We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Regulatory T cells and IL-17-producing cells in graft-versus-host disease

    Takanori Teshima

    † Author for correspondence

    Center for Cellular & Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.

    ,
    Yoshinobu Maeda

    Biopathological Science, Okayama University Graduate School of Medicine & Dentistry, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan

    &
    Katsutoshi Ozaki

    Division of Hematology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329–0498, Japan

    Published Online:https://doi.org/10.2217/imt.11.51

    Graft-versus-host disease (GvHD), a major complication following allogeneic hematopoietic stem cell transplantation, is mediated by donor-derived T cells. On activation with alloantigens expressed on host antigen-presenting cells, naive CD4+ T cells differentiate into T-helper cell subsets of effector T cells expressing distinct sets of transcriptional factors and cytokines. Classically, acute GvHD was suggested to be predominantly related to Th1 responses. However, we now face a completely different and complex scenario involving possible roles of newly identified Th17 cells as well as Tregs in GvHD. Accumulating data from experimental and clinical studies suggest that the fine balance between Th1, Th2, Th17 and Tregs after transplantation may be an important determinant of the severity, manifestation and tissue distribution of GvHD. Understanding the dynamic process of reciprocal differentiation of regulatory and T-helper cell subsets as well as their interactions will be important in establishing novel strategies for preventing and treating GvHD.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet373,1550–1561 (2009).
    • Shlomchik WD, Couzens MS, Tang CB et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science285,412–415 (1999).
    • Teshima T, Ordemann R, Reddy P et al. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nat. Med.8,575–581 (2002).
    • Hill GR, Crawford JM, Cooke KJ, Brinson YS, Pan L, Ferrara JLM. Total body irradiation and acute graft versus host disease. The role of gastrointestinal damage and inflammatory cytokines. Blood90,3204–3213 (1997).
    • Zhang Y, Louboutin JP, Zhu J, Rivera AJ, Emerson SG. Preterminal host dendritic cells in irradiated mice prime CD8+ T cell-mediated acute graft-versus-host disease. J. Clin. Invest.109,1335–1344 (2002).
    • Koyama M, Hashimoto D, Aoyama K et al. Plasmacytoid dendritic cells prime alloreactive T cells to mediate graft-versus-host disease as antigen-presenting cells. Blood113,2088–2095 (2009).
    • Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat. Med.11,1299–1305 (2005).
    • Anderson BE, McNiff J, Yan J et al. Memory CD4+ T cells do not induce graft-versus-host disease. J. Clin. Invest.112,101–108 (2003).
    • Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG. Alloreactive memory T cells are responsible for the persistence of graft-versus-host disease. J. Immunol.174,3051–3058 (2005).
    • 10  Korngold R, Sprent J. Negative selection of T cells causing lethal graft-versus-host disease across minor histocompatibility barriers: role of the H-2 complex. J. Exp. Med.1114–1123 (1980).
    • 11  Socie G, Blazar BR. Acute graft-versus-host disease: from the bench to the bedside. Blood114,4327–4336 (2009).
    • 12  Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136,2348–2357 (1986).
    • 13  Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol.6,1123–1132 (2005).▪ Along with [14,15], describes an important role for TGF-β signaling in the differentiation of Th17 cells.
    • 14  Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24,179–189 (2006).▪ Along with [13,15], describes an important role for TGF-β signaling in the differentiation of Th17 cells.
    • 15  Mangan PR, Harrington LE, O’Quinn DB et al. Transforming growth factor-β induces development of the Th17 lineage. Nature441,231–234 (2006).▪ Along with [13,14], describes an important role for TGF-β signaling in the differentiation of Th17 cells.
    • 16  Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155,1151–1164 (1995).
    • 17  Sakaguchi S, Miyara M, Costantino CM, Hafler DA. Foxp3+ regulatory T cells in the human immune system. Nat. Rev. Immunol.10,490–500 (2010).
    • 18  Via CS. Kinetics of T cell activation in acute and chronic forms of graft versus host disease. J. Immunol.146,2603–2609 (1991).
    • 19  Tawara I, Maeda Y, Sun Y et al. Combined Th2 cytokine deficiency in donor T cells aggravates experimental acute graft-vs-host disease. Exp. Hematol.36,988–996 (2008).
    • 20  Jung U, Foley JE, Erdmann AA, Eckhaus MA, Fowler DH. CD3/CD28-costimulated T1 and T2 subsets: differential in vivo allosensitization generates distinct GVT and GVHD effects. Blood102,3439–3446 (2003).
    • 21  Krenger W, Cooke KR, Sonis ST et al. Transplantation of polarized type 2 donor T cells reduces mortality caused by experimental graft-versus-host disease. Transplantation62,1278–1285 (1996).
    • 22  Foley JE, Mariotti J, Ryan K, Eckhaus M, Fowler DH. Th2 cell therapy of established acute graft-versus-host disease requires IL-4 and IL-10 and is abrogated by IL-2 or host-type antigen-presenting cells. Biol. Blood Marrow Transplant.14,959–972 (2008).
    • 23  Fowler DH, Kurasawa K, Smith R, Eckhaus MA, Gress RE. Donor CD4-enriched cells of Th2 cytokine phenotype regulate graft-versus-host disease without impairing allogeneic engraftment in sublethally irradiated mice. Blood84,3540–3549 (1994).
    • 24  Murphy WJ, Welniak LA, Taub DD et al. Differential effects of the absence of interferon-γ and IL-4 in acute graft-versus-host disease after allogeneic bone marrow transplantation in mice. J. Clin. Invest.102,1742–1748 (1998).
