We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson's disease patients?

    Mariana Rieck

    Departmento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa postal 15053, Porto Alegre, RS, 91501-970, Brazil

    ,
    Artur F Schumacher-Schuh

    Departmento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa postal 15053, Porto Alegre, RS, 91501-970, Brazil

    Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil

    ,
    Sidia M Callegari-Jacques

    Departamento de Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

    ,
    Vivian Altmann

    Departmento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa postal 15053, Porto Alegre, RS, 91501-970, Brazil

    ,
    Márcio Schneider Medeiros

    Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil

    ,
    Carlos RM Rieder

    Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil

    &
    Mara H Hutz

    *Author for correspondence:

    E-mail Address: mara.hutz@ufrgs.br

    Departmento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa postal 15053, Porto Alegre, RS, 91501-970, Brazil

    Published Online:https://doi.org/10.2217/pgs.15.23

    Aim: Levodopa is first line treatment of Parkinson's disease (PD). However, its use is associated with the presence of motor fluctuations and dyskinesias. In recent years, adenosine A2A receptor (A2AR) is rising as a therapeutic target for PD. The aim of the present study was to investigate whether ADORA2A is associated with levodopa adverse effects. Patients & methods: Two hundred and eight PD patients on levodopa therapy were investigated. rs2298383 and rs3761422 at the ADORA2A gene were genotyped by allelic discrimination assays. Results: A trend for association was observed for both polymorphism and diplotypes with dyskinesia. Conclusion: The present results should be considered as positive preliminary evidence. Further studies are needed to determine the association between ADORA2A and dyskinesia.

