We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Opportunities in pharmacogenomics for the treatment of Alzheimer's disease

    Ramón Cacabelos

    *Author for correspondence:

    E-mail Address: rcacabelos@ucjc.edu

    Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain

    EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain

    ,
    Clara Torrellas

    Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain

    EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain

    &
    Iván Carrera

    Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain

    EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain

    Published Online:https://doi.org/10.2217/fnl.15.12

    ABSTRACT 

    In Alzheimer's disease (AD), approximately 10–20% of direct costs are associated with pharmacological treatment. Pharmacogenomics account for 30–90% variability in pharmacokinetics and pharmacodynamics. Genes potentially involved in the pharmacogenomics outcome include pathogenic, mechanistic, metabolic, transporter and pleiotropic genes. Over 75% of the Caucasian population is defective for the CYP2D6+2C9+2C19 cluster. Polymorphic variants in the APOE-TOMM40 region influence AD pharmacogenomics. APOE-4 carriers are the worst responders and APOE-3 carriers are the best responders to conventional treatments. TOMM40 poly T-S/S carriers are the best responders, VL/VL and S/VL carriers are intermediate responders and L/L carriers are the worst responders. The haplotype 4/4-L/L is probably responsible for early onset of the disease, a faster cognitive decline and a poor response to different treatments.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Suehs BT, Davis CD, Alvir J et al. The clinical and economic burden of newly diagnosed Alzheimer's disease in a medicare advantage population. Am. J. Alzheimers Dis. Other Demen. 28(4), 384–392 (2013).
    • 2 National Center for Health Statistics (NCHS). http://www.cdc.gov/nchs/.
    • 3 Centers for Disease Control and Prevention (CDC). http://www.cdc.gov.
    • 4 Herrmann N, Tam DY, Balshaw R et al. The relation between disease severity and cost of caring for patients with Alzheimer disease in Canada. Can. J. Psychiatry 55(12), 768–775 (2010).
    • 5 Cacabelos R. The path to personalized medicine in mental disorders. In: The Handbook Of Neuropsychiatric Biomarkers, Endophenotypes And Genes (Volume 6). Ritsner MS (Ed.). Springer, Dordrecht, The Netherlands, 3–63 (2011).
    • 6 Cacabelos R. Pharmacogenomics and therapeutic strategies for dementia. Expert Rev. Mol. Diagn. 9(6), 567–611 (2009).
    • 7 Cacabelos R, Fernandez-Novoa L, Lombardi V, Kubota Y, Takeda M. Molecular genetics of Alzheimer's disease and aging. Methods Find. Exp. Clin. Pharmacol. 27(Suppl. A), 1–573 (2005).
    • 8 Cacabelos R. Alzheimer's disease 2011: where are we heading? Gen-T 8, 54–86 (2011).
    • 9 Cacabelos R, Takeda M. Pharmacogenomics, nutrigenomics and future therapeutics in Alzheimer's disease. Drugs Future 31(Suppl. B), 5–146 (2006).
    • 10 Cacabelos R. Donepezil in Alzheimer's disease: from conventional trials to pharmacogenetics. Neuropsychiatr. Dis. Treat. 3(3), 303–333 (2007).
    • 11 Cacabelos R. Pharmacogenomics in Alzheimer's disease. Methods Mol. Biol. 448, 213–357 (2008).
    • 12 Cacabelos R, Martínez-Bouza R. Genomics and pharmacogenomics of dementia. CNS Neurosci. Ther. 17(5), 566–576 (2011).
    • 13 Cacabelos R. Pharmacogenomics and therapeutic prospects in Alzheimer's disease. Expert Opin. Pharmacother. 6(12), 1967–1987 (2005).
    • 14 Cacabelos R. Pharmacogenomics and therapeutic prospects in dementia. Eur. Arch. Psychiatry Clin. Neurosci. 258(Suppl. 1), 28–47 (2008).
    • 15 Cacabelos R. Pharmacogenetic basis for therapeutic optimization in Alzheimer's disease. Mol. Diagn. Ther. 11(6), 385–405 (2007).
    • 16 Cacabelos R, Llovo R, Fraile C, Fernández-Novoa L. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer's disease pharmacogenetics. Curr. Alzheimer Res. 4(4), 479–500 (2007).
