We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

siRNA-based approaches for castration-resistant prostate cancer therapy targeting the androgen receptor signaling pathway

    Yanling Yu‡

    Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Dimitri Papukashvili‡

    Southern University of Science & Technology, Shenzhen, 518000, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Ruimin Ren

    Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Urology, Taiyuan, 030032, China

    ,
    Nino Rcheulishvili

    Southern University of Science & Technology, Shenzhen, 518000, China

    ,
    Shunping Feng

    Southern University of Science & Technology, Shenzhen, 518000, China

    ,
    Wenqi Bai

    Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China

    ,
    Huanhu Zhang

    Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China

    ,
    Yanfeng Xi

    Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China

    ,
    Xiaoqing Lu

    *Author for correspondence:

    E-mail Address: luxiaoqing860227@163.com

    Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China

    &
    Nianzeng Xing

    **Author for correspondence:

    E-mail Address: xingnianzeng1022@163.com

    Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China

    Published Online:https://doi.org/10.2217/fon-2023-0227

    Androgen deprivation therapy is a common treatment method for metastatic prostate cancer through lowering androgen levels; however, this therapy frequently leads to the development of castration-resistant prostate cancer (CRPC). This is attributed to the activation of the androgen receptor (AR) signaling pathway. Current treatments targeting AR are often ineffective mostly due to AR gene overexpression and mutations, as well as the presence of splice variants that accelerate CRPC progression. Thus there is a critical need for more specific medication to treat CRPC. Small interfering RNAs have shown great potential as a targeted therapy. This review discusses prostate cancer progression and the role of AR signaling in CRPC, and proposes siRNA-based targeted therapy as a promising strategy for CRPC.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Wang L, Lu B, He M, Wang Y, Wang Z, Du L. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front. Public Health 10, 811044 (2022).
    • 2. Sung H, Ferlay J, Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021).
    • 3. Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol. 77(1), 38–52 (2019).
    • 4. Aurilio G, Cimadamore A, Mazzucchelli R et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells 9(2653), 1–14 (2020).
    • 5. Kamoto T. Evaluation and diagnosis for castration resistant prostate cancer: CRPC. Nihon Rinsho 72(12), 2103–2107 (2014).
    • 6. Scher HI, Halabi S, Tannock I et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 26(7), 1148–1159 (2008).
    • 7. Morote J, Aguilar A, Planas J. Definition of castrate resistant prostate cancer: new insights. Biomedicines 10, 689 (2022).
    • 8. Shan X, Lu D, Chen Y. Efficacy and safety of androgen-deprivation therapy combined with docetaxel plus prednisone in high-burden metastatic hormone-sensitive prostate cancer. Cancer Manag. Res. 12, 4369–4377 (2020).
    • 9. Pernigoni N, Zagato E, Calcinotto A et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. J. Urol. 208(1), 205–206 (2022).
    • 10. Kong P, Zhang L, Zhang Z et al. Emerging proteins in CRPC: functional roles and clinical implications. Front. Oncol. 12, 873876 (2022).
    • 11. Huang J, Lin B, Li B, Cuvillier O. Anti-androgen receptor therapies in prostate cancer: a brief update and perspective. Front. Oncol. 12, 865350 (2022).