    • 25  Yang YG, Dey BR, Sergio JJ, Pearson DA, Sykes M. Donor-derived interferon γ is required for inhibition of acute graft-versus-host disease by interleukin 12. J. Clin. Invest.102,2126–2135 (1998).
    • 26  Reddy P, Teshima T, Kukuruga M et al. Interleukin-18 regulates acute graft-versus-host disease by enhancing fas-mediated donor T cell apoptosis. J. Exp. Med.194,1433–1440 (2001).
    • 27  Nikolic B, Lee S, Bronson RT, Grusby MJ, Sykes M. Th1 and Th2 mediate acute graft-versus-host disease, each with distinct end-organ targets. J. Clin. Invest.105,1289–1298 (2000).
    • 28  Fowler DH, Odom J, Steinberg SM et al. Phase I clinical trial of costimulated, IL-4 polarized donor CD4+ T cells as augmentation of allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant.12,1150–1160 (2006).
    • 29  Ferber IA, Brocke S, Taylor-Edwards C et al. Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol.156,5–7 (1996).
    • 30  Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421,744–748 (2003).
    • 31  Park H, Li Z, Yang XO, Chang SH et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol.6,1133–1141 (2005).
    • 32  Komiyama Y, Nakae S, Matsuki T et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol.177,566–573 (2006).
    • 33  Ivanov II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126,1121–1133 (2006).▪ Demonstrates a key role for the transcriptional factor RORγt in TGF- and IL-6-dependent Th17 differentiation.
    • 34  Bush KA, Farmer KM, Walker JS, Kirkham BW. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum46,802–805 (2002).
    • 35  Kotake S, Udagawa N, Takahashi N et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest.103,1345–1352 (1999).
    • 36  Pene J, Chevalier S, Preisser L et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J. Immunol.180,7423–7430 (2008).
    • 37  Liang SC, Tan XY, Luxenberg DP et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med.203,2271–2279 (2006).
    • 38  Nurieva R, Yang XO, Martinez G et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature448,480–483 (2007).▪ Along with [42,43], demonstrates a crucial role of IL-21 on Th17 differentiation.
    • 39  Wright JF, Guo Y, Quazi A et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem.282,13447–13455 (2007).
    • 40  Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol.10,479–489 (2010).▪ Excellent review of the literature on the role of innate immune system for the induction of adaptive Th17 immunity.
    • 41  van Beelen AJ, Zelinkova Z, Taanman-Kueter EW et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity27,660–669 (2007).
    • 42  Korn T, Bettelli E, Gao W et al. IL-21 initiates an alternative pathway to induce proinflammatory Th17 cells. Nature448,484–487 (2007).▪ Along with [38,43], demonstrates a crucial role of IL-21 on Th17 differentiation.
    • 43  Zhou L, Ivanov, II, Spolski R et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol.8,967–974 (2007).▪ Along with [38,42], demonstrates a crucial role of IL-21 on Th17 differentiation.
    • 44  Wilson NJ, Boniface K, Chan JR et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol.8,950–957 (2007).
    • 45  Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol.8,942–949 (2007).
    • 46  Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol.9,641–649 (2008).
    • 47  Yang L, Anderson DE, Baecher-Allan C et al. IL-21 and TGF-β are required for differentiation of human Th17 cells. Nature454,350–352 (2008).
    • 48  Cosmi L, De Palma R, Santarlasci V et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med.205,1903–1916 (2008).
    • 49  Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu. Rev. Immunol.27,485–517 (2009).
    • 50  Ahern PP, Schiering C, Buonocore S et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity33,279–288 (2010).
    • 51  Yang XO, Panopoulos AD, Nurieva R et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem.282,9358–9363 (2007).▪ Demonstrates STAT3 to be a critical regulator of Th17 immunity.
    • 52  Yang XO, Pappu BP, Nurieva R et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR α and ROR γ. Immunity28,29–39 (2008).
    • 53  Milner JD, Brenchley JM, Laurence A et al. Impaired Th17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature452,773–776 (2008).
    • 54  Ivanov II, Atarashi K, Manel N et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell139,485–498 (2009).▪ Demonstrates that commensal bacteria play an important role in shaping the balance of T helper cell subsets.
    • 55  Atarashi K, Nishimura J, Shima T et al. ATP drives lamina propria Th17 cell differentiation. Nature455,808–812 (2008).
    • 56  Uematsu S, Fujimoto K, Jang MH et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol.9,769–776 (2008).
    • 57  O’Connor W Jr, Zenewicz LA, Flavell RA. The dual nature of Th17 cells: shifting the focus to function. Nat. Immunol.11,471–476 (2010).
    • 58  Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? Nat. Rev. Immunol.10,735–744 (2010).
    • 59  Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science299,1057–1061 (2003).
    • 60  Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4,330–336 (2003).
    • 61  Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet.27,20–21 (2001).
    • 62  Wildin RS, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet.27,18–20 (2001).
    • 63  Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science265,1237–1240 (1994).
    • 64  Zhang ZX, Yang L, Young KJ, DuTemple B, Zhang L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat. Med.6,782–789 (2000).
    • 65  Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med.195,695–704 (2002).
    • 66  Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J. Clin. Invest.115,2904–2913 (2005).
    • 67  Kim HJ, Verbinnen B, Tang X, Lu L, Cantor H. Inhibition of follicular T-helper cells by CD8+ regulatory T cells is essential for self tolerance. Nature467,328–332 (2010).