    • 17 Cacabelos R. Molecular pathology and pharmacogenomics in Alzheimer's disease: polygenic-related effects of multifactorial treatments on cognition, anxiety and depression. Methods Find. Exp. Clin. Pharmacol. 29(Suppl. A), 1–91 (2005).• Extensive paper with original data on the pharmacogenetics of Alzheimer's disease (AD).
    • 18 Cacabelos R. Pharmacogenomics, nutrigenomics and therapeutic optimization in Alzheimer's disease. Aging Health 1, 303–348 (2005).
    • 19 Loveman E, Green C, Kirby J et al. The clinical and cost–effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer's disease. Health Technol. Assess. 10(1), 1–160 (2006).
    • 20 Cacabelos R, Álvarez A, Lombardi V et al. Pharmacological treatment of Alzheimer disease: from psychotropic drugs and cholinesterase inhibitors to pharmacogenomics. Drugs Today (Barc.) 36(7), 415–499 (2000).
    • 21 Giacobini E. Cholinesterases in human brain: the effect of cholinesterase inhibitors on Alzheimer's disease and related disorders. In: The Brain Cholinergic System In Health And Disease. Giacobini E, Pepeu G (Eds). Informa Healthcare, Oxon, UK, 235–264 (2006).
    • 22 Reisberg B, Doody R, Stoffler A et al. Memantine in moderate-to-severe Alzheimer's disease. N. Engl. J. Med. 348(14), 1333–1341 (2003).
    • 23 Schenk DB, Seubert P, Grundman M, Black R. Aβ immunotherapy: lessons learned for potential treatment of Alzheimer's disease. Neurodegener. Dis. 2(5), 255–260 (2005).
    • 24 Wisniewski T, Boutajangout A. Vaccination as a therapeutic approach to Alzheimer's disease. Mt Sinai J. Med. 77(1), 17–31 (2010).
    • 25 de Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol. 6(2), 99–107 (2010).
    • 26 Shelton CC, Zhu L, Chau D et al. Modulation of gamma-secretase specificity using small molecule allosteric inhibitors. Proc. Natl Acad. Sci. USA 106(48), 20228–20233 (2009).
    • 27 Lambracht-Washington D, Qu BX, Fu M, Eagar TN, Stüve O, Rosenberg RN. DNA beta-amyloid (1–42) trimer immunization for Alzheimer disease in a wild-type mouse mode. JAMA 302(16), 1796–1802 (2009).
    • 28 Carrera I, Etcheverría I, Fernández-Novoa L, Lombardi V, Cacabelos R, Vigo C. Vaccine development to treat Alzheimer's disease Neuropathology in APP/PS1 Transgenic Mice. Int. J. Alzheimers Dis. 2012, 376138 (2012).• Report on the generation of a dual vaccine (preventive/therapeutic) against AD.
    • 29 Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Meth. Mol. Biol. 1175, 323–556 (2014).•• The newest review on AD pharmacogenetics with over 600 different experimental products for the treatment of AD.
    • 30 Kamble P, Chen H, Sherer JT, Aparasu RR. Use of antipsychotics among elderly nursing home residents with dementia in the US: an analysis of National Survey Data. Drugs Aging 26(6), 483–492 (2009).
    • 31 Liperoti R, Onder G, Landi F et al. All-cause mortality associated with atypical and conventional antipsychotics among nursing home residents with dementia: a retrospective cohort study. J. Clin. Psychiatry 70(10), 1340–1347 (2009).
    • 32 Wang J, Zhao Z, Lin E et al. Unintended effects of cardiovascular drugs on the pathogenesis of Alzheimer's disease. PLoS ONE 8(6), e65232 (2013).
    • 33 Montastruc F, Gardette V, Cantet C et al. Potentially inappropriate medication use among patients with Alzheimer disease in the REAL. FR cohort: be aware of atropinic and benzodiazepine drugs! Eur. J. Clin. Pharmacol. 69(8), 1589–1597 (2013).
    • 34 Cacabelos R. Pharmacogenomics of central nervous system (CNS) drugs. Drug Dev. Res. 73, 461–476 (2012).
    • 35 Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39(1), 17–23 (2007).
    • 36 Selkoe DJ, Podlisny MB. Deciphering the genetic basis of Alzheimer's disease. Annu. Rev. Genomics Hum. Genet. 3, 67–99 (2002).