    • 12. Lokeshwar SD, Klaassen Z, Saad F. Treatment and trials in non-metastatic castration-resistant prostate cancer. Nat. Rev. Urol. 18(7), 433–442 (2021).
    • 13. Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener. Dis. Manag. 9(1), 5–23 (2019).
    • 14. Scott LJ. Givosiran: first approval. Drugs 80(3), 335–339 (2020).
    • 15. Scott LJ, Keam SJ. Lumasiran: first approval. Drugs 81(2), 277–282 (2021).
    • 16. Padda IS, Mahtani AU, Parmar M. Small Interfering RNA (siRNA) Based Therapy. StatPearls Publishing, Treasure Island (FL) (2023).
    • 17. Ray KK, Wright RS, Kallend D et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382(16), 1507–1519 (2020).
    • 18. Mullard A. 2022 FDA approvals. Nat. Rev. Drug Discov. 22(2), 83–88 (2023).
    • 19. Mullard A. FDA approves fifth RNAi drug – Alnylam’s next-gen hATTR treatment. Nat. Rev. Drug Discov. 21(8), 548–549 (2022).
    • 20. Yamamoto Y, Lin PJC, Beraldi E et al. siRNA lipid nanoparticle potently silences clusterin and delays progression when combined with androgen receptor cotargeting in enzalutamide-resistant prostate cancer. Clin. Cancer Res. 21(21), 4845–4855 (2015).
    • 21. Albala DM. Imaging and treatment recommendations in patients with castrate-resistant prostate cancer. Rev. Urol. 19(3), 200–202 (2017).
    • 22. Vellky JE, Ricke WA. Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia. 22(11), 566–575 (2020).
    • 23. Massengill JC, Sun L, Moul JW et al. Pretreatment total testosterone level predicts pathological stage in patients with localized prostate cancer treated with radical prostatectomy. J. Urol. 169(5), 1670–1675 (2003).
    • 24. Schatzl G, Madersbacher S, Thurridl T et al. High-grade prostate cancer is associated with low serum testosterone levels. Prostate 47(1), 52–58 (2001).
    • 25. Intasqui P, Bertolla RP, Sadi MV. Prostate cancer proteomics: clinically useful protein biomarkers and future perspectives. Expert Rev. Proteomics 15(1), 65–79 (2018).
    • 26. Liu X, Papukashvili D, Wang Z et al. Potential utility of miRNAs for liquid biopsy in breast cancer. Front. Oncol. 12, 940314 (2022).
    • 27. Iglesias-Gato D, Wikström P, Tyanova S et al. The proteome of primary prostate cancer. Eur. Urol. 69(5), 942–952 (2016).
    • 28. Trujillo B, Wu A, Wetterskog D, Attard G. Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br. J. Cancer 127(8), 1394–1402 (2022).
    • 29. PDQ Adult Treatment Editorial Board. Prostate Cancer Treatment (PDQ®): Patient Version. National Cancer Institute, Bethesda, MD (2023).
    • 30. Morgan SC, Hoffman K, Loblaw DA et al. Hypofractionated radiation therapy for localized prostate cancer: executive summary of an ASTRO, ASCO and AUA evidence-based guideline. J. Urol. 201(3), 528–534 (2019).
    • 31. Posdzich P, Darr C, Hilser T et al. Metastatic prostate cancer – a review of current treatment options and promising new approaches. Cancers (Basel) 15(2), 461 (2023).
    • 32. Papukashvili D, Rcheulishvili N, Liu C et al. Perspectives on miRNAs targeting DKK1 for developing hair regeneration therapy. Cells 10(11), 2957 (2021).
    • 33. Daniels DL, Weis WI. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol. 12(4), 364–371 (2005).
    • 34. Mehta S, Hingole S, Chaudhary V. The emerging mechanisms of Wnt secretion and signaling in development. Front. Cell Dev. Biol. 9, 714746 (2021).
    • 35. Kimelman D, Xu W. β-Catenin destruction complex: insights and questions from a structural perspective. Oncogene 25(57), 7482–7491 (2006).
    • 36. Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 13, 165 (2020).
    • 37. Kypta RM, Waxman J. Wnt/β 2-catenin signalling in prostate cancer. Nat. Rev. Urol. 9(8), 418–428 (2012).
    • 38. Murillo-Garzón V, Kypta R. Wnt signalling in prostate cancer. Nat. Rev. Urol. 14(11), 683–69 (2017).