    • 68  Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med.198,1875–1886 (2003).
    • 69  Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv. Cancer Res.107,57–117 (2010).
    • 70  Malek TR, Yu A, Vincek V, Scibelli P, Kong L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity17,167–178 (2002).
    • 71  Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ. Interleukin 2 signaling is required for CD4+ regulatory T cell function. J. Exp. Med.196,851–857 (2002).
    • 72  Wing K, Onishi Y, Prieto-Martin P et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science322,271–275 (2008).
    • 73  Gavin MA, Torgerson TR, Houston E et al. Single-cell analysis of normal and FOXP3-mutant human T cells: Foxp3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA103,6659–6664 (2006).▪ Demonstrates the upregulation of FOXP3 expression on naive CD4+ T cells upon activation.
    • 74  Tran DQ, Ramsey H, Shevach EM. Induction of Foxp3 expression in naive human CD4+Foxp3 T cells by T-cell receptor stimulation is transforming growth factor-β dependent but does not confer a regulatory phenotype. Blood110,2983–2990 (2007).
    • 75  Miyara M, Yoshioka Y, Kitoh A et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity30,899–911 (2009).▪▪ Refines our understanding of human FOXP3+CD4+ T cells and has important implications for Treg immunotherapy.
    • 76  Bluestone JA, Mackay CR, O’Shea JJ, Stockinger B. The functional plasticity of T cell subsets. Nat. Rev. Immunol.9,811–816 (2009).
    • 77  Annunziato F, Cosmi L, Santarlasci V et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med.204,1849–1861 (2007).
    • 78  Bending D, De La Pena H, Veldhoen M et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest.119,565–572 (2009).
    • 79  Lee YK, Turner H, Maynard CL et al. Late developmental plasticity in the T helper 17 lineage. Immunity30,92–107 (2009).
    • 80  Rubtsov YP, Rudensky AY. TGFβ signalling in control of T-cell-mediated self-reactivity. Nat. Rev. Immunol.7,443–453 (2007).
    • 81  Zhou L, Lopes JE, Chong MM et al. TGF-β-induced Foxp3 inhibits Th17 cell differentiation by antagonizing RORγt function. Nature453,236–240 (2008).
    • 82  Mucida D, Park Y, Kim G et al. Reciprocal Th17 and regulatory T cell differentiation mediated by retinoic acid. Science317,256–260 (2007).
    • 83  Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441,235–238 (2006).▪ First to reveal reciprocal control of Th17 and Treg differentiation and provides important insight into Treg immunotherapy.
    • 84  Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. J. Immunol.178,6725–6729 (2007).
    • 85  Yang XO, Nurieva R, Martinez GJ et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity29,44–56 (2008).
    • 86  Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood112,2340–2352 (2008).
    • 87  Voo KS, Wang YH, Santori FR et al. Identification of IL-17-producing Foxp3+ regulatory T cells in humans. Proc. Natl Acad. Sci. USA106,4793–4798 (2009).
    • 88  Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity30,646–655 (2009).
    • 89  Li L, Kim J, Boussiotis VA. IL-1β-mediated signals preferentially drive conversion of regulatory T cells but not conventional T cells into IL-17-producing cells. J. Immunol.185,4148–4153 (2010).
    • 90  Tsuji M, Komatsu N, Kawamoto S et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science323,1488–1492 (2009).
    • 91  Beriou G, Costantino CM, Ashley CW et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood113,4240–4249 (2009).
    • 92  Kryczek I, Banerjee M, Cheng P et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood114,1141–1149 (2009).
    • 93  Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol.10,595–602 (2009).
    • 94  Wei G, Wei L, Zhu J et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity30,155–167 (2009).
    • 95  Oldenhove G, Bouladoux N, Wohlfert EA et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity31,772–786 (2009).
    • 96  Zhou X, Bailey-Bucktrout SL, Jeker LT et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol.10,1000–1007 (2009).
    • 97  Zheng Y, Chaudhry A, Kas A et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control Th2 responses. Nature458,351–356 (2009).
    • 98  Komatsu N, Mariotti-Ferrandiz ME, Wang Y, Malissen B, Waldmann H, Hori S. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA106,1903–1908 (2009).
    • 99  Rubtsov YP, Niec RE, Josefowicz S et al. Stability of the regulatory T cell lineage in vivo. Science329,1667–1671 (2010).
    • 100  Yi T, Zhao D, Lin CL et al. Absence of donor Th17 leads to augmented Th1 differentiation and exacerbated acute graft-versus-host disease. Blood112,2101–2110 (2008).▪▪ Along with [101–106], investigates the role of Th17 in graft-versus-host disease (GvHD) using IL-17-deficient mice.
    • 101  Kappel LW, Goldberg GL, King CG et al. IL-17 contributes to CD4-mediated graft-versus-host disease. Blood113,945–952 (2009).▪▪ Along with [100,102–106], investigates the role of Th17 in GvHD using IL-17-deficient mice.
    • 102  Oh I, Ozaki K, Meguro A et al. Altered effector CD4+ T cell function in IL-21R-/- CD4+ T cell-mediated graft-versus-host disease. J. Immunol.185,1920–1926 (2010).▪▪ Along with [100,101,103–106], investigates the role of Th17 in GvHD using IL-17-deficient mice.
