We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Effective treatment of retinal neovascular leakage with fusogenic porous silicon nanoparticles delivering VEGF-siRNA

    Joel F Grondek

    *Author for correspondence:

    E-mail Address: jgrondek@ucsd.edu

    Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA

    ,
    Kristyn Huffman

    Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA

    ,
    Ella Jiyoon Lee

    Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA

    ,
    Melina Cavichini

    Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA

    ,
    Alexandra Warter

    Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA

    ,
    Fritz Gerald P Kalaw

    Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA

    ,
    Anna Heinke

    Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA

    ,
    Ruhan Fan

    Materials Science & Engineering, University of California, San Diego, CA 92093, USA

    ,
    Lingyun Cheng

    Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA

    ,
    Michael J Sailor

    Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA

    Materials Science & Engineering, University of California, San Diego, CA 92093, USA

    &
    William R Freeman

    Department of Ophthalmology, Jacobs Retinal Center at Shiley Eye Institute, University of California, San Diego, CA 92093, USA

    Published Online:https://doi.org/10.2217/nnm-2022-0255

    Aim: To evaluate an intravitreally injected nanoparticle platform designed to deliver VEGF-A siRNA to inhibit retinal neovascular leakage as a new treatment for proliferative diabetic retinopathy and diabetic macular edema. Materials & methods: Fusogenic lipid-coated porous silicon nanoparticles loaded with VEGF-A siRNA, and pendant neovascular integrin-homing iRGD, were evaluated for efficacy by intravitreal injection in a rabbit model of retinal neovascularization. Results: For 12 weeks post-treatment, a reduction in vascular leakage was observed for treated diseased eyes versus control eyes (p = 0.0137), with a corresponding reduction in vitreous VEGF-A. Conclusion: Fusogenic lipid-coated porous silicon nanoparticles siRNA delivery provides persistent knockdown of VEGF-A and reduced leakage in a rabbit model of retinal neovascularization as a potential new intraocular therapeutic.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. (Lond.) 2, 17 (2015).
    • 2. Cai J, Boulton M. The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye (Lond.) 16(3), 242–260 (2002).
    • 3. Campochiaro PA. Ocular neovascularization. J. Mol. Med. (Berl.) 91(3), 311–321 (2013).
    • 4. Rosenfeld PJ, Windsor MA, Feuer WJ et al. Estimating medicare and patient savings from the use of bevacizumab for the treatment of exudative age-related macular degeneration. Am. J. Ophthalmol. 191, 135–139 (2018).
    • 5. Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA 314(20), 2137–2146 (2015).
    • 6. Mitchell P, Bandello F, Schmidt-Erfurth U et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 118(4), 615–625 (2011).
    • 7. Mitchell P, Massin P, Bressler S et al. Three-year patient-reported visual function outcomes in diabetic macular edema managed with ranibizumab: the RESTORE extension study. Curr. Med. Res. Opin. 31(11), 1967–1975 (2015).
    • 8. Heier JS, Korobelnik JF, Brown DM et al. Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies. Ophthalmology 123(11), 2376–2385 (2016).
    • 9. Heng LZ, Comyn O, Peto T et al. Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet. Med. 30(6), 640–650 (2013).
    • 10. Singer MA, Awh CC, Sadda S et al. HORIZON: an open-label extension trial of ranibizumab for choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology 119(6), 1175–1183 (2012).
    • 11. Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K, Group S-US. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology 120(11), 2292–2299 (2013).
    • 12. Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond.) 27(7), 787–794 (2013).
    • 13. Semeraro F, Morescalchi F, Parmeggiani F, Arcidiacono B, Costagliola C. Systemic adverse drug reactions secondary to anti-VEGF intravitreal injection in patients with neovascular age-related macular degeneration. Curr. Vasc. Pharmacol. 9(5), 629–646 (2011).
    • 14. Bressler NM, Beaulieu WT, Maguire MG et al. Early response to anti-vascular endothelial growth factor and two-year outcomes among eyes with diabetic macular edema in Protocol T. Am. J. Ophthalmol. 195, 93–100 (2018).