    Original submitted 3 December 2014; Revision submitted 13 February 2015.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Lewis SJ, Caldwell MA, Barker RA. Modern therapeutic approaches in Parkinson's disease. Expert Rev. Mol. Med. 5(10), 1–20 (2003).
    • 2 Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord. 16(3), 448–458 (2001).
    • 3 Jankovic J. Motor fluctuations and dyskinesias in Parkinson's disease: clinical manifestations. Mov. Disord. 20(Suppl. 11), S11–S16 (2005).
    • 4 Van Gerpen JA, Kumar N, Bower JH, Weigand S, Ahlskog JE. Levodopa-associated dyskinesia risk among Parkinson disease patients in Olmsted County, Minnesota, 1976–1990. Arch. Neurol. 63(2), 205–209 (2006).
    • 5 Schumacher-Schuh AF, Rieder CR, Hutz MH. Parkinson's disease pharmacogenomics: new findings and perspectives. Pharmacogenomics 15(9), 1253–1271 (2014).•• This is a systematic review of the literature on Parkinson's disease (PD) pharmacogenetics to provide a critical discussion of the existent findings, new approach limitations and recommendations for future research. It focuses on the number of studies, which continues to grow, and the heterogeneity in methodological strategies employed by different studies.
    • 6 Armentero MT, Pinna A, Ferre S, Lanciego JL, Muller CE, Franco R. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease. Pharmacol. Ther. 132(3), 280–299 (2011).• Overview of A2A receptor (A2AR) antagonists’ role in PD.
    • 7 Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA. Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog. Neurobiol. 83(5), 293–309 (2007).
    • 8 Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferre S. Adenosine A2A receptors and basal ganglia physiology. Prog. Neurobiol. 83(5), 277–292 (2007).
    • 9 Rieck M, Schumacher-Schuh AF, Altmann V et al. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson's disease patients. Pharmacogenomics 13(15), 1701–1710 (2012).
    • 10 Schumacher-Schuh AF, Altmann V, Rieck M et al. Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson's disease patients. Pharmacogenomics J. 14(3), 289–294 (2014).
    • 11 Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55(3), 181–184 (1992).
    • 12 Martinez-Martin P, Gil-Nagel A, Gracia LM, Gomez JB, Martinez-Sarries J, Bermejo F. Unified Parkinson's Disease Rating Scale characteristics and structure. The Cooperative Multicentric Group. Mov. Disord. 9(1), 76–83 (1994).
    • 13 Long J. Multiple Locus Haplotype Analysis, version 3.0: software and documentation distributed by the author. Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA, 4819–0618 (1999).
    • 14 Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68(4), 978–989 (2001).
    • 15 Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76(3), 449–462 (2005).
    • 16 Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case–control studies. Am. J. Epidemiol. 160(4), 301–305 (2004).
    • 17 Yu L, Frith MC, Suzuki Y et al. Characterization of genomic organization of the adenosine A2A receptor gene by molecular and bioinformatics analyses. Brain Res. 1000(1–2), 156–173 (2004).
    • 18 Conde L, Vaquerizas JM, Dopazo H et al. PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res. 34(Web Server issue), W621–W625 (2006).
    • 19 Guntaka RV, Varma BR, Weber KT. Triplex-forming oligonucleotides as modulators of gene expression. Int. J. Biochem. Cell Biol. 35(1), 22–31 (2003).
    • 20 Besch R, Giovannangeli C, Degitz K. Triplex-forming oligonucleotides – sequence-specific DNA ligands as tools for gene inhibition and for modulation of DNA-associated functions. Curr. Drug Targets 5(8), 691–703 (2004).
    • 21 Goni JR, De La Cruz X, Orozco M. Triplex-forming oligonucleotide target sequences in the human genome. Nucleic Acids Res. 32(1), 354–360 (2004).
    • 22 Ivanova SA, Loonen AJ, Pechlivanoglou P et al. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Transl. Psychiatry 2, e67 (2012).
    • 23 Loonen AJ, Ivanova SA. New insights into the mechanism of drug-induced dyskinesia. CNS Spectr. 18(1), 15–20 (2013).
    • 24 Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson's disease: review of recent trials. Mov. Disord. 28(2), 131–144 (2013).• Review of A2AR antagonists targets in development for PD therapy.
    • 25 Kanda T, Jackson MJ, Smith LA et al. Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann. Neurol. 43(4), 507–513 (1998).
    • 26 Bibbiani F, Oh JD, Petzer JP et al. A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson's disease. Exp. Neurol. 184(1), 285–294 (2003).
    • 27 Wei CJ, Li W, Chen JF. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim. Biophys. Acta 1808(5), 1358–1379 (2011).
    • 28 Kulisevsky J, Poyurovsky M. Adenosine A2A-receptor antagonism and pathophysiology of Parkinson's disease and drug-induced movement disorders. Eur. Neurol. 67(1), 4–11 (2012).•• Review of A2AR role in the pathophysiology of PD and drug-induced movement disorders.
    • 29 Hickey P, Stacy M. Adenosine A2A antagonists in Parkinson's disease: what's next? Curr. Neurol. Neurosci. Rep. 12(4), 376–385 (2012).
    • 30 Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of L-DOPA-induced dyskinesia in Parkinson's disease. Pharmacol. Rev. 65(1), 171–222 (2013).