    • 103  Iclozan C, Yu Y, Liu C et al. T helper17 cells are sufficient but not necessary to induce acute graft-versus-host disease. Biol. Blood Marrow Transplant.16,170–178 (2010).▪▪ Along with [100–102,104–106], investigates the role of Th17 in GvHD using IL-17-deficient mice.
    • 104  Chen X, Das R, Komorowski R, van Snick J, Uyttenhove C, Drobyski WR. Interleukin 17 is not required for autoimmune-mediated pathologic damage during chronic graft-versus-host disease. Biol. Blood Marrow Transplant.16,123–128 (2010).▪▪ Along with [100–103,105,106], investigates the role of Th17 in GvHD using IL-17-deficient mice.
    • 105  Yi T, Chen Y, Wang L et al. Reciprocal differentiation and tissue-specific pathogenesis of Th1, Th2, and Th17 cells in graft versus host disease. Blood114,3101–3112 (2009).▪▪ Along with [100–104,106], investigates the role of Th17 in GvHD using IL-17-deficient mice.
    • 106  Hill GR, Olver SD, Kuns RD et al. Stem cell mobilization with G-CSF induces type 17 differentiation and promotes scleroderma. Blood116,819–828 (2010).▪▪ Along with [100–105], investigates the role of Th17 in GvHD using IL-17-deficient mice.
    • 107  McCormick LL, Zhang Y, Tootell E, Gilliam AC. Anti-TGF-β treatment prevents skin and lung fibrosis in murine sclerodermatous graft-versus-host disease: a model for human scleroderma. J. Immunol.163,5693–5699 (1999).
    • 108  Banovic T, MacDonald KP, Morris ES et al. TGF-β in allogeneic stem cell transplantation: friend or foe? Blood106,2206–2214 (2005).
    • 109  Blaise D, Kuentz M, Fortanier C et al. Randomized trial of bone marrow versus lenograstim-primed blood cell allogeneic transplantation in patients with early-stage leukemia: a report from the Societe Francaise de Greffe de Moelle. J. Clin. Oncol.18,537–546 (2000).
    • 110  Carlson MJ, West ML, Coghill JM, Panoskaltsis-Mortari A, Blazar BR, Serody JS. In vitro-differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations. Blood113,1365–1374 (2009).▪ Investigates the ability of ex vivo polarized Th17 cells to induce GvHD in each target organ after transfer.
    • 111  Mauermann N, Burian J, von Garnier C et al. Interferon-γ regulates idiopathic pneumonia syndrome, a Th17+CD4+ T-cell-mediated graft-versus-host disease. Am. J. Respir. Crit. Care Med.178,379–388 (2008).
    • 112  Chen X, Das R, Komorowski R et al. Blockade of interleukin-6 signaling augments regulatory T cell reconstitution and attenuates the severity of graft versus host disease. Blood114,891–900 (2009).
    • 113  Tawara I, Koyama M, Liu C et al. Interleukin-6 modulates graft-versus-host responses after experimental allogeneic bone marrow transplantation. Clin. Cancer Res.17,77–88 (2011).
    • 114  Karabon L, Wysoczanska B, Bogunia-Kubik K, Suchnicki K, Lange A. IL-6 and IL-10 promoter gene polymorphisms of patients and donors of allogeneic sibling hematopoietic stem cell transplants associate with the risk of acute graft-versus-host disease. Hum. Immunol.66,700–710 (2005).
    • 115  Bucher C, Koch L, Vogtenhuber C et al. IL-21 blockade reduces graft-versus-host disease mortality by supporting inducible T regulatory cell generation. Blood114,5375–5384 (2009).
    • 116  Meguro A, Ozaki K, Oh I et al. IL-21 is critical for graft-versus-host disease in a mouse model. Bone Marrow Transplant.45,723–729 (2010).
    • 117  Das R, Chen X, Komorowski R, Hessner MJ, Drobyski WR. Interleukin-23 secretion by donor antigen-presenting cells is critical for organ-specific pathology in graft-versus-host disease. Blood113,2352–2362 (2009).
    • 118  Thompson JS, Chu Y, Glass JF, Brown SA. Absence of IL-23p19 in donor allogeneic cells reduces mortality from acute GVHD. Bone Marrow Transplant.45,712–722 (2000).
    • 119  Das R, Komorowski R, Hessner MJ et al. Blockade of interleukin-23 signaling results in targeted protection of the colon and allows for separation of graft-versus-host and graft-versus-leukemia responses. Blood115,5249–5258 (2010).
    • 120  Taylor PA, Noelle RJ, Blazar BR. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med.193,1311–1318 (2001).▪▪ Along with [121–125], established the suppressive role of Tregs on GvHD in mice.
    • 121  Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J. Exp. Med.196,401–406 (2002).▪▪ Along with [120,122–125], established the suppressive role of Tregs on GvHD in mice.
    • 122  Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med.196,389–399 (2002).▪▪ Along with [120,121,123–125], established the suppressive role of Tregs on GvHD in mice.
    • 123  Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood99,3493–3499 (2002).▪▪ Along with [120–122,124,125], established the suppressive role of Tregs on GvHD in mice.
    • 124  Trenado A, Charlotte F, Fisson S et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J. Clin. Invest.112,1688–1696 (2003).▪▪ Along with [120–123,125], established the suppressive role of Tregs on GvHD in mice.
    • 125  Edinger M, Hoffmann P, Ermann J et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat. Med.9,1144–1150 (2003).▪▪ Along with [120–124], established the suppressive role of Tregs on GvHD in mice.
