We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Sterically stabilized siRNA:gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model

    Aliscia N Daniels

    Department of Biochemistry, Nano-Gene & Drug Delivery Laboratory, School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Kwa-Zulu Natal, South Africa

    &
    Moganavelli Singh

    *Author for correspondence:

    E-mail Address: singhm1@ukzn.ac.za

    Department of Biochemistry, Nano-Gene & Drug Delivery Laboratory, School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Kwa-Zulu Natal, South Africa

    Published Online:https://doi.org/10.2217/nnm-2018-0462

    Aim: To produce sterically stabilized and functionalized gold nanoparticles (AuNPs) for efficient delivery of siRNA for c-MYC silencing in vitro. Materials & methods: Synthesized AuNPs were functionalized with chitosan and PEG400 and PEG2000, morphologically and chemically characterized, and assessed for cytotoxicity and gene silencing in vitro. Results & discussion: AuNPs presented as spherical particles in the nanometer size range and successfully bound and protected the siRNA against degradation and were well tolerated in the breast adenocarcinoma (MCF-7) cell line. Nanoparticle-mediated gene knockdown studies revealed enhanced levels of c-MYC gene silencing with more than 90% reduction of MYC protein levels. Conclusion: These nanoformulations show enhanced potential for siRNA-mediated gene silencing in human breast cancer cells in vitro.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Zhao ZX, Gao SY, Wang JC et al. Self-assembly nanomicelles based on cationic mPEG–PLA-b-Polyarginine (RI5) triblack co-polymer for siRNA delivery. Biomaterials 33(28), 6793–6807 (2010).
    • 2. Croce CM. Oncogenes and cancer. N. Engl. J. Med. 358(5), 502–511 (2008).
    • 3. Ashworth A, Lord CJ, Reis-Filho JS. Genetic interactions in cancer progression and treatment. Cell 145(1), 30–38 (2011).
    • 4. Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Ostus RC, Li F. The c-Myc target gene network. Sem. Cancer Biol. 16(4), 253–264 (2006).
    • 5. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8(2), 129–138 (2009).
    • 6. Sanvicens W, Marco MP. Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol. 26(8), 425–433 (2008).
    • 7. El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J. Toxicol. 2009(754180), 1–9 (2009).
    • 8. Conner EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute toxicity. Small 1(3), 325–327 (2005). • Provides a review of the applications of gold nanoparticles (AuNPs).
    • 9. Ghosh P, Han G, De M, Kim CK, Rotelo VM. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
    • 10. Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery. J. Control. Rel. 149(1), 65–71 (2009).
    • 11. Cornejo-Monroy D, Acosta-Torres LS, Morena-Vega AI, Saldana C, Morales-Tlalpan V, Castaño VM. Gold nanostructures in medicine: past, present and future. J. Nanosci. Lett. 3(25), 1–9 (2013).
    • 12. Ragelle H, Vandermeulen G, Préat V. Chitosan based siRNA delivery systems. J. Control. Rel. 172(1), 207–218 (2013).
    • 13. Kah JC, Wong KY, Neoh KG et al. Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J. Drug Target. 17(3), 181–193 (2009).
    • 14. Niidome T, Yamagata M, Okamoto Y et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Rel. 114(3), 343–347 (2006).
    • 15. Lai WC, Liao WB. Thermo-oxidative degradation of poly (ethylene glycol)/ poly (L-lactic acid) blends. Polymer (Guildf) 44, 8103–8109 (2003).
    • 16. Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24), 4356–4373 (2006).
    • 17. Harris JM, Martin VE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40(7), 539–551 (2001). •• Describes the citrate reduction synthesis of AuNPs.
    • 18. Turkevitch J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951). • Provides details on the synthesis and functionalization of AuNPs.
