We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients

    Mariana Rieck

    Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil

    ,
    Artur F Schumacher-Schuh

    Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil

    Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil

    ,
    Vivian Altmann

    Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil

    ,
    Carolina LM Francisconi

    Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil

    ,
    Paulo TB Fagundes

    Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil

    ,
    Thaís L Monte

    Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil

    ,
    Sidia M Callegari-Jacques

    Departamento de Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

    ,
    Carlos RM Rieder

    Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil

    &
    Mara H Hutz

    * Author for correspondence

    Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil.

    Published Online:https://doi.org/10.2217/pgs.12.149

    Aim: Dyskinesia and motor fluctuation are frequent and serious complications of chronic levodopa therapy in patients with Parkinson’s disease. Since genetic factors could play a role in determining the occurrence of these problems, the aim of the present study was to investigate whether possible functional polymorphisms among DRD2 and ANKK1 genes are associated with the risk of developing dyskinesia and motor fluctuations in Parkinson’s disease patients. Patients & methods: One hundred and ninety nine patients in treatment with levodopa were genotyped for the -141CIns/Del, rs2283265, rs1076560, C957T, TaqIA and rs2734849 polymorphisms at the DRD2/ANKK1 gene region. Results: Carriers of the TTCTA haplotype showed an increased risk for the presence of dyskinesia (p = 0.007; 1.538 [95% CI: 1.126–2.101]). Conclusion: Our data suggest an influence of the DRD2/ANKK1 gene region on levodopa-induced dyskinesia.