    • 37 Suh YH, Checler F. Amyloid precursor protein, presenilins, and α-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer's disease. Pharmacol. Rev. 54(3), 469–525 (2002).
    • 38 Larner AJ. Presenilin-1 mutations in Alzheimer's disease: an update on genotype-phenotype relationships. J. Alzheimers Dis. 37(4), 653–659 (2013).
    • 39 Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297(5580), 353–356 (2002).
    • 40 Hooli BV, Kovacs-Vajna ZM, Mullin K et al. Rare autosomal copy number variations in early-onset familial Alzheimer's disease. Mol. Psychiatry 19(6), 676–681 (2014).
    • 41 Cacabelos R, Fernández-Novoa L, Martínez-Bouza R et al. Future trends in the pharmacogenomics of brain disorders and dementia: influence of APOE and CYP2D6 variants. Pharmaceuticals 3(10), 3040–3100 (2010).
    • 42 Xie HG, Kim RB, Wood AJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annu. Rev. Pharm. Toxicol. 41, 815–850 (2001).
    • 43 World Guide for Drug Use and Pharmacogenomics. Cacabelos R (Ed.). EuroEspes Publishing, Corunna, Spain (2012).•• The first World Guide of Pharmacogenomics (more than 3000 pages, over 5000 products and 1500 genes).
    • 44 Preissner S, Kroll K, Mathias M et al. SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP–drug interactions. Nucleic Acids Res. 38(Database issue), D237–D243 (2010).
    • 45 Whirl-Carrillo M, McDonagh EM, Hebert JM et al. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 92(4), 414–417 (2012).
    • 46 Isaza CA, Henao J, López AM, Cacabelos R. Isolation, sequence and genotyping of the drug metabolizer CYP2D6 gene in the Colombian population. Meth. Find. Exp. Clin. Pharmacol. 22(9), 695–705 (2000).
    • 47 Mizutani T. PM frequencies of major CYPs in Asians and Caucasians. Drug Metab. Rev. 35(2–3), 99–106 (2003).
    • 48 Ozawa S, Soyama A, Saeki M et al. Ethnic differences in genetic polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metab. Pharmacokin. 19(2), 83–95 (2004).
    • 49 Weinshilboum RM, Wang L. Pharmacogenetics and pharmacogenomics: development, science, and translation. Annu. Rev. Genomics Hum. Genet. 7, 223–245 (2006).
    • 50 Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug–drug interactions. Curr. Drug Targets 12(5), 600–620 (2011).
    • 51 Haufroid V. Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition. Curr. Drug Targets 12(5), 631–646 (2011).
    • 52 Li G, Gu HM, Zhang DW. ATP-binding cassette transporters and cholesterol translocation. IUBMB Life 65, 505–512 (2013).
    • 53 Cacabelos R, López-Muñoz F. The ABCB1 transporter in Alzheimer's disease. Clin. Exp. Pharmacol. 4, e128 (2014).
    • 54 Reitz C, Jun G, Naj A et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset Alzheimer disease in African Americans. JAMA 309(14), 1483–1492 (2013).
    • 55 Abuznait AH, Kaddoumi A. Role of ABC transporters in the pathogenesis of Alzheimer's disease. ACS Chem. Neurosci. 3(11), 820–831 (2012).
    • 56 Wolf A, Bauer B, Hartz AM. ABC transporters and the Alzheimer's disease enigma. Front. Psychiatry 3, 54 (2012).
    • 57 Qosa H, Abuznait AH, Hill RA, Kaddoumi A. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer's disease. J. Alzheimers Dis. 31(1), 151–165 (2012).
    • 58 Karch CM, Jeng AT, Nowotny P, Cady J, Cruchaga C, Goate AM. Expression of novel Alzheimer's disease risk genes in control and Alzheimer's disease brains. PLoS ONE 7(11), e50976 (2012).
    • 59 van Assema DM, Lubberink M, Bauer M et al. Blood–brain barrier P-glycoprotein function in Alzheimer's disease. Brain 135, 181–189 (2012).
    • 60 Silverberg GD, Messier AA, Miller MC et al. Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging. J. Neuropathol. Exp. Neurol. 69(10), 1034–1043 (2010).