    • 39. Domingo-Domenech J, Mellado B, Ferrer B et al. Activation of nuclear factor-κB in human prostate carcinogenesis and association to biochemical relapse. Br. J. Cancer 93(11), 1285–1294 (2005).
    • 40. Staal J, Beyaert R. Inflammation and NF-κB signaling in prostate cancer: mechanisms and clinical implications. Cells 7(9), 122 (2018).
    • 41. Jin R, Yamashita H, Yu X et al. Inhibition of NF-kappa B signaling restores responsiveness of castrate resistant prostate cancer cells to anti-androgen treatment by decreasing androgen receptor variants expression. Oncogene 34(28), 3700–3710 (2015).
    • 42. He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct. Target. Ther. 7(1), 198 (2022).
    • 43. Hoang DT, Iczkowski KA, Kilari D, See W, Nevalainen MT. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: opportunities for therapeutic targeting from multiple angles. Oncotarget 8(2), 3724–3745 (2017).
    • 44. Ramalingam S, Ramamurthy VP, Njar VCO. Dissecting major signaling pathways in prostate cancer development and progression: mechanisms and novel therapeutic targets. J. Steroid Biochem. Mol. Biol. 166, 16–27 (2017).
    • 45. Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling. Int. J. Mol. Sci. 21(12), 4507 (2020).
    • 46. Molina JR, Adjei AA. The Ras/Raf/MAPK pathway. J. Thorac. Oncol. 1(1), 7–9 (2006).
    • 47. Schweizer MT, Yu EY. Persistent androgen receptor addiction in castration-resistant prostate cancer. J. Hematol. Oncol. 8(1), 128 (2015).
    • 48. El-amm J, Aragon-ching JB. The current landscape of treatment in non-metastatic castration-resistant prostate cancer. Clin. Med. Insights Oncol. 13, 1179554919833927 (2019).
    • 49. Hamid ARAH, Luna-Velez MV, Dudek AM, Schaafsma E, Sedelaar JPM, Schalken JA. Molecular phenotyping of AR signaling for predicting targeted therapy in castration resistant prostate cancer patient and tissue selection. Front. Oncol. 11, 721659 (2021).
    • 50. Chang C, Lee SO, Wang RS, Yeh S, Chang TM. Androgen receptor (AR) physiological roles in male and female reproductive systems: lessons learned from AR-knockout mice lacking AR in selective cells. Biol. Reprod. 89(1), 21 (2013).
    • 51. Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review. World J. Mens Health. 37(3), 288–295 (2019).
    • 52. Eder IE, Culig Z, Putz T, Nessler-Menardi C, Bartsch G, Klocker H. Molecular biology of the androgen receptor: from molecular understanding to the clinic. Eur. Urol. 40(3), 241–251 (2001).
    • 53. Tan ME, Li J, Xu HE, Melcher K, Yong EL. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 36(1), 3–23 (2015).
    • 54. Schalken J, Fitzpatrick JM. Enzalutamide: targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int. 117(2), 215–225 (2016).
    • 55. Robinson JLL, Hickey TE, Warren AY et al. Elevated levels of FOXA1 facilitate androgen receptor chromatin binding resulting in a CRPC-like phenotype. Oncogene 33(50), 5666–5674 (2014).
    • 56. Coutinho I, Day TK, Tilley WD, Selth LA. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocr. Relat. Cancer. 23(12), T179–T197 (2016).
    • 57. Grasso CS, Wu Y, Robinson DR et al. The mutational landscape of lethal castrate resistant prostate cancer. Nature 487(7406), 239–243 (2013).
    • 58. Podolak J, Eilers K, Newby T et al. Androgen receptor amplification is concordant between circulating tumor cells and biopsies from men undergoing treatment for metastatic castration resistant prostate cancer. Oncotarget 8(42), 71447–71455 (2017).
    • 59. Azad AA, Volik SV, Wyatt AW et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res. 21(10), 2315–2324 (2015).
    • 60. Jiang Y, Palma JF, Agus DB, Wang Y, Gross ME. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin. Chem. 56(9), 1492–1495 (2010).