    • 15. Zhao Y, Singh RP. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context 7, 212532 (2018).
    • 16. Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv. Drug Deliv. Rev. 87, 108–119 (2015).
    • 17. ClinicalTrials.gov. Safety and efficacy study evaluating the combination of Bevasiranib & Lucentis Therapy in Wet AMD (COBALT). Clinical Trial Registration: NCT00499590 (2014).
    • 18. Kleinman ME, Yamada K, Takeda A et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452(7187), 591–597 (2008).
    • 19. Kleinman ME, Kaneko H, Cho WG et al. Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3. Mol. Ther. 20(1), 101–108 (2012).
    • 20. Foster DJ, Brown CR, Shaikh S et al. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol. Ther. 26(3), 708–717 (2018).
    • 21. Hu B, Zhong L, Weng Y et al. Therapeutic siRNA: state of the art. Signal Transduct. Target. Ther. 5(1), 101 (2020). • Provides a current overview of siRNA as a therapeutic.
    • 22. Nieto A, Hou H, Moon SW, Sailor MJ, Freeman WR, Cheng L. Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin. Invest. Ophthalmol. Vis. Sci. 56(2), 1070–1080 (2015).
    • 23. Hartmann KI, Nieto A, Wu EC et al. Hydrosilylated porous silicon particles function as an intravitreal drug delivery system for daunorubicin. J. Ocul. Pharmacol. Ther. 29(5), 493–500 (2013).
    • 24. Kashanian S, Harding F, Irani Y et al. Evaluation of mesoporous silicon/polycaprolactone composites as ophthalmic implants. Acta Biomater. 6(9), 3566–3572 (2010).
    • 25. Low SP, Voelcker NH, Canham LT, Williams KA. The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30(15), 2873–2880 (2009).
    • 26. Nieto A, Hou H, Sailor MJ, Freeman WR, Cheng L. Ocular silicon distribution and clearance following intravitreal injection of porous silicon microparticles. Exp. Eye Res. 116, 161–168 (2013).
    • 27. Joo J, Kwon EJ, Kang J et al. Porous silicon–graphene oxide core–shell nanoparticles for targeted delivery of siRNA to the injured brain. Nanoscale Horiz. 1, 407–414 (2016).
    • 28. Baran-Rachwalska P, Torabi-Pour N, Sutera FM et al. Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. J. Control. Rel. 326, 192–202 (2020).
    • 29. Tong WY, Alnakhli M, Bhardwaj R et al. Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J. Nanobiotechnol. 16, 38 (2018).
    • 30. Kafshgari MH, Alnakhli M, Delalat B et al. Small interfering RNA delivery by polyethylenimine-functionalised porous silicon nanoparticles. Biomater. Sci. 3(12), 1555–1565 (2015).
    • 31. Zhang MZ, Xu R, Xia XJ et al. Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells. Biomaterials 35(1), 423–431 (2014).
    • 32. Wan Y, Apostolou S, Dronov R, Kuss B, Voelcker NH. Cancer-targeting siRNA delivery from porous silicon nanoparticles. Nanomedicine 9(15), 2309–2321 (2014).
    • 33. Kang J, Joo J, Kwon EJ et al. Self-sealing porous silicon–calcium silicate core–shell nanoparticles for targeted siRNA delivery to the injured brain. Adv. Mater. 28(36), 7962–7969 (2016). •• Provides data for the discovery and characterization of calcium silicate siRNA loading into porous silicon nanoparticles and their in vivo application.
    • 34. Kim B, Pang HB, Kang J, Park JH, Ruoslahti E, Sailor MJ. Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. Nat. Commun. 9(1), 1969 (2018).
    • 35. Kim B, Sun S, Varner JA, Howell SB, Ruoslahti E, Sailor MJ. Securing the payload, finding the cell, and avoiding the endosome: peptide-targeted, fusogenic porous silicon nanoparticles for delivery of siRNA. Adv. Mater. 31(35), e1902952 (2019). •• Explores the application of peptide targeted fusogenic lipid coatings to porous silicon nanoparticles.
    • 36. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4(2), 145–160 (2005).
    • 37. Teesalu T, Sugahara KN, Ruoslahti E. Tumor-penetrating peptides. Front. Oncol. 3, 216 (2013).
    • 38. Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 24(28), 3747–3756 (2012). • Ruoslahti is a professor emeritus and leader in the field of targeting peptide discovery. Here Rouslahti provides a review of peptide targeting of nanoparticles.
    • 39. Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev. 110–111 (2017).
    • 40. Sugahara KN, Teesalu T, Karmali PP et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16(6), 510–520 (2009).