    • 61 Fehér Á1, Juhász A, László A, Pákáski M, Kálmán J, Janka Z. Association between the ABCG2 C421A polymorphism and Alzheimer's disease. Neurosci. Lett. 550, 51–54 (2013).
    • 62 van Assema DM, Lubberink M, Rizzu P et al. Blood–brain barrier P-glycoprotein function in healthy subjects and Alzheimer's disease patients: effect of polymorphisms in the ABCB1 gene. EJNMMI Res. 2(1), 57 (2012).
    • 63 Kohen R, Shofer JB, Korvatska O et al. ABCB1 genotype and CSF beta-amyloid in Alzheimer disease. J. Geriatr. Psychiatry Neurol. 24(2), 63–66 (2011).
    • 64 Frankfort SV, Doodeman VD, Bakker R et al. ABCB1 genotypes and haplotypes in patients with dementia and age-matched non-demented control patients. Mol. Neurodegener. 1, 13 (2006).
    • 65 Chen KD, Chang PT, Ping YH, Lee HC, Yeh CW, Wang PN. Gene expression profiling of peripheral blood leukocytes identifies and validates ABCB1 as a novel biomarker for Alzheimer's disease. Neurobiol. Dis. 43(3), 698–705 (2011).
    • 66 Elali A, Rivest S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer's disease. Front. Physiol. 4, 45 (2013).
    • 67 Cascorbi I, Flüh C, Remmler C et al. Association of ATP-binding cassette transporter variants with the risk of Alzheimer's disease. Pharmacogenomics 14(5), 485–494 (2013).
    • 68 Namanja HA, Emmert D, Pires MM, Hrycyna CA, Chmielewski J. Inhibition of human P-glycoprotein transport and substrate binding using a galantamine dimer. Biochem. Biophys. Res. Commun. 388(4), 672–676 (2009).
    • 69 Cacabelos R. The metabolomics paradigm of pharmacogenomics in complex disorders. Metabolomics 2, e119 (2012).
    • 70 Hosoya K, Tachikawa M. Roles of organic anion/cation transporters at the blood-brain and blood-cerebrospinal fluid barriers involving uremic toxins. Clin. Exp. Nephrol. 15(4), 478–485 (2011).
    • 71 Carl SM, Lindley DJ, Couraud PO et al. ABC and SLC transporter expression and Pot substrate characterization across the human CMEC/D3 blood–brain barrier cell line. Mol. Pharm. 7(4), 1057–1068 (2010).
    • 72 Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokinet. 41(10), 719–739 (2002).
    • 73 Noetzli M, Eap CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer's disease. Clin. Pharmacokinet. 52(4), 225–241 (2013).•• Excellent paper on the pharmacokinetic and pharmacodynamic properties of selected antidementia drugs.
    • 74 Pilotto A, Franceschi M, D'Onofrio G et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology 73, 761–767 (2009).
    • 75 Albani D, Martinelli Boneschi F, Biella G et al. Replication study to confirm the role of CYP2D6 polymorphism rs1080985 on donepezil efficacy in Alzheimer's disease patients. J. Alzheimers Dis. 30(4), 745–749 (2012).
    • 76 Savino M, Seripa D, Gallo AP et al. Effectiveness of a high-throughput genetic analysis in the identification of responders/non-responders to CYP2D6-metabolized drugs. Clin. Lab. 57(11–12), 887–893 (2011).
    • 77 Seripa D, Bizzarro A, Pilotto A et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer's disease. Pharmacogenet. Genomics 21(4), 225–230 (2011).
    • 78 Zhong Y, Zheng X, Miao Y, Wan L, Yan H, Wang B. Effect of CYP2D6*10 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer's disease. Am. J. Med. Sci. 345(3), 222–226 (2013).
    • 79 Varsaldi F, Miglio G, Scordo MG et al. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer's disease patients. Eur. J. Clin. Pharmacol. 62(9), 721–726 (2006).
    • 80 Chianella C, Gragnaniello D, Maisano Delser P et al. BCHE and CYP2D6 genetic variation in Alzheimer's disease patients treated with cholinesterase inhibitors. Eur. J. Clin. Pharmacol. 67(11), 1147–1157 (2011).
    • 81 Mannheimer B, Wettermark B, Lundberg M, Pettersson H, von Bahr C, Eliasson E. Nationwide drug-dispensing data reveal important differences in adherence to drug label recommendations on CYP2D6-dependent drug interactions. Br. J. Clin. Pharmacol. 69(4), 411–417 (2010).