    Original submitted 8 May 2012; Revision submitted 29 August 2012

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Parkinson J. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci.14(2),223–236 (2002).
    • Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP. Epidemiology of Parkinson’s disease. J. Neurol.255(Suppl. 5),S18–S32 (2008).
    • Lewis SJ, Caldwell MA, Barker RA. Modern therapeutic approaches in Parkinson’s disease. Expert Rev. Mol. Med.5(10),1–20 (2003).
    • Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J. Clin. Invest.116(7),1744–1754 (2006).
    • Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord.16(3),448–458 (2001).
    • Marsden CD, Parkes JD. Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet1(8007),345–349 (1977).
    • Denny AP, Behari M. Motor fluctuations in Parkinson’s disease. J. Neurol. Sci.165(1),18–23 (1999).
    • Van Gerpen JA, Kumar N, Bower JH, Weigand S, Ahlskog JE. Levodopa-associated dyskinesia risk among Parkinson disease patients in Olmsted County, Minnesota, 1976–1990. Arch. Neurol.63(2),205–209 (2006).
    • Ku S, Glass GA. Age of Parkinson’s disease onset as a predictor for the development of dyskinesia. Mov. Disord.25(9),1177–1182 (2010).
    • 10  Sharma JC, Bachmann CG, Linazasoro G. Classifying risk factors for dyskinesia in Parkinson’s disease. Parkinsonism Relat. Disord.16(8),490–497 (2010).
    • 11  Oliveri RL, Annesi G, Zappia M et al. Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology53(7),1425–1430 (1999).▪ First study to investigate pharmacogenetics of levodopa-induced dyskinesia.
    • 12  Kaiser R, Hofer A, Grapengiesser A et al.L-dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology60(11),1750–1755 (2003).
    • 13  Zappia M, Annesi G, Nicoletti G et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch. Neurol.62(4),601–605 (2005).
    • 14  Lee JY, Cho J, Lee EK, Park SS, Jeon BS. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Mov. Disord.26(1),73–79 (2011).
    • 15  Neville MJ, Johnstone EC, Walton RT. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum. Mutat.23(6),540–545 (2004).▪▪ First time that TaqIA polymorphism was linked with ANKK1 gene.
    • 16  Hoenicka J, Quinones-Lombrana A, Espana-Serrano L et al. The ANKK1 gene associated with addictions is expressed in astroglial cells and upregulated by apomorphine. Biol. Psychiatry67(1),3–11 (2010).
    • 17  Huang W, Payne TJ, Ma JZ et al. Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African–American sample. Neuropsychopharmacology34(2),319–330 (2009).
    • 18  Bontempi S, Fiorentini C, Busi C, Guerra N, Spano P, Missale C. Identification and characterization of two nuclear factor-κB sites in the regulatory region of the dopamine D2 receptor. Endocrinology148(5),2563–2570 (2007).
    • 19  Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry55(3),181–184 (1992).
    • 20  Martínez-Martín P, Gil-Nagel A, Gracia LM, Gómez JB, Martínez-Sarriés J, Bermejo F. Unified Parkinson’s disease rating scale characteristics and structure. The Cooperative Multicentric Group. Mov. Disord.9(1),76–83 (1994).
    • 21  Arinami T, Gao M, Hamaguchi H, Toru M. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum. Mol. Genet.6(4),577–582 (1997).
    • 22  Long JC, Williams RC, Urbanek M. An E–M algorithm and testing strategy for multiple locus haplotypes. Am. J. Hum. Genet.56(3),799–810 (1995).
    • 23  Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet.68(4),978–989 (2001).
    • 24  Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet.76(3),449–462 (2005).
    • 25  Jonsson EG, Nothen MM, Grunhage F et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry4(3),290–296 (1999).
    • 26  Paus S, Seeger G, Brecht HM et al. Association study of dopamine D2, D3, D4 receptor and serotonin transporter gene polymorphisms with sleep attacks in Parkinson’s disease. Mov. Disord.19(6),705–707 (2004).
    • 27  Zhang Y, Bertolino A, Fazio L et al. Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc. Natl Acad Sci. USA104(51),20552–20557 (2007).
    • 28  Yang BZ, Kranzler HR, Zhao H, Gruen JR, Luo X, Gelernter J. Association of haplotypic variants in DRD2, ANKK1, TTC12 and NCAM1 to alcohol dependence in independent case control and family samples. Hum. Mol. Genet.16(23),2844–2853 (2007).
    • 29  McGuire V, Van Den Eeden SK, Tanner CM et al. Association of DRD2 and DRD3 polymorphisms with Parkinson’s disease in a multiethnic consortium. J. Neurol. Sci.307(1–2),22–29 (2011).
    • 30  Jomphe C, Tiberi M, Trudeau LE. Expression of D2 receptor isoforms in cultured neurons reveals equipotent autoreceptor function. Neuropharmacology50(5),595–605 (2006).
    • 31  Benoit-Marand M, Borrelli E, Gonon F. Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo. J. Neurosci.21(23),9134–9141 (2001).▪▪ Study that clarifies the physiological function of the DRD2 autoreceptor as a dopamine autoinhibitor.
    • 32  Duan J, Wainwright MS, Comeron JM et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet.12(3),205–216 (2003).