    • 126  Anderson BE, McNiff JM, Matte C, Athanasiadis I, Shlomchik WD, Shlomchik MJ. Recipient CD4+ T cells that survive irradiation regulate chronic graft-versus-host disease. Blood104,1565–1573 (2004).
    • 127  Zhao D, Zhang C, Yi T et al. In vivo-activated CD103+CD4+ regulatory T cells ameliorate ongoing chronic graft-versus-host disease. Blood112,2129–2138 (2008).
    • 128  Taylor PA, Panoskaltsis-Mortari A, Swedin JM et al. L-Selectinhi but not the L-selectinlo CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood104,3804–3812 (2004).
    • 129  Nguyen VH, Shashidhar S, Chang DS et al. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood111,945–953 (2008).
    • 130  Luo X, Tarbell KV, Yang H et al. Dendritic cells with TGF-β1 differentiate naive CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA104,2821–2826 (2007).
    • 131  Pilat N, Baranyi U, Klaus C et al. Treg-therapy allows mixed chimerism and transplantation tolerance without cytoreductive conditioning. Am. J. Transplant.10,751–762 (2010).
    • 132  Semple K, Yu Y, Wang D, Anasetti C, Yu XZ. Efficient and selective prevention of GVHD by antigen-specific induced tregs via linked-suppression in mice. Biol. Blood Marrow Transplant.17,309–318 (2011).
    • 133  DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM. Autoantigen-specific TGFβ-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J. Immunol.179,4685–4693 (2007).
    • 134  Zhang H, Podojil JR, Chang J, Luo X, Miller SD. TGF-β-induced myelin peptide-specific regulatory T cells mediate antigen-specific suppression of induction of experimental autoimmune encephalomyelitis. J. Immunol.184,6629–6636 (2010).
    • 135  Koenecke C, Czeloth N, Bubke A et al. Alloantigen-specific de novo-induced Foxp3+ Treg revert in vivo and do not protect from experimental GVHD. Eur. J. Immunol.39,3091–3096 (2009).
    • 136  Vogtenhuber C, Bucher C, Highfill SL et al. Constitutively active Stat5b in CD4+ T cells inhibits graft-versus-host disease lethality associated with increased regulatory T-cell potency and decreased T effector cell responses. Blood116,466–474 (2010).
    • 137  Radojcic V, Pletneva MA, Yen HR et al. STAT3 signaling in CD4+ T cells is critical for the pathogenesis of chronic sclerodermatous graft-versus-host disease in a murine model. J. Immunol.184,764–774 (2010).
    • 138  Fujita S, Sato Y, Sato K et al. Regulatory dendritic cells protect against cutaneous chronic graft-versus- host disease mediated through CD4+CD25+Foxp3+ regulatory T cells. Blood110,3793–3803 (2007).
    • 139  Tawara I, Shlomchik WD, Jones A et al. A crucial role for host APCs in the induction of donor CD4+CD25+ regulatory T cell-mediated suppression of experimental graft-versus-host disease. J. Immunol.185,3866–3872 (2010).
    • 140  Wang XN, Haniffa MA, Holtick U et al. Regulatory T-cell suppression of CD8+ T-cell-mediated graft-versus-host reaction requires their presence during priming. Transplantation88,188–197 (2009).▪ Uses an interesting model system to evaluate the function of human Tregs.
    • 141  Takahashi T, Tagami T, Yamazaki S et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.192,303–310 (2000).
    • 142  Zeiser R, Nguyen VH, Hou JZ et al. Early CD30 signaling is critical for adoptively transferred CD4+CD25+ regulatory T cells in prevention of acute graft-versus-host disease. Blood109,2225–2233 (2007).
    • 143  Amarnath S, Costanzo CM, Mariotti J et al. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1. PLoS Biol.8,E1000302 (2010).
    • 144  Asakura S, Hashimoto D, Takashima S et al. Alloantigen expression on non-hematopoietic cells reduces graft-versus-leukemia effects in mice. J. Clin. Invest.120,2370–2378 (2010).
    • 145  Nguyen VH, Zeiser R, Dasilva DL et al. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic transplantation. Blood109,2649–2656 (2007).▪ Along with [146,147], investigates trafficking of Tregs in vivo in mice.
    • 146  Ermann J, Hoffmann P, Edinger M et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood105,2220–2226 (2005).▪ Along with [145,147], investigates trafficking of Tregs in vivo in mice.
    • 147  Wysocki CA, Jiang Q, Panoskaltsis-Mortari A et al. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood106,3300–3307 (2005).▪ Along with [145,146], investigates trafficking of Tregs in vivo in mice.
    • 148  Chen X, Vodanovic-Jankovic S, Johnson B, Keller M, Komorowski R, Drobyski WR. Absence of regulatory T-cell control of Th1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood110,3804–3813 (2007).
    • 149  Sakoda Y, Hashimoto D, Asakura S et al. Donor-derived thymic-dependent T cells cause chronic graft-versus-host disease. Blood109,1756–1764 (2007).
    • 150  Jones SC, Murphy GF, Korngold R. Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD425 T cells to allow an effective graft-versus-leukemia response. Biol. Blood Marrow Transplant.9,243–256 (2003).
    • 151  Cai SF, Cao X, Hassan A, Fehniger TA, Ley TJ. Granzyme B is not required for regulatory T cell-mediated suppression of graft-versus-host disease. Blood115,1669–1677 (2010).
    • 152  van Rood JJ, Loberiza FR Jr, Zhang MJ et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood99,1572–1577 (2002).