    • 82 Klimkowicz-Mrowiec A, Wolkow P, Sado M et al. Influence of rs1080985 single nucleotide polymorphism of the CYP2D6 gene on response to treatment with donepezil in patients with Alzheimer's disease. Neuropsychiatr. Dis. Treat. 9, 1029–1033 (2013).
    • 83 Magliulo L, Dahl ML, Lombardi G et al. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment?. Eur. J. Clin. Pharmacol. 67, 47–54 (2011).
    • 84 Lilienfeld S. Galantamine: a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease. CNS Drug Rev. 8(2), 159–176 (2002).
    • 85 Farlow MR. Clinical pharmacokinetics of galantamine. Clin. Pharmacokinet. 42(15), 1383–1392 (2003).
    • 86 Zhao Q, Brett M, Van Osselaer N et al. Galantamine pharmacokinetics, safety, and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J. Clin. Pharmacol. 42(9), 1002–1010 (2002).
    • 87 Mannens GS, Snel CA, Hendrickx J et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab. Dispos. 30(5), 553–563 (2002).
    • 88 Noetzli M, Guidi M, Ebbing K et al. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations. Ther. Drug Monit. 35(2), 270–275 (2013).
    • 89 Clarke JA, Cutler M, Gong I, Schwarz UI, Freeman D, Dasgupta M. Cytochrome P450 2D6 phenotyping in an elderly population with dementia and response to galantamine in dementia: a pilot study. Am. J. Geriatr. Pharmacother. 9(4), 224–233 (2011).
    • 90 Bentué-Ferrer D, Tribut O, Polard E, Allain H. Clinically significant drug interactions with cholinesterase inhibitors: a guide for neurologists. CNS Drugs 17(13), 947–963 (2003).
    • 91 Huang F, Fu Y. A review of clinical pharmacokinetics and pharmacodynamics of galantamine, a reversible acetylcholinesterase inhibitor for the treatment of Alzheimer's disease, in healthy subjects and patients. Curr. Clin. Pharmacol. 5(2), 115–124 (2010).
    • 92 Zhai XJ, Lu YN. Food–drug interactions: effect of capsaicin on the pharmacokinetics of galantamine in rats. Xenobiotica 42(11), 1151–1155 (2012).
    • 93 Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Clin. Ther. 20(4), 634–647 (1998).
    • 94 Sonali N, Tripathi M, Sagar R, Velpandian T, Subbiah V. Clinical effectiveness of rivastigmine monotherapy and combination therapy in Alzheimer's patients. CNS Neurosci. Ther. 19(2), 91–97 (2013).
    • 95 Lupp A, Appenroth D, Fang L, Decker M, Lehmann J, Fleck C. Tacrine-NO donor and tacrine-ferulic acid hybrid molecules as new anti-Alzheimer agents: hepatotoxicity and influence on the cytochrome P450 system in comparison to tacrine. Arzneimittelforschung 60(5), 229–237 (2010).
    • 96 Alfirevic A, Mills T, Carr D et al. Tacrine-induced liver damage: an analysis of 19 candidate genes. Pharmacogenet. Genomics 17(12), 1091–1100 (2007).
    • 97 Yang Z, Zhou X, Zhang Q. Effectiveness and safety of memantine treatment for Alzheimer's disease. J. Alzheimers Dis. 36(3), 445–458 (2013).
    • 98 Micuda S, Mundlova L, Anzenbacherova E et al. Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur. J. Clin. Pharmacol. 60(8), 583–589 (2004).
    • 99 Noetzli M, Guidi M, Ebbing K et al. Population pharmacokinetic study of memantine: effects of clinical and genetic factors. Clin. Pharmacokinet. 52(3), 211–223 (2013).
    • 100 Cacabelos R. The application of functional genomics to Alzheimer's disease. Pharmacogenomics 4(5), 597–621 (2003).
    • 101 Roses AD. Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat. Rev. Genet. 5(9), 645–656 (2004).• Pioneering proposals for drug development and pharmacogenetics of AD.
    • 102 Roses AD. Pharmacogenetics in drug discovery and development: a translational perspective. Nat. Rev. Drug Discov. 7(10), 807–817 (2008).