    • 33  Hirvonen MM, Laakso A, Nagren K, Rinne JO, Pohjalainen T, Hietala J. C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo. Mol. Psychiatry9(12),1060–1061 (2004).
    • 34  Hirvonen MM, Laakso A, Nagren K, Rinne JO, Pohjalainen T, Hietala J. C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo. Mol. Psychiatry.10(9),889 (corrigendum) (2005).
    • 35  Hirvonen MM, Lumme V, Hirvonen J et al. C957T polymorphism of the human dopamine D2 receptor gene predicts extrastriatal dopamine receptor availability in vivo. Prog. Neuropsychopharmacol Biol. Psychiatry33(4),630–636 (2009).
    • 36  Hirvonen MM, Laakso A, Nagren K, Rinne JO, Pohjalainen T, Hietala J. C957T polymorphism of dopamine D2 receptor gene affects striatal DRD2 in vivo availability by changing the receptor affinity. Synapse63(10),907–912 (2009).
    • 37  Noble EP, Blum K, Ritchie T, Montgomery A, Sheridan PJ. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch. Gen. Psychiatry48(7),648–654 (1991).
    • 38  Thompson J, Thomas N, Singleton A et al. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics7(6),479–484 (1997).
    • 39  Pohjalainen T, Rinne JO, Nagren K et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol. Psychiatry3(3),256–260 (1998).
    • 40  Ritchie T, Noble EP. Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem. Res.28(1),73–82 (2003).
    • 41  Laruelle M, Gelernter J, Innis RB. D2 receptors binding potential is not affected by Taq1 polymorphism at the D2 receptor gene. Mol. Psychiatry3(3),261–265 (1998).
    • 42  Laakso A, Pohjalainen T, Bergman J et al. The A1 allele of the human D2 dopamine receptor gene is associated with increased activity of striatal L-amino acid decarboxylase in healthy subjects. Pharmacogenet. Genomics15(6),387–391 (2005).
    • 43  Gilgun-Sherki Y, Djaldetti R, Melamed E, Offen D. Polymorphism in candidate genes: implications for the risk and treatment of idiopathic Parkinson’s disease. Pharmacogenomics J.4(5),291–306 (2004).▪ Review of candidate genes that might confer idiopathic Parkinson’s disease susceptibility.
    • 44  Dubertret C, Gouya L, Hanoun N et al. The 3´ region of the DRD2 gene is involved in genetic susceptibility to schizophrenia. Schizophr. Res.67(1),75–85 (2004).
    • 45  Arbouw ME, Van Vugt JP, Egberts TC, Guchelaar HJ. Pharmacogenetics of antiparkinsonian drug treatment: a systematic review. Pharmacogenomics8(2),159–176 (2007).▪ Review of pharmacogenetic studies in Parkinson’s disease.
    • 46  Ponce G, Perez-Gonzalez R, Aragues M et al. The ANKK1 kinase gene and psychiatric disorders. Neurotox. Res.16(1),50–59 (2009).
    • 47  Koning JP, Vehof J, Burger H et al. Association of two DRD2 gene polymorphisms with acute and tardive antipsychotic-induced movement disorders in young Caucasian patients. Psychopharmacology (Berl.).219(3),727–736 (2012).
    • 48  Wang J, Liu ZL, Chen B. Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology56(12),1757–1759 (2001).
    • 49  Marsden CD, Parkes JD. “On-off” effects in patients with Parkinson’s disease on chronic levodopa therapy. Lancet1(7954),292–296 (1976).
    • 50  Jankovic J. Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov. Disord.20(Suppl. 11),S11–S16 (2005).
    • 51  Obeso JA, Rodriguez-Oroz MC, Chana P, Lera G, Rodriguez M, Olanow CW. The evolution and origin of motor complications in Parkinson’s disease. Neurology55(11 Suppl. 4),S13–S20; discussion S21–S13 (2000).
    • 52  Fox SH, Lang AE. Levodopa-related motor complications – phenomenology. Mov. Disord.23(Suppl. 3),S509–S514 (2008).
    • 53  Colosimo C, Martínez-Martín P, Fabbrini G et al. Task force report on scales to assess dyskinesia in Parkinson’s disease: critique and recommendations. Mov. Disord.25(9),1131–1142 (2010).
    • 54  Santos NP, Ribeiro-Rodrigues EM, Ribeiro-Dos-Santos AK et al. Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INSEL) ancestry-informative marker (AIM) panel. Hum. Mutat.31(2),184–190 (2010).
    • 55  Cheshire PA, Williams DR. Serotonergic involvement in levodopa-induced dyskinesias in Parkinson’s disease. J. Clin. Neurosci.19(3),343–348 (2012).
    • 56  Fuxe K, Ferré S, Canals M et al. Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J. Mol. Neurosci.26(2–3),209–220 (2005).
    • 57  Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA. Role of adenosine A2A receptors in parkinsonian motor impairment and L-DOPA-induced motor complications. Prog. Neurobiol.83(5),293–309 (2007).
    • 58  Hickey P, Stacy M. Adenosine A2A antagonists in Parkinson’s disease: what’s next? Curr. Neurol. Neurosci. Rep.12(4),376–385 (2012).
    • 59  Popat RA, Van Den Eeden SK, Tanner CM et al. Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson’s disease. Eur. J. Neurol.18(5),756–765 (2011).
    • 60  Greenbaum L, Cohen OS, Inzelberg R et al. Association of the adenosine receptor A2A (ADORA2A) gene with L-dopa induced dyskinesia in Parkinson’s disease. Mov. Disord.27(Suppl. 1),S1385 (2012) (Abstract).