    • 61. Kwack MH, Sung YK, Chung EJ et al. Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J. Invest. Dermatol. 128(2), 262–269 (2008).
    • 62. Premanand A, Rajkumari BR. Androgen modulation of Wnt/β-catenin signaling in androgenetic alopecia. Arch. Dermatol. Res. 310, 391–399 (2018).
    • 63. Yassa M, Saliou M, de rycke Y et al. Male pattern baldness and the risk of prostate cancer. Ann. Oncol. 22(8), 1824–1827 (2011).
    • 64. Muller DC, Giles GG, Sinclair R, Hopper JL, English DR, Severi G. Age-dependent associations between androgenetic alopecia and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev. 22(2), 209–215 (2013).
    • 65. He H, Xie B, Xie L. Male pattern baldness and incidence of prostate cancer: a systematic review and meta-analysis. Medicine 97(28), e11379 (2017).
    • 66. Wright JL, Page ST, Lin DW, Stanford JL. Male pattern baldness and prostate cancer risk in a population-based case-control study. Cancer Epidemiol. 34(2), 131–135 (2010).
    • 67. Khan S, Caldwell J, Wilson KM, Gonzalez-feliciano AG, Gerke TA, Markt SC. Baldness and risk of prostate cancer in the Health Professionals Follow-Up Study. Cancer Epidemiol. Biomarkers Prev. 29(6), 1229–1236 (2020).
    • 68. Flores-Morales A, Bergmann TB, Lavallee C et al. Proteogenomic characterization of patient-derived xenografts highlights the role of REST in neuroendocrine differentiation of castration-resistant prostate cancer. Clin. Cancer Res. 15(2), 595–608 (2019).
    • 69. Parsons JK, Carter HB, Platz EA, Wright EJ, Landis P, Metter EJ. Serum testosterone and the risk of prostate cancer: potential implications for testosterone therapy. Cancer Epidemiol. Biomarkers Prev. 14(9), 2257–2260 (2005).
    • 70. Pierorazio PM, Ferrucci L, Kettermann A, Longo DL, Metter EJ, Carter HB. Serum testosterone is associated with aggressive prostate cancer in older men: results from the Baltimore Longitudinal Study of Aging. BJU Int. 105(6), 824–829 (2010).
    • 71. Stattin P, Lumme S, Tenkanen L et al. High levels of circulating testosterone are not associated with increased prostate cancer risk: a pooled prospective study. Int. J. Cancer 108(3), 418–424 (2004).
    • 72. Gui B, Gui F, Takai T et al. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc. Natl Acad. Sci. USA 116(29), 14573–14582 (2019).
    • 73. Tatarov O, Mitchell TJ, Seywright M, Leung HY, Brunton VG, Edwards J. Src family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin. Cancer Res. 15(10), 3540–3549 (2009).
    • 74. Peacock JW, Takeuchi A, Hayashi N et al. SEMA 3C drives cancer growth by transactivating multiple receptor tyrosine kinases via plexin B1. EMBO Mol. Med. 10(2), 219–238 (2018).
    • 75. Lee CCW, Munuganti RSN, Peacock JW et al. Targeting semaphorin 3C in prostate cancer with small molecules. J. Endocr. Soc. 2(12), 1381–1394 (2018).
    • 76. Xu K, Shimelis H, Linn DE et al. Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell 15(4), 270–282 (2009).
    • 77. Welti J, Rodrigues DN, Sharp A et al. Analytical validation and clinical qualification of a new immunohistochemical assay for androgen receptor splice variant-7 protein expression in metastatic castration-resistant prostate cancer. Eur. Urol. 70(4), 599–608 (2016). • Findings underline the contribution of the AR splice variant AR-V7 to castration-resistant prostate cancer (CRPC) proliferation by activating both common AR/AR-V7 target and specific AR-V7 target.
    • 78. Sugiura M, Sato H, Okabe A et al. Identification of AR-V7 downstream genes commonly targeted by AR/AR-V7 and specifically targeted by AR-V7 in castration resistant prostate cancer. Transl. Oncol. 14(1), 100915 (2021).