    • 41. Friedlander M, Theesfeld CL, Sugita M et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc. Natl Acad. Sci. USA 93(18), 9764–9769 (1996).
    • 42. Fernandez-Robredo P, Selvam S, Powner MB, Sim DA, Fruttiger M. Neuropilin 1 involvement in choroidal and retinal neovascularisation. PLOS ONE 12(1), e0169865 (2017).
    • 43. Cao J, Macpherson TC, Iglesias BV et al. Aflibercept action in a rabbit model of chronic retinal neovascularization: reversible inhibition of pathologic leakage with dose-dependent duration. Invest. Ophthalmol. Vis. Sci. 59(2), 1033–1044 (2018). •• Demonstrates the DL-AAA animal model for retinal neovascular leakage used in this work and includes efficacy data using the current gold-standard antibody drug aflibercept.
    • 44. Li Y, Busoy JM, Zaman BAA et al. A novel model of persistent retinal neovascularization for the development of sustained anti-VEGF therapies. Exp. Eye Res. 174, 98–106 (2018).
    • 45. Shen W, Li S, Chung SH, Gillies MC. Retinal vascular changes after glial disruption in rats. J. Neurosci. Res. 88(7), 1485–1499 (2010).
    • 46. Bringmann A, Wiedemann P. Müller glial cells in retinal disease. Ophthalmologica 227(1), 1–19 (2012).
    • 47. Fletcher EL, Phipps JA, Ward MM, Puthussery T, Wilkinson-Berka JL. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr. Pharm. Design 13(26), 2699–2712 (2007).
    • 48. Fu YC, Xin ZM. Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1alpha. Biosci. Rep. 39(1), (2019).
    • 49. Cheng LY, Hostetler KY, Chaidhawangul S et al. Intravitreal toxicology and duration of efficacy of a novel antiviral lipid prodrug of ganciclovir in liposome formulation. Invest. Ophthamol. Vis. Sci. 41(6), 1523–1532 (2000).
    • 50. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012).
    • 51. Sailor MJ, Wu EC. Photoluminescence-based sensing with porous silicon films, microparticles, and nanoparticles. Adv. Funct. Mater. 19(20), 3195–3208 (2009).
    • 52. Qin ZT, Joo J, Gu L, Sailor MJ. Size control of porous silicon nanoparticles by electrochemical perforation etching. Part. Part. Syst. Char. 31(2), 252–256 (2014).
    • 53. Li D, Bancroft GM, Kasrai M et al. X-ray-absorption spectroscopy of silicon dioxide (SiO2) polymorphs – the structural characterization of opal. Am. Mineral. 79(7-8), 622–632 (1994).
    • 54. Bantseev V, Miller PE, Bentley E et al. Determination of a no-observable effect level for endotoxin following a single intravitreal administration to Dutch belted rabbits. Invest. Ophthalmol. Vis. Sci. 58(3), 1545–1552 (2017).
    • 55. Garba AO, Mousa SA. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol. Eye Dis. 2, 75–83 (2010).
    • 56. Huang XN, Chau Y. Investigating impacts of surface charge on intraocular distribution of intravitreal lipid nanoparticles. Exp. Eye Res. 186 (2019).
    • 57. Liu HA, Liu YL, Ma ZZ, Wang JC, Zhang Q. A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model. Invest. Ophthalmol. Vis. Sci. 52(7), 4789–4794 (2011).
    • 58. Lee J, Ryoo NK, Han H et al. Anti-VEGF polysiRNA polyplex for the treatment of choroidal neovascularization. Mol. Pharm. 13(6), 1988–1995 (2016).
    • 59. Liu J, Luo L, Xu F et al. Cyclic RGD peptide targeting coated nano drug co-delivery system for therapeutic use in age-related macular degeneration disease. Molecules 25(21), (2020).
    • 60. Wang JL, Liu YL, Li Y et al. EphA2 targeted doxorubicin stealth liposomes as a therapy system for choroidal neovascularization in rats. Invest. Ophthamol. Vis. Sci. 53(11), 7348–7357 (2012).
    • 61. Vasconcelos A, Vega E, Pérez Y, Gómara MJ, García ML, Haro I. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int. J. Nanomed. 10, 609–631 (2015).
    • 62. Chu Y, Chen N, Yu H et al. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles. Int. J. Nanomed. 12, 1353–1368 (2017).
    • 63. Ehrlich R, Ciulla TA. siRNA: set for a comeback? Retinal Physician (2010). https://www.retinalphysician.com/issues/2010/september-2010/sirna-set-for-a-comeback
    • 64. Brown DM, Wykoff CC, Boyer D et al. Evaluation of intravitreal aflibercept for the treatment of severe nonproliferative diabetic retinopathy: results from the PANORAMA randomized clinical trial. JAMA Ophthalmol. 139(9), 946–955 (2021).
    • 65. Nieto A, Hou H, Sailor MJ, Freeman WR, Cheng L. Ocular silicon distribution and clearance following intravitreal injection of porous silicon microparticles. Exp. Eye Res. 116, 161–168 (2013).