    • 153  Ichinohe T, Uchiyama T, Shimazaki C et al. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation between noninherited maternal antigen (NIMA)-mismatched family members linked with long-term fetomaternal microchimerism. Blood104,3821–3828 (2004).
    • 154  Teshima T, Matsuoka K, Ichinohe T. Impact of fetal–maternal tolerance in hematopoietic stem cell transplantation. Arch. Immunol. Ther. Exp. (Warsz.)54,165–172 (2006).
    • 155  Matsuoka K, Ichinohe T, Hashimoto D, Asakura S, Tanimoto M, Teshima T. Fetal tolerance to maternal antigens improves the outcome of allogeneic bone marrow transplantation by a CD4+CD25+ T-cell-dependent mechanism. Blood107,404–409 (2006).
    • 156  Aoyama K, Koyama M, Matsuoka K et al. Improved outcome of allogeneic bone marrow transplantation due to breastfeeding-induced tolerance to maternal antigens. Blood113,1829–1833 (2009).
    • 157  Mold JE, Michaelsson J, Burt TD et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science322,1562–1565 (2008).
    • 158  Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, Enk AH. Infectious tolerance: human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells. J. Exp. Med.196,255–260 (2002).
    • 159  Waldmann H, Adams E, Fairchild P, Cobbold S. Infectious tolerance and the long-term acceptance of transplanted tissue. Immunol. Rev.212,301–313 (2006).
    • 160  Carvalho A, Cunha C, Di Ianni M et al. Prognostic significance of genetic variants in the IL-23/Th17 pathway for the outcome of T cell-depleted allogeneic stem cell transplantation. Bone Marrow Transplant.45,1645–1652 (2010).
    • 161  Dander E, Balduzzi A, Zappa G et al. Interleukin-17-producing T-helper cells as new potential player mediating graft-versus-host disease in patients undergoing allogeneic stem-cell transplantation. Transplantation88,1261–1272 (2009).
    • 162  Broady R, Yu J, Chow V et al. Cutaneous GVHD is associated with the expansion of tissue-localized Th1 and not Th17 cells. Blood116,5748–5751 (2010).
    • 163  Ratajczak P, Janin A, Peffault de Latour R et al. Th17/Treg ratio in human graft-versus-host disease. Blood116,1165–1171 (2010).
    • 164  Leonardi CL, Kimball AB, Papp KA et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet371,1665–1674 (2008).
    • 165  Papp KA, Langley RG, Lebwohl M et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet371,1675–1684 (2008).
    • 166  Griffiths CE, Strober BE, van de Kerkhof P et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N. Engl. J. Med.362,118–128 (2010).
    • 167  Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a Phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol.7,796–804 (2008).
    • 168  Sandborn WJ, Feagan BG, Fedorak RN et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology135,1130–1141 (2008).
    • 169  Genovese MC, Van den Bosch F, Roberson SA et al. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A Phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum.62,929–939 (2010).
    • 170  Choy EH, Isenberg DA, Garrood T et al. Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum.46,3143–3150 (2002).
    • 171  Yokota S, Imagawa T, Mori M et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal Phase III trial. Lancet371,998–1006 (2008).
    • 172  Nishimoto N, Terao K, Mima T, Nakahara H, Takagi N, Kakehi T. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood112,3959–3964 (2008).
    • 173  Gergis U, Arnason J, Yantiss R et al. Effectiveness and safety of tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, in a patient with refractory GI graft-versus-host disease. J. Clin. Oncol.28,602–604 (2010).
    • 174  Shima Y, Kuwahara Y, Murota H et al. The skin of patients with systemic sclerosis softened during the treatment with anti-IL-6 receptor antibody tocilizumab. Rheumatology (Oxf.)49,2408–2412 (2010).
    • 175  Wolf D, Wolf AM, Fong D et al. Regulatory T-cells in the graft and the risk of acute graft-versus-host disease after allogeneic stem cell transplantation. Transplantation83,1107–1113 (2007).
    • 176  Magenau JM, Qin X, Tawara I et al. Frequency of CD4+CD25hiFoxp3+ regulatory T cells has diagnostic and prognostic value as a biomarker for acute graft-versus-host-disease. Biol. Blood Marrow Transplant.16,907–914 (2010).
    • 177  Rosenzwajg M, Dhedin N, Maury S et al. Regulatory T cell content in the bone marrow graft does not predict the occurrence of acute GVHD. Biol. Blood Marrow Transplant.17,265–269 (2010).
    • 178  Stanzani M, Martins SL, Saliba RM et al. CD25 expression on donor CD4+ or CD8+ T cells is associated with an increased risk for graft-versus-host disease after HLA-identical stem cell transplantation in humans. Blood103,1140–1146 (2004).
    • 179  Clark FJ, Gregg R, Piper K et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood103,2410–2416 (2004).
    • 180  Lee SJ, Zahrieh D, Agura E et al. Effect of up-front daclizumab when combined with steroids for the treatment of acute graft-versus-host disease: results of a randomized trial. Blood104,1559–1564 (2004).
    • 181  Vela-Ojeda J, Montiel-Cervantes L, Granados-Lara P et al. Role of CD4+CD25+highFoxp3+CD62L+ regulatory T cells and invariant NKT cells in human allogeneic hematopoietic stem cell transplantation. Stem Cells Dev19,333–340 (2010).
    • 182  Blache C, Chauvin JM, Marie-Cardine A et al. Reduced frequency of regulatory T cells in peripheral blood stem cell compared to bone marrow transplantations. Biol. Blood Marrow Transplant.16,430–434 (2010).