    • 79. Xu D, Zhan Y, Qi Y et al. Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res. 75(17), 3663–3671 (2015).
    • 80. Stuopelyte K, Sabaliauskaite R, Bakavicius A et al. Analysis of AR-FL and AR-V1 in whole blood of patients with castration resistant prostate cancer as a tool for predicting response to abiraterone acetate. J. Urol. 204(1), 71–78 (2020).
    • 81. Li Q, Wang Z, Yi J et al. Clinicopathological characteristics of androgen receptor splicing variant 7 (AR-V7) expression in patients with castration resistant prostate cancer: a systematic review and meta-analysis. Transl. Oncol. 14(9), 101145 (2021).
    • 82. Sharp A, Coleman I, Yuan W et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Invest. 129(1), 192–208 (2019).
    • 83. Kanayama M, Lu C, Luo J, Antonarakis ES. AR splicing variants and resistance to AR targeting agents. Cancers (Basel) 13(11), 2563 (2021).
    • 84. Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr. Rev. 23(2), 175–200 (2002).
    • 85. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15(12), 701–711 (2015).
    • 86. Hu R, Dunn TA, Wei S et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone refractory prostate cancer. Cancer Res. 69(1), 16–22 (2009).
    • 87. Jiang N, Hjorth-Jensen K, Hekmat O et al. In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene 34(21), 2764–2776 (2015).
    • 88. Lee HC, Ou CH, Huang YC et al. YAP1 overexpression contributes to the development of enzalutamide resistance by induction of cancer stemness and lipid metabolism in prostate cancer. Oncogene 40(13), 2407–2421 (2021).
    • 89. Ishizuya Y, Uemura M, Narumi R et al. The role of actinin-4 (ACTN4) in exosomes as a potential novel therapeutic target in castration-resistant prostate cancer. Biochem. Biophys. Res. Commun. 523(3), 588–594 (2020).
    • 90. Park S, Kang M, Kim S, An H, Gettemans J, Ko J. α-Actinin-4 promotes the progression of prostate cancer through the Akt/GSK-3β/β-catenin signaling pathway. Front. Cell Dev. Biol. 8, 588544 (2020).
    • 91. Ingersoll MA, Chou YW, Lin JS et al. p66Shc regulates migration of castration-resistant prostate cancer cells. Cell. Signal. 46, 1–14 (2018).
    • 92. Miller DR, Ingersoll MA, Chatterjee A et al. p66Shc protein through a redox mechanism enhances the progression of prostate cancer cells towards castration-resistance. Free Radic. Biol. Med. 139, 24–34 (2019).
    • 93. Ai J, Jin T, Yang L et al. Vinculin and filamin-C are two potential prognostic biomarkers and therapeutic targets for prostate cancer cell migration. Oncotarget 8(47), 82430–82436 (2017).
    • 94. Ai J, Lu Y, Wei Q, Li H. Comparative proteomics uncovers correlated signaling network and potential biomarkers for progression of prostate cancer. Cell. Physiol. Biochem. 41(1), 1–9 (2017).
    • 95. Bahmad HF, Peng W, Zhu R et al. Protein expression analysis of an in vitro murine model of prostate cancer progression: towards identification of high-potential therapeutic targets. J. Pers. Med. 10(3), 83 (2020).
    • 96. Ni J, Cozzi P, Hao J et al. Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. Int. J. Biochem. Cell Biol. 45(12), 2736–2748 (2013).
    • 97. Saraon P, Cretu D, Musrap N et al. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol. Cell. Proteomics 12(6), 1589–1601 (2013).
    • 98. Labanca E, Bizzotto J, Sanchis P et al. Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel. Oncogene 40, 6284–6298 (2021).
    • 99. Höti N, Yang S, Hu Y, Shah P, Haffner MC, Zhang H. Overexpression of α (1,6) fucosyltransferase in the development of castration-resistant prostate cancer cells. Prostate Cancer Prostatic Dis. 21(1), 137–146 (2018).
    • 100. Wang X, Chen J, Li QK et al. Overexpression of α(1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology 24(10), 935–944 (2014).