    • 103 Roses AD. The medical and economic roles of pipeline pharmacogenetics: Alzheimer's disease as a model of efficacy and HLA-B(∗)5701 as a model of safety. Neuropsychopharmacology 34(1), 6–17 (2009).
    • 104 Roses AD, Saunders AM, Huang Y, Strum J, Weisgraber KH, Mahley RW. Complex disease-associated pharmacogenetics: drug efficacy, drug safety, and confirmation of a pathogenic hypothesis (Alzheimer's disease). Pharmacogenomics J. 7(1), 10–28 (2007).
    • 105 Risner ME, Saunders AM, Altman JF et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease. Pharmacogenomics J. 6(4), 246–254 (2006).
    • 106 Takei N, Miyashita A, Tsukie T et al. Genetic association study on in and around the APOE in late-onset Alzheimer disease in Japanese. Genomics 93(5), 441–448 (2009).
    • 107 Potkin SG, Guffanti G, Lakatos A et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease. PLoS ONE 4(8), e6501 (2009).
    • 108 Roses AD. An inherited variable poly-T repeat genotype in TOMM40 in Alzheimer disease. Arch. Neurol. 67(5), 536–541 (2010).
    • 109 Roses AD, Lutz MW, Amrine-Madsen H et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer's disease. Pharmacogenomics J. 10(5), 375–384 (2010).• First report on the effect of TOMM40 variants on the age at onset in patients with AD.
    • 110 Roses AD, Saunders AM, Lutz MW et al. New applications of disease genetics and pharmacogenetics to drug development. Curr. Opin. Pharmacol. 14, 81–89 (2014).
    • 111 Roses AD, Lutz MW, Crenshaw DG, Grossman I, Saunders AM, Gottschalk WK. TOMM40 and APOE: requirements for replication studies of association with age of disease onset and enrichment of a clinical trial. Alzheimers Dement. 9(2), 132–136 (2013).
    • 112 Lutz MW, Crenshaw DG, Saunders AM, Roses AD. Genetic variation at a single locus and age of onset for Alzheimer's disease. Alzheimers Dement. 6(2), 125–131 (2010).
    • 113 Shen L, Kim S, Risacher SL et al. Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. Neuroimage 53(3), 1051–1063 (2010).
    • 114 Linnertz C, Saunders AM, Lutz MW et al. Characterization of the poly-T variant in the TOMM40 gene in diverse populations. PLoS ONE 7(2), e30994 (2012).
    • 115 Omoumi A, Fok A, Greenwood T, Sadovnick AD, Feldman HH, Hsiung GY. Evaluation of late-onset Alzheimer disease genetic susceptibility risks in a Canadian population. Neurobiol. Aging 35, 936.e5–12 (2014).
    • 116 Bagnoli S, Piaceri I, Tedde A et al. TOMM40 polymorphisms in Italian Alzheimer's disease and frontotemporal dementia patients. Neurol. Sci. 34(6), 995–998 (2013).
    • 117 Ma XY, Yu JT, Wang W et al. Association of TOMM40 polymorphisms with late-onset Alzheimer's disease in a Northern Han Chinese population. Neuromolecular. Med. 15(2), 279–287 (2013).
    • 118 Valant V, Keenan BT, Anderson CD et al. TOMM40 in cerebral amyloid angiopathy related intracerebral hemorrhage: comparative genetic analysis with Alzheimer's disease. Transl. Stroke Res. 3(Suppl. 1), 102–112 (2012).
    • 119 Vounou M, Janousova E, Wolz R et al. Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease. Neuroimage 60(1), 700–716 (2012).
    • 120 Bernardi L, Gallo M, Anfossi M et al. Role of TOMM40 rs10524523 polymorphism in onset of Alzheimer's disease caused by the PSEN1 M146L mutation. J. Alzheimers Dis. 37(2), 285–289 (2013).
    • 121 Sebastiani P, Solovieff N, Dewan AT et al. Genetic signatures of exceptional longevity in humans. PLoS ONE 7, e29848 (2012).
    • 122 Beekman M, Blanché H, Perola M et al. Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study. Aging Cell 12(2), 184–193 (2013).
    • 123 Zhang C, Pierce BL. Genetic susceptibility to accelerated cognitive decline in the US Health and Retirement Study. Neurobiol. Aging 35(6), 1512.e11–8 (2014).
