  • 65  Ermolaeva S, Belyi Y, Tartakovskii I: Characteristics of induction of virulence factor expression by activated charcoal in Listeria monocytogenes. FEMS Microbiol. Lett.174, 137–141 (1999).
  • 66  Ermolaeva S, Varfolomeeva N, Belyi Y, Tartakovskii I: Isolation and characterization of a Listeria monocytogenes mutant strain hyperproducing virulence factors. FEMS Microbiol. Lett.150, 189–195 (1997).
  • 67  Ripio MT, Dominguez-Bernal G, Suarez M et al.: Transcriptional activation of virulence genes in wild-type strains of Listeria monocytogenes in response to a change in the extracellular medium composition. Res. Microbiol.147, 371–384 (1996).
  • 68  Deutscher J, Herro R, Bourand A, Mijakovic I, Poncet S: P-Ser-HPr – a link between carbon metabolism and the virulence of some pathogenic bacteria. Biochim. Biophys. Acta.1754, 118–125 (2005).
  • 69  Herro R, Poncet S, Cossart P et al.: How seryl-phosphorylated HPr inhibits PrfA, a transcription activator of Listeria monocytogenes virulence genes. J. Mol. Microbiol. Biotechnol.9, 224–234 (2005).
  • 70  Ermolaeva S, Novella S, Vega Y et al.: Negative control of Listeria monocytogenes virulence genes by a diffusible autorepressor. Mol. Microbiol.52, 601–611 (2004).
  • 71  Vega Y, Rauch M, Banfield MJ et al.: New Listeria monocytogenesprfA* mutants, transcriptional properties of PrfA* proteins and structure-function of the virulence regulator PrfA. Mol. Microbiol.52, 1553–1565 (2004).
  • 72  Wong KK, Freitag NE: A novel mutation within the central Listeria monocytogenes regulator PrfA that results in constitutive expression of virulence gene products. J. Bacteriol.186, 6265–6276 (2004).
  • 73  Shetron-Rama LM, Mueller K, Bravo JM et al.: Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol. Microbiol.48, 1537–1551 (2003).•• Demonstrates that PrfA* mutants are hypervirulent and compromised for swimming motility, suggesting that a balance must be maintained between bacterial life in host cells and life in the outside environment.
  • 74  Nelson KE, Fouts DE, Mongodin EF et al.: Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res.32, 2386–2395 (2004).
  • 75  Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M: Listeria monocytogenes σ-B regulates stress response and virulence functions. J. Bacteriol.185, 5722–5734 (2003).• Indicates cross-talk between stress responses in L. monocytogenes and virulence gene expression.
  • 76  Garner MR, Njaa BL, Wiedmann M, Boor KJ: Σ B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect. Immun.74, 876–886 (2006).
  • 77  Gray MJ, Freitag NE, Boor KJ: How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr Jekyll to pathogenic Mr Hyde. Infect. Immun.74, 2505–2512 (2006).•• Formulation of model for how L. monocytogenes transitions from the outside environment to inside a mammalian host.
  • 78  Eisenreich W, Slaghuis J, Laupitz R et al.: 13C isotopologue perturbation studies of Listeria monocytogenes carbon metabolism and its modulation by the virulence regulator PrfA. Proc. Natl Acad. Sci. USA103, 2040–2045 (2006).
  • 79  Chatterjee SS, Hossain H, Otten S et al.: Intracellular gene expression profile of Listeria monocytogenes. Infect. Immun.74, 1323–1338 (2006).• Describes changes in gene expression that occur when L. monocytogenes enters the cytosol.
  • 80  Joseph B, Przybilla K, Stuhler C et al.: Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J. Bacteriol.188, 556–568 (2006).• Describes changes in gene expression that occur when L. monocytogenes enters the cytosol.
  • 81  Mandin P, Fsihi H, Dussurget O et al.: VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol.57, 1367–1380 (2005).
  • 82  Autret N, Raynaud C, Dubail I, Berche P, Charbit A: Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect. Immun.71, 4463–4471 (2003).
  • 83  Novick RP, Muir TW: Virulence gene regulation by peptides in staphylococci and other Gram-positive bacteria. Curr. Opin. Microbiol.2, 40–45 (1999).
  • 84  Mengaud J, Vicente MF, Cossart P: Transcriptional mapping and nucleotide sequence of the Listeria monocytogeneshlyA region reveal structural features that may be involved in regulation. Infect. Immun.57, 3695–3701 (1989).
  • 85  Lingnau A, Domann E, Hudel M et al.: Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. Infect. Immun.63, 3896–3903 (1995).
  • 86  Engelbrecht F, Chun SK, Ochs C et al.: A new PrfA-regulated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of internalins. Mol. Microbiol.21, 823–837 (1996).
  • 87  Luo Q, Rauch M, Marr AK, Muller-Altrock S, Goebel W: In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA-dependent and -independent promoters that are differentially activated by GTP. Mol. Microbiol.52, 39–52 (2004).
  • 88  Domann E, Zechel S, Lingnau A et al.: Identification and characterization of a novel PrfA-regulated gene in Listeria monocytogenes whose product, IrpA, is highly homologous to internalin proteins, which contain leucine-rich repeats. Infect. Immun.65, 101–109 (1997).