    • 101. Höti N, Shah P, Hu Y, Yang S, Zhang H. Proteomics analyses of prostate cancer cells reveal cellular pathways associated with androgen resistance. Proteomics. 17(6), 10.1002/pmic.201600228 (2017).
    • 102. Ferrari N, Granata I, Capaia M et al. Adaptive phenotype drives resistance to androgen deprivation therapy in prostate cancer. Cell Commun. Signal. 15(1), 51 (2017).
    • 103. Barboro P, Benelli R, Tosetti F et al. Aspartate β-hydroxylase targeting in castration-resistant prostate cancer modulates the NOTCH/HIF1α/GSK3β crosstalk. Carcinogenesis 41(9), 1246–1252 (2020).
    • 104. Blomme A, Ford CA, Mui E et al. 2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer. Nat. Commun. 11(1), 2508 (2020).
    • 105. Gong Y, Chippada-venkata UD, Galsky MD, Huang J, Oh WK. Elevated circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) levels are associated with neuroendocrine differentiation in castration resistant prostate cancer. Prostate 75(6), 616–627 (2015).
    • 106. Wise GJ, Marella VK, Talluri G, Shirazian D. Cytokine variations in patients with hormone treated prostate cancer. J. Urol. 164(3 I), 722–725 (2000).
    • 107. Izumi K, Fang LY, Mizokami A et al. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol. Med. 5(9), 1383–1401 (2013).
    • 108. Papukashvili D, Liu C, Rcheulishvili N et al. DKK1-targeting cholesterol-modified siRNA implication in hair growth regulation. Biochem. Biophys. Res. Commun. 668, 55–61 (2023).
    • 109. Zhao J, Lin H, Wang L, Guo K, Jing R, Li X. Suppression of FGF5 and FGF18 expression by cholesterol-modified siRNAs promotes hair growth in mice. Front. Pharmacol. 12, 666860 (2021).
    • 110. Alshaer W, Zureigat H, Al A et al. siRNA: mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol. 905, 174178 (2021).
    • 111. Subhan MA, Attia SA, Torchilin VP. Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sci. 274, 119337 (2021).
    • 112. Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong X-B. The growth of siRNA-based therapeutics: updated clinical studies. Biochem. Pharmacol. 189, 114432 (2021).
    • 113. Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids 4(9), e252 (2015).
    • 114. Ahn I, Kang C, Han J. Where should siRNAs go: applicable organs for siRNA drugs. Exp. Mol. Med. 55(7), 1283–1292 (2023).
    • 115. Jing X, Arya V, Reynolds KS, Rogers H. Clinical pharmacology of RNA interference–based therapeutics: a summary based on Food and Drug Administration-approved small interfering RNAs. Drug Metab. Dispos. 51(2), 193–198 (2023).
    • 116. Hariharan VN, Shin M, Chang C-W et al. Divalent siRNAs are bioavailable in the lung and efficiently block SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA 120(11), 2017 (2017).
    • 117. Kim H, Mun D, Kang JY, Lee SH, Yun N, Joung B. Improved cardiac-specific delivery of RAGE siRNA within small extracellular vesicles engineered to express intense cardiac targeting peptide attenuates myocarditis. Mol. Ther. Nucleic Acids 24, 1024–1032 (2021).
    • 118. Tang W, Chen Y, Jang HS et al. Preferential siRNA delivery to injured kidneys for combination treatment of acute kidney injury. J. Control. Release 341, 300–313 (2022).
    • 119. Khan T, Weber H, Dimuzio J et al. Silencing myostatin using cholesterol-conjugated siRNAs induces muscle growth. Mol. Ther. Nucleic Acids 5(8), e342 (2016).
    • 120. Yan H, Hu Y, Akk A, Wickline SA, Pan H, Pham CTN. Peptide-siRNA nanoparticles targeting NF-κB p50 mitigate experimental abdominal aortic aneurysm progression and rupture. Biomater. Adv. 139, 213009 (2022).
    • 121. Nanna AR, Kel'in AV, Theile C et al. Generation and validation of structurally defined antibody–siRNA conjugates. Nucleic Acids Res. 48(10), 5281–5293 (2020).