    • 124 Davies G, Harris SE, Reynolds CA et al. A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol. Psychiatry 19(1), 76–87 (2014).
    • 125 Hayden KM, McEvoy JM, Linnertz C et al. A homopolymer polymorphism in the TOMM40 gene contributes to cognitive performance in aging. Alzheimers Dement. 8(5), 381–388 (2012).
    • 126 Linnertz C, Anderson L, Gottschalk W et al. The cis-regulatory effect of an Alzheimer's disease-associated poly-T locus on expression of TOMM40 and apolipoprotein E genes. Alzheimers Dement. S1552–5260(13), 02801-X (2014).
    • 127 Lyall DM, Harris SE, Bastin ME et al. Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiol. Aging 35(6), 1513.e25–33 (2014).
    • 128 Johnson SC, La Rue A, Hermann BP et al. The effect of TOMM40 poly-T length on gray matter volume and cognition in middle-aged persons with APOE ε3/ε3 genotype. Alzheimers Dement. 7(4), 456–465 (2011).
    • 129 Elias-Sonnenschein LS, Helisalmi S, Natunen T et al. Genetic loci associated with Alzheimer's disease and cerebrospinal fluid biomarkers in a Finnish case–control cohort. PLoS ONE 8(4), e59676 (2013).
    • 130 Silver M, Janousova E, Hua X, Thompson PM, Montana G. Alzheimer's disease neuroimaging initiative: identification of gene pathways implicated in Alzheimer's disease using longitudinal imaging phenotypes with sparse regression. Neuroimage 63(3), 1681–1694 (2012).
    • 131 Kim S, Swaminathan S, Shen L et al. Genome-wide association study of CSF biomarkers Abeta1–42, t-tau, and p-tau181p in the ADNI cohort. Neurology 76(1), 69–79 (2011).
    • 132 Bruno D, Pomara N, Nierenberg J et al. Levels of cerebrospinal fluid neurofilament light protein in healthy elderly vary as a function of TOMM40 variants. Exp. Gerontol. 47(5), 347–352 (2012).
    • 133 McFarquhar M, Elliott R, McKie S et al. TOMM40 rs2075650 may represent a new candidate gene for vulnerability to major depressive disorder. Neuropsychopharmacology 39(7), 1743–1753 (2014).
    • 134 Mastaglia FL, Rojana-udomsart A, James I et al. Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms. Neuromusc. Disord. 23(12), 969–974 (2013).
    • 135 Seripa D, Bizzarro A, Pilotto A et al. TOMM40, APOE, and APOC1 in primary progressive aphasia and frontotemporal dementia. J. Alzheimers Dis. 31(4), 731–740 (2012).
    • 136 Ellis J, Lange EM, Li J et al. Large multiethnic candidate gene study for C-reactive protein levels: identification of a novel association at CD36 in African Americans. Hum. Genet. 133(8), 985–995 (2014).
    • 137 Zhou L, He M, Mo Z et al. A genome wide association study identifies common variants associated with lipid levels in the Chinese population. PLoS ONE 8(12), e82420 (2013).
    • 138 Zhang Z, Tao L, Chen Z et al. Association of genetic loci with blood lipids in the Chinese population. PLoS ONE 6(11), e27305 (2011).
    • 139 Jiang R, Brummett BH, Hauser ER et al. Chronic family stress moderates the association between a TOMM40 variant and triglyceride levels in two independent Caucasian samples. Biol. Psychol. 93(1), 184–189 (2013).
    • 140 Guo Y, Lanktree MB, Taylor KC et al. Gene-centric meta-analyses of 108 912 individuals confirm known body mass index loci and reveal three novel signals. Hum. Mol. Genet. 22(1), 184–201 (2012).
    • 141 Middelberg RP, Ferreira MA, Henders AK et al. Genetic variants in LPL, OASL and TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-related traits. BMC Med. Genet. 12, 123 (2011).
    • 142 Jeemon P, Pettigrew K, Sainsbury C, Prabhakaran D, Padmanabhan S. Implications of discoveries from genome-wide association studies in current cardiovascular practice. World J. Cardiol. 3(7), 230–247 (2011).