    • 19. Lazarus GG, Revaprasadu N, López-Viota J, Singh M. The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its' interaction with DNA. Colloids Surf. B Biointerfaces 121, 425–431 (2014). •• Describes the process of polyethylene glycol(PEG)ylation of AuNPs.
    • 20. Manson J, Kumar D, Meenan BJ. Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull. 44(2), 99–105 (2011).
    • 21. Akinyelu J, Singh M. Chitosan stabilized gold–folate–poly(lactide-co-glycolide) nanoplexes facilitate efficient gene delivery in hepatic and breast cancer cells. J. Nanosci. Nanotechnol. 18(7), 4478–4486 (2018).
    • 22. Ribble D, Goldstein N, Norris D, Shellman Y. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. 5(12), 1–7 (2005).
    • 23. Renvoize C, Biola A, Pallardy M, Breard J. Apoptosis: identification of dying cells. Cell Biol. Toxicol. 14(2), 111–120 (1998). • Provides a description of the analysis of gene expression following real-time PCR.
    • 24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2—ΔΔCt method. Methods 25(4), 402–408 (2001).
    • 25. Thermo Scientific. ELISA Technical Guide and Protocols. Tech tip #65. Thermo Fisher Scientific Inc., MA, USA (2010).
    • 26. Wolfgang H, Nguyen TR, Thanh J, David GF. Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal. Chem. 79, 4215–4221 (2007).
    • 27. Nikhil RJ, Latha G, Catherine JM. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17, 6782–6786 (2001).
    • 28. Brown KR, Walter DG, Natan MJ. Seeding of colloidal gold nanoparticle solutions 2. Improved control of particle size and shape. Chem. Mater. 12(2), 306–313 (2000).
    • 29. Martínez JC, Chequer NA, González JL, Cardova T. Alternative methodology for gold nanoparticle diameter characterization using PCA technique and UV–vis spectrophotometry. Nanosci. Nanotechnol. 2(6), 184–189 (2012).
    • 30. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems – a review (Part 2). Trop. J. Pharm. Res. 12(2), 265–273 (2013).
    • 31. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems – a review (Part 1). Trop. J. Pharm. Res. 12(2), 255–264 (2013). • Provides details on the properties and applications of AuNPs.
    • 32. Mazjika A, Fülöpb L, Csapòa E et al. Functionalization of gold nanoparticles with amino acid–amyloid peptides and fragments. Colloids Surf. B Biointerfaces 81(1), 235–241 (2010).
    • 33. Daniel MC, Astruc D. Gold nanoparticles: assembly supramolecular chemistry, quantum-size related properties and applications toward biology, catalysis and nanotechnology. Chem. Rev. 104(1), 293–346 (2004).
    • 34. Griffiths D, Bernt W, Hole P, Smith J, Mallay A, Carr B. Zeta potential measurement of nanoparticles by nanoparticle tracking analysis (NTA). NSTI-Nanotech. 1 (2011).
    • 35. Kim TH, Choi H, Yu GS, Lee J, Choi JS. Novel hyperbranched polyethyleneimine conjugate as an efficient, non-viral gene delivery vector. Macromol. Res. 21(10), 1097–1104 (2013).
    • 36. Rajam M, Pulovendran S, Rose C, Mandal AB. Chitosan nanoparticles as a dual growth factor delivery system for tissue engineering applications. Int. J. Pharm. 410(1–2), 145–152 (2011).
    • 37. Boca SC, Potara M, Toderas F, Stephan O, Baldeck PL, Astilean S. Uptake and biological effects of chitosan-capped gold nanoparticles on Chinese hamster ovary cells. Mater. Sci. Eng. C 31, 184–189 (2010).
    • 38. Mbatha LS, Maiyo FC, Singh M. Dendrimer functionalized folate-targeted gold nanoparticles for luciferase gene silencing in vitro: a proof of principle study. Acta Pharm. 69(1), 49–61 (2019)
    • 39. Oh KS, Kim RS, Lee J, Kim D, Cho SH, Yuk SH. Gold/chitosan/pluronic composite nanoparticles for drug delivery. J. Appl. Polymer Sci. 108(5), 3239–3244 (2008).
    • 40. Huefner A, Septiadi D, Wilts BD et al. Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes. Methods 68(2), 354–363 (2014).
    • 41. Huang C, Ozdemir T, Xu L-C et al. The role of substrate topography on the cellular uptake of nanoparticles. J. Biomed. Mater. Res. 104(3), 488–495 (2016).