    • 122. Zhang Y, Duan H, Zhao H et al. Development and evaluation of a PSMA-targeted nanosystem co-packaging docetaxel and androgen receptor siRNA for castration-resistant prostate cancer treatment. Pharmaceutics 14(5), 964 (2022).
    • 123. Diao Y, Wang G, Zhu B et al. Loading of ‘cocktail siRNAs’ into extracellular vesicles via TAT-DRBD peptide for the treatment of castration-resistant prostate cancer. Cancer Biol. Ther. 23(1), 163–172 (2022).
    • 124. Chen J, Yang Y, Xu D et al. Mesoporous silica nanoparticles combined with AKR1C3 siRNA inhibited the growth of castration-resistant prostate cancer by suppressing androgen synthesis in vitro and in vivo. Biochem. Biophys. Res. Commun. 540, 83–89 (2021). • Findings indicate the potential efficacy of inactivating AR signals by MSNs-siAKR1C3 for the treatment of CRPC.
    • 125. Compagno D, Merle C, Morin A et al. siRNA-directed in vivo silencing of androgen receptor inhibits the growth of castration-resistant prostate carcinomas. PLOS ONE 2(10), e1006 (2007).
    • 126. Zhang X, He Z, Xiang L et al. Codelivery of GRP78 siRNA and docetaxel via RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer. Drug Des. Devel. Ther. 13, 1357–1372 (2019). • Findings indicate the potential efficacy of siRNA application for CRPC therapy and other cancers.
    • 127. Oner E, Kotmakci M, Baird AM et al. Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small-molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. J. Nanobiotechnology 19, 71 (2021).
    • 128. Liao X, Tang S, Thrasher JB, Griebling TL, Li B. Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol. Cancer Ther. 4(4), 505–515 (2005). •• The study provides promising results of using siRNA for cell-targeted gene silencing in prostate cancer (PCa).
    • 129. Yang C, Ma D, Lu L, Yang X, Xi Z. Synthesis of KUE-siRNA conjugates for prostate cancer cell-targeted gene silencing. ChemBioChem 22(19), 2888–2895 (2021).
    • 130. Lee JB, Zhang K, Tam YYC et al. Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo. Int. J. Cancer 131(5), E781–790 (2012).
    • 131. Ashrafizadeh M, Hushmandi K, Moghadam ER et al. Progress in delivery of siRNA-based therapeutics employing nano-vehicles for treatment of prostate cancer. Bioengineering 7(3), 91 (2020).
    • 132. Hattab D, Gazzali AM, Bakhtiar A. Clinical advances of siRNA-based nanotherapeutics for cancer treatment. Pharmaceutics 13(7), 1009 (2021).
    • 133. Cheng H, Snoek R, Ghaidi F, Cox ME, Rennie PS. Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. Cancer Res. 66(21), 10613–10620 (2006).
    • 134. Luna Velez MV, Verhaegh GW, Smit F, Sedelaar JPM, Schalken JA. Suppression of prostate tumor cell survival by antisense oligonucleotide-mediated inhibition of AR-V7 mRNA synthesis. Oncogene 38(19), 3696–3709 (2019).
    • 135. Yang J, Xie SX, Huang Y et al. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice. Nanomedicine 7(9), 1297–1309 (2012). •• Findings reveal that a form of ‘death induced by survival gene elimination’ mechanism in PCa cells which targets androgen receptor signaling may be a novel therapeutic strategy for PCa.
    • 136. Corbin JM, Georgescu C, Wren JD, Xu C, Asch AS, Ruiz-Echevarría MJ. Seed-mediated RNA interference of androgen signaling and survival networks induces cell death in prostate cancer cells. Mol. Ther. Nucleic Acids 24, 337–351 (2021).
    • 137. Hååg P, Bektic J, Bartsch G, Klocker H, Eder IE. Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J. Steroid Biochem. Mol. Biol. 96(3–4), 251–258 (2005).
    • 138. Sun A, Tang J, Terranova PF, Zhang X, Thrasher JB, Li B. Adeno-associated virus-delivered short hairpin-structured RNA for androgen receptor gene silencing induces tumor eradication of prostate cancer xenografts in nude mice: a preclinical study. Int. J. Cancer 126(3), 764–774 (2010).