    • 143 Ronald J, Rajagopalan R, Ranchalis JE et al. Analysis of recently identified dyslipidemia alleles reveals two loci that contribute to risk for carotid artery disease. Lipids Health Dis. 8, 52 (2009).
    • 144 Cacabelos R, Goldgaber D, Vostrov A et al. APOE-TOMM40 in the pharmacogenomics of dementia. J. Pharmacogenomics Pharmacoproteomics 5, 135 (2014).•• First paper reporting the influence of TOMM40-APOE variants on AD pharmacogenetics.
    • 145 Goldman JS, Hahn SE, Catania JW et al. Genetic counseling and testing for Alzheimer disease: joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet. Med. 13(6), 597–605 (2011).
    • 146 Schipper HM. Presymptomatic apolipoprotein E genotyping for Alzheimer's disease risk assessment and prevention. Alzheimers Dement. 7, e118–e123 (2011).
    • 147 Kopits IM, Chen C, Roberts JS, Uhlmann W, Green RC. Willingness to pay for genetic testing for Alzheimer's disease: a measure of personal utility. Genet. Test Mol. Biomarkers 15(12), 871–875 (2011).
    • 148 Ohara T, Ninomiya T, Kubo M et al. Apolipoprotein genotype for prediction of Alzheimer's disease in older Japanese: the hisayama study. J. Am. Geriatr. Soc. 59(6), 1074–1079 (2011).
    • 149 Sperling RA, Aisen PS, Beckett LA et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7(3), 280–292 (2011).
    • 150 Akinleye I, Roberts JS, Royal CD et al. Differences between African American and white research volunteers in their attitudes, beliefs and knowledge regarding genetic testing for Alzheimer's disease. J. Genet. Couns. 20(6), 650–659 (2011).
    • 151 Sowell RA, Owen JB, Butterfield DA. Proteomics in animal models of Alzheimer's and Parkinson's disease. Ageing Res. Rev. 8(1), 1–17 (2009).
    • 152 Britschgi M, Rufibach K, Bauer Huang SL et al. Modeling of pathological traits in Alzheimer's disease based on systemic extracellular signaling proteome. Mol. Cell Proteomics 10, M111, 008862 (2011).
    • 153 Khachaturian ZS, Petersen RC, Gauthier S et al. A roadmap for the prevention of dementia: the inaugural Leon Thal symposium. Alzheimers Dement. 4(3), 156–163 (2008).
    • 154 Cacabelos R. Role of nutrition in the prevention of Alzheimer's disease. Aging Health 1, 359–362 (2005).
    • 155 Crenshaw DG, Gottschalk WK, Lutz MW et al. Using genetics to enable studies on the prevention of Alzheimer's disease. Clin. Pharmacol. Ther. 93(2), 177–185 (2013).
    • 156 Gelfand Y, Kaplitt MG. Gene therapy for psychiatric disorders. World Neurosurg. 80(3–4), S32.e11–8 (2012).
    • 157 Xie Z, Dong Y, Maeda U, Xia W, Tanzi RE. RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing. Transl. Neurodegener. 1(1), 8 (2012).
    • 158 Cacabelos R, Torrellas C, López-Muñoz F. Epigenomics of Alzheimer's disease. J. Exp. Clin. Med. 6(3), 75–82 (2014).
    • 159 Cacabelos R, Torrellas C. Epigenetic drug discovery for Alzheimer's disease. Expert Opin. Drug Discov. 3, 1–28 (2014).
    • 160 Patel L, Grossberg GT. Combination therapy for Alzheimer's disease. Drugs Aging 28(7), 539–546 (2011).
    • 161 Need AC, Motulsky AG, Goldstein DB. Priorities and standards in pharmacogenetic research. Nat. Genet. 37(7), 671–681 (2005).
    • 162 Chang PK, Boridy S, McKinney RA, Maysinger D. Letrozole potentiates mitochondrial and dendritic spine impairments induced by β-amyloid. J. Aging Res. 2013, 538979 (2013).
    • 163 Janicki SC, Park N, Cheng R, Schupf N, Clark LN, Lee JH. Aromatase variants modify risk for Alzheimer's disease in a multiethnic female cohort. Dement. Geriatr. Cogn. Disord. 35(5–6), 340–346 (2013).
    • 164 Friedland RP. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J. Alzheimers Dis. doi:10.3233/JAD-142841 (2015) (Epub ahead of print).