    • 31 Pollack AE, Fink JS. Adenosine antagonists potentiate D2 dopamine-dependent activation of Fos in the striatopallidal pathway. Neuroscience 68(3), 721–728 (1995).
    • 32 Ochi M, Koga K, Kurokawa M, Kase H, Nakamura J, Kuwana Y. Systemic administration of adenosine A(2A) receptor antagonist reverses increased GABA release in the globus pallidus of unilateral 6-hydroxydopamine-lesioned rats: a microdialysis study. Neuroscience 100(1), 53–62 (2000).
    • 33 Ochi M, Shiozaki S, Kase H. Adenosine A(2A) receptor-mediated modulation of GABA and glutamate release in the output regions of the basal ganglia in a rodent model of Parkinson's disease. Neuroscience 127(1), 223–231 (2004).
    • 34 Fuxe K, Ferre S, Genedani S, Franco R, Agnati LF. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol. Behav. 92(1–2), 210–217 (2007).•• Review of A2AR–DRD2 interaction highlights its importance for brain function.
    • 35 Tozzi A, Tscherter A, Belcastro V et al. Interaction of A2A adenosine and D2 dopamine receptors modulates corticostriatal glutamatergic transmission. Neuropharmacology 53(6), 783–789 (2007).
    • 36 Tozzi A, De Iure A, Di Filippo M et al. The distinct role of medium spiny neurons and cholinergic interneurons in the D(2)/A(2)A receptor interaction in the striatum: implications for Parkinson's disease. J. Neurosci. 31(5), 1850–1862 (2011).
    • 37 Varani K, Vincenzi F, Tosi A et al. A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson's disease. FASEB J. 24(2), 587–598 (2010).
    • 38 Casetta I, Vincenzi F, Bencivelli D et al. A(2A) adenosine receptors and Parkinson's disease severity. Acta Neurol. Scand. 129(4), 276–281 (2014).
    • 39 Villar-Menendez I, Porta S, Buira SP et al. Increased striatal adenosine A2A receptor levels is an early event in Parkinson's disease-related pathology and it is potentially regulated by miR-34b. Neurobiol. Dis. 69, 206–214 (2014).
    • 40 Calon F, Dridi M, Hornykiewicz O, Bedard PJ, Rajput AH, Di Paolo T. Increased adenosine A2A receptors in the brain of Parkinson's disease patients with dyskinesias. Brain 127(Pt 5), 1075–1084 (2004).
    • 41 Mishina M, Ishiwata K, Naganawa M et al. Adenosine A(2A) receptors measured with [C]TMSX PET in the striata of Parkinson's disease patients. PLoS ONE 6(2), e17338 (2011).
    • 42 Ramlackhansingh AF, Bose SK, Ahmed I, Turkheimer FE, Pavese N, Brooks DJ. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology 76(21), 1811–1816 (2011).
    • 43 Chen JF, Sonsalla PK, Pedata F et al. Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and ‘fine tuning’ modulation. Prog. Neurobiol. 83(5), 310–331 (2007).
    • 44 Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets – what are the challenges? Nat. Rev. Drug Discov. 12(4), 265–286 (2013).
    • 45 Khoa ND, Montesinos MC, Reiss AB, Delano D, Awadallah N, Cronstein BN. Inflammatory cytokines regulate function and expression of adenosine A(2A) receptors in human monocytic THP-1 cells. J. Immunol. 167(7), 4026–4032 (2001).
    • 46 Kermanian F, Soleimani M, Ebrahimzadeh A, Haghir H, Mehdizadeh M. Effects of adenosine A2a receptor agonist and antagonist on hippocampal nuclear factor-kB expression preceded by MDMA toxicity. Metab. Brain Dis. 28(1), 45–52 (2013).
    • 47 Bontempi S, Fiorentini C, Busi C, Guerra N, Spano P, Missale C. Identification and characterization of two nuclear factor-kappaB sites in the regulatory region of the dopamine D2 receptor. Endocrinology 148(5), 2563–2570 (2007).
    • 48 Childs E, Hohoff C, Deckert J, Xu K, Badner J, De Wit H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 33(12), 2791–2800 (2008).
    • 49 Freitag CM, Agelopoulos K, Huy E et al. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder. Eur Child Adolesc Psychiatry 19(1), 67–74 (2010).
    • 50 Hohoff C, Mullings EL, Heatherley SV et al. Adenosine A(2A) receptor gene: evidence for association of risk variants with panic disorder and anxious personality. J. Psychiatr Res. 44(14), 930–937 (2010).
    • 51 Jagannathan K, Calhoun VD, Gelernter J et al. Genetic associations of brain structural networks in schizophrenia: a preliminary study. Biol. Psychiatry 68(7), 657–666 (2010).
    • 52 Rogers PJ, Hohoff C, Heatherley SV et al. Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and habitual level of caffeine consumption. Neuropsychopharmacology 35(9), 1973–1983 (2010).
    • 53 Beste C, Stock AK, Ness V, Epplen JT, Arning L. Differential effects of ADORA2A gene variations in preattentive visual sensory memory subprocesses. Eur. Neuropsychopharmacol. 22(8), 555–561 (2012).
    • 54 Popat RA, Van Den Eeden SK, Tanner CM et al. Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson's disease. Eur. J. Neurol. 18(5), 756–765 (2011).•• First study to investigate the genetic link between ADORA2A and PD.
    • 55 Greenbaum L, Cohen OS, Inzelberg R et al. Association of the adenosine receptor A2A (ADORA2A) gene with L-dopa induced dyskinesia in Parkinson's disease [abstract]. Mov. Disord. 27(Suppl. 1), 1385 (2012).
    • 56 Perneger TV. What's wrong with Bonferroni adjustments. BMJ 316(7139), 1236–1238 (1998).
    • 57 Colosimo C, Martinez-Martin P, Fabbrini G et al. Task force report on scales to assess dyskinesia in Parkinson's disease: critique and recommendations. Mov. Disord. 25(9), 1131–1142 (2010).