    • 139. Snoek R, Cheng H, Margiotti K et al. In vivo knockdown of the androgen receptor results in growth inhibition and regression of well-established, castration-resistant prostate tumors. Clin. Cancer Res. 15(1), 39–47 (2009).
    • 140. Walsh EE, Frenck RW, Falsey AR et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N. Engl. J. Med. 383(25), 2439–2450 (2020).
    • 141. Haas EJ, Angulo FJ, McLaughlin JM et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet 397(10287), 1819–1829 (2021).
    • 142. Corbett KS, Flynn B, Foulds KE et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med. 383(16), 1544–1555 (2020).
    • 143. Wang X, Liu C, Rcheulishvili N et al. Strong immune responses and protection of PcrV and OprF-I mRNA vaccine candidates against Pseudomonas aeruginosa. NPJ Vaccines 8(1), 76 (2023).
    • 144. Liu C, Rcheulishvili N, Shen Z et al. Development of an LNP-encapsulated mRNA-RBD vaccine against SARS-CoV-2 and its variants. Pharmaceutics 14(5), 1101 (2022).
    • 145. Papukashvili D, Rcheulishvili N, Liu C, Ji Y, He Y, Wang PG. Self-amplifying RNA approach for protein replacement therapy. Int. J. Mol. Sci. 23(21), 12884 (2022).
    • 146. Liu C, Papukashvili D, Dong Y et al. Identification of tumor antigens and design of mRNA vaccine for colorectal cancer based on the immune subtype. Front. Cell Dev. Biol. 9, 783527 (2022).
    • 147. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20(11), 817–838 (2021).
    • 148. Lu ZJ, Mathews DH. OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Res. 36(Web Server issue), 104–108 (2008).
    • 149. Mahmoodi Chalbatani G, Dana H, Gharagouzloo E et al. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int. J. Nanomedicine 14, 3111–3128 (2019).
    • 150. Wadosky KM, Koochekpour S. Androgen receptor splice variants and prostate cancer: from bench to bedside. Oncotarget 8(11), 18550–18576 (2017).
    • 151. Zheng Z, Li J, Liu Y et al. The crucial role of AR-V7 in enzalutamide-resistance of castration-resistant prostate cancer. Cancers (Basel) 14(19), 4877 (2022).
    • 152. Zhao S, Liao J, Zhang S, Shen M, Li X, Zhou L. The positive relationship between androgen receptor splice variant-7 expression and the risk of castration-resistant prostate cancer: a cumulative analysis. Front. Oncol. 13, 1053111 (2023).
    • 153. Sobhani N, Neeli PK, D'Angelo A et al. AR-V7 in metastatic prostate cancer: a strategy beyond redemption. Int. J. Mol. Sci. 22, 5515 (2021).
    • 154. Liu X, Ledet E, Li D et al. A whole blood assay for AR-V7 and ARv567es in patients with prostate cancer. J. Urol. 196(6), 1758–1763 (2016).
    • 155. Bernemann C, Humberg V, Thielen B et al. Comparative analysis of AR variant AR-V567es mRNA detection systems reveals eminent variability and questions the role as a clinical biomarker in prostate cancer. Clin. Cancer Res. 25(13), 3856–3864 (2019).
    • 156. Kohli M, Ho Y, Hillman DW et al. Androgen receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin. Cancer Res. 23(16), 4704–4715 (2017).
    • 157. Kallio HML, Hieta R, Latonen L et al. Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases. Br. J. Cancer 119(3), 347–356 (2018).
    • 158. Ledford H. Gene-silencing drug approved. Nature 560(7718), 291–292 (2018).
    • 159. Hoy SM. Patisiran: first global approval. Drugs 78(15), 1625–1631 (2018).
    • 160. Mullard A. RNAi agents score an approval and drive an acquisition. Nat. Rev. Drug Discov. 19(1), 10 (2020).
    • 161. Mullard A. 2020 FDA drug approvals. Nat. Rev. Drug Discov. 20(2), 85–90 (2021).
    • 162. Mullard A. 2021 FDA approvals. Nat. Rev. Drug Discov. 21(2), 83–88 (2022).