    • 183  Mold JE, Venkatasubrahmanyam S, Burt TD et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science330,1695–1699 (2010).
    • 184  Miura Y, Thoburn CJ, Bright EC et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood104,2187–2193 (2004).
    • 185  Zorn E, Kim HT, Lee SJ et al. Reduced frequency of Foxp3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood106,2903–2911 (2005).
    • 186  Pastore D, Delia M, Mestice A et al. Recovery of CMV-specific CD8+ T cells and T regs after allogeneic peripheral blood stem cell transplantation. Biol. Blood Marrow Transplant.17,550–557 (2011).
    • 187  Rezvani K, Mielke S, Ahmadzadeh M et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood108,1291–1297 (2006).
    • 188  Mielke S, Rezvani K, Savani BN et al. Reconstitution of Foxp3+ regulatory T cells (Tregs) after CD25-depleted allotransplantation in elderly patients and association with acute graft-versus-host disease. Blood110,1689–1697 (2007).
    • 189  Engelhardt BG, Jagasia M, Savani BN et al. Regulatory T cell expression of CLA or α(4)β(7) and skin or gut acute GVHD outcomes. Bone Marrow Transplant.46,436–442 (2011).
    • 190  Rieger K, Loddenkemper C, Maul J et al. Mucosal Foxp3+ regulatory T cells are numerically deficient in acute and chronic GVHD. Blood107,1717–1723 (2006).
    • 191  Landfried K, Bataille F, Rogler G et al. Recipient NOD2/CARD15 status affects cellular infiltrates in human intestinal graft-versus-host disease. Clin. Exp. Immunol.159,87–92 (2010).
    • 192  Fondi C, Nozzoli C, Benemei S et al. Increase in Foxp3+ regulatory T cells in GVHD skin biopsies is associated with lower disease severity and treatment response. Biol. Blood Marrow Transplant.15,938–947 (2009).
    • 193  Schneider M, Munder M, Karakhanova S, Ho AD, Goerner M. The initial phase of graft-versus-host disease is associated with a decrease of CD4+CD25+ regulatory T cells in the peripheral blood of patients after allogeneic stem cell transplantation. Clin. Lab. Haematol.28,382–390 (2006).
    • 194  Arimoto K, Kadowaki N, Ishikawa T, Ichinohe T, Uchiyama T. Foxp3 expression in peripheral blood rapidly recovers and lacks correlation with the occurrence of graft-versus-host disease after allogeneic stem cell transplantation. Int. J. Hematol.85,154–162 (2007).
    • 195  Matsuoka K, Kim HT, McDonough S et al. Altered regulatory T cell homeostasis in patients with CD4+ lymphopenia following allogeneic hematopoietic stem cell transplantation. J. Clin. Invest.120,1479–1493 (2010).▪▪ Comparative analysis of Treg and Tcon reconstitution after allogeneic stem cell transplantation and of association between Treg reconstitution and chronic GvHD.
    • 196  Fisson S, Darrasse-Jeze G, Litvinova E et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med.198,737–746 (2003).
    • 197  Vukmanovic-Stejic M, Zhang Y, Cook JE et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest.116,2423–2433 (2006).
    • 198  Brode S, Raine T, Zaccone P, Cooke A. Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+CD25+Foxp3+ regulatory T cells. J. Immunol.177,6603–6612 (2006).
    • 199  Curotto de Lafaille MA, Lino AC, Kutchukhidze N, Lafaille JJ. CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J. Immunol.173,7259–7268 (2004).
    • 200  Matthews K, Lim Z, Afzali B et al. Imbalance of effector and regulatory CD4 T cells is associated with graft-versus-host disease after hematopoietic stem cell transplantation using a reduced intensity conditioning regimen and alemtuzumab. Haematologica94,956–966 (2009).
    • 201  Palmer JM, Chen BJ, DeOliveira D, Le ND, Chao NJ. Novel mechanism of rapamycin in GVHD: increase in interstitial regulatory T cells. Bone Marrow Transplant.45,379–384 (2010).
    • 202  Gatza E, Rogers CE, Clouthier SG et al. Extracorporeal photopheresis reverses experimental graft-versus-host disease through regulatory T cells. Blood112,1515–1521 (2008).
    • 203  Di Biaso I, Di Maio L, Bugarin C et al. Regulatory T cells and extracorporeal photochemotherapy: correlation with clinical response and decreased frequency of proinflammatory T cells. Transplantation87,1422–1425 (2009).
    • 204  Bastien JP, Krosl G, Therien C et al. Photodepletion differentially affects CD4+ Tregs versus CD4+ effector T cells from patients with chronic graft-versus-host disease. Blood116,4859–4869 (2010).
    • 205  Rao V, Saunes M, Jorstad S, Moen T. Cutaneous T cell lymphoma and graft-versus-host disease: a comparison of in vivo effects of extracorporeal photochemotherapy on Foxp3+ regulatory T cells. Clin. Immunol.133,303–313 (2009).
    • 206  Riley JL, June CH, Blazar BR. Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity30,656–665 (2009).
    • 207  Di Ianni M, Del Papa B, Cecchini D et al. Immunomagnetic isolation of CD4+CD25+Foxp3+ natural T regulatory lymphocytes for clinical applications. Clin. Exp. Immunol.156,246–253 (2009).
    • 208  Seddiki N, Santner-Nanan B, Martinson J et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med.203,1693–1700 (2006).
    • 209  Kleinewietfeld M, Starke M, Di Mitri D et al. CD49d provides access to ‘untouched’ human Foxp3+ Treg free of contaminating effector cells. Blood113,827–836 (2009).
    • 210  Trzonkowski P, Bieniaszewska M, Juscinska J et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clin. Immunol.133,22–26 (2009).▪▪ The first clinical results of the treatment of ongoing GvHD with Treg immunotherapy.
    • 211  Hoffmann P, Eder R, Edinger M. Polyclonal expansion of human CD4+CD25+ regulatory T cells. Methods Mol. Biol.677,15–30 (2011).▪▪ Along with [212], discusses practical issues of methodology for isolation and expansion of Tregs.
    • 212  Hoffmann P, Boeld TJ, Eder R et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol.39,1088–1097 (2009).▪▪ Along with [211], discusses practical issues of methodology for isolation and expansion of Tregs.
    • 213  Liu G, Yang K, Burns S, Shrestha S, Chi H. The S1P(1)–mTOR axis directs the reciprocal differentiation of Th1 and Treg cells. Nat. Immunol.11,1047–1056 (2010).
    • 214  Coenen JJ, Koenen HJ, van Rijssen E et al. Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+ CD25+ Foxp3+ T cells. Bone Marrow Transplant.39,537–545 (2007).
    • 215  Qu Y, Zhang B, Zhao L et al. The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+T cells in mice. Transpl. Immunol.17,153–161 (2007).
    • 216  Kopf H, de la Rosa GM, Howard OM, Chen X. Rapamycin inhibits differentiation of Th17 cells and promotes generation of Foxp3+ T regulatory cells. Int. Immunopharmacol.7,1819–1824 (2007).
    • 217  Kim YM, Sachs T, Asavaroengchai W, Bronson R, Sykes M. Graft-versus-host disease can be separated from graft-versus-lymphoma effects by control of lymphocyte trafficking with FTY720. J. Clin. Invest.111,659–669 (2003).
    • 218  Hashimoto D, Asakura S, Matsuoka K et al. FTY720 enhances the activation-induced apoptosis of donor T cells and modulates graft-versus-host disease. Eur. J. Immunol.37,271–281 (2007).
    • 219  Taylor PA, Ehrhardt MJ, Lees CJ et al. Insights into the mechanism of FTY720 and compatibility with regulatory T cells for the inhibition of graft-versus-host disease (GVHD). Blood110,3480–3488 (2007).
    • 220  Samanta A, Li B, Song X et al. TGF-β and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated Foxp3. Proc. Natl Acad. Sci. USA105,14023–14027 (2008).
    • 221  Li B, Samanta A, Song X et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl Acad. Sci. USA104,4571–4576 (2007).▪ Along with [222,223], demonstrates that histone deacetylase inhibitors promote Treg generation and function.
    • 222  Tao R, de Zoeten EF, Ozkaynak E et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med.13,1299–1307 (2007).▪ Along with [221,223], demonstrates that histone deacetylase inhibitors promote Treg generation and function.
    • 223  Xiao Y, Li B, Zhou Z, Hancock WW, Zhang H, Greene MI. Histone acetyltransferase mediated regulation of Foxp3 acetylation and Treg function. Curr. Opin. Immunol.22,583–591 (2010).▪ Along with [221,222], demonstrates that histone deacetylase inhibitors promote Treg generation and function.
    • 224  Reddy P, Maeda Y, Hotary K et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Natl Acad. Sci. USA101,3921–3926 (2004).
    • 225  Reddy P, Sun Y, Toubai T et al. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J. Clin. Invest.118,2562–2573 (2008).
    • 226  Polansky JK, Kretschmer K, Freyer J et al. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol.38,1654–1663 (2008).
    • 227  Baron U, Floess S, Wieczorek G et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur. J. Immunol.37,2378–2389 (2007).
    • 228  Wieczorek G, Asemissen A, Model F et al. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res.69,599–608 (2009).
    • 229  Takahashi T, Kuniyasu Y, Toda M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol.10,1969–1980 (1998).
    • 230  Bushell A, Jones E, Gallimore A, Wood K. The generation of CD25+ CD4+ regulatory T cells that prevent allograft rejection does not compromise immunity to a viral pathogen. J. Immunol.174,3290–3297 (2005).
    • 231  Zeiser R, Nguyen VH, Beilhack A et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood108,390–399 (2006).
    • 232  Zorn E, Mohseni M, Kim H et al. Combined CD4+ donor lymphocyte infusion and low-dose recombinant IL-2 expand Foxp3+ regulatory T cells following allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant.15,382–388 (2009).
    • 233  Brunstein CG, Miller JS, Cao Q et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood117,1061–1070 (2011).▪▪ The first prospective study of immunotherapy using cord blood-derived Tregs in cord blood transplantation as a prophylaxis of GvHD.
    • 234  Di Ianni M, Falzetti F, Carotti A et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood117,3921–3928 (2011).
    • 235  Maury S, Lemoine FM, Hicheri Y et al. CD4+CD25+ regulatory T cell depletion improves the graft-versus-tumor effect of donor lymphocytes after allogeneic hematopoietic stem cell transplantation. Sci. Transl. Med.2,41–52 (2010).
    • 236  Lovett-Racke AE, Rocchini AE, Choy J et al. Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity21,719–731 (2004).
    • 237  O’Connell RM, Kahn D, Gibson WS et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity33,607–619 (2010).