We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pleiotropy and promiscuity in pharmacogenomics for the treatment of Alzheimer's disease and related risk factors

    Ramón Cacabelos

    *Author for correspondence: Tel.: +34 981 780 505; Fax: +34 981 780 511;

    E-mail Address: rcacabelos@euroespes.com

    EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain

    Chair of Genomic Medicine, Continental University Medical School, Huancayo, Peru

    Published Online:https://doi.org/10.2217/fnl-2017-0038

    Patients with Alzheimer's disease are current consumers of polypharmacy with a high risk for drug–drug interactions. Antidementia drugs and other pharmacological treatments for vascular risk factors associated with dementia exert pleiotropic effects which are promiscuously regulated by different gene products. The aim of this review is to highlight the influence of genes involved in pharmacogenetics (i.e., pathogenic, mechanistic, metabolic, transporter and pleiotropic genes) as major determinants of response to treatment in Alzheimer's disease. Patients harboring poor or ultrarapid geno-phenotypes display more irregular profiles in drug efficacy and safety than extensive or intermediate metabolizers. Polymorphic variants of genes associated with lipid metabolism influence the therapeutic response to hypolipemic agents. Understanding these effects is very useful for optimizing polytherapy in dementia.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 GBD 2015 Neurological Disorders Collaborator Group. Global, regional and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 16(11), 877–897 (2017).
    • 2 Chan KY, Wang W, Wu JJ et al. Global Health Epidemiology Reference Group (GHERG). Epidemiology of Alzheimer's disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet 381(9882), 2016–2023 (2013).
    • 3 Fiest KM, Roberts JI, Maxwell CJ et al. The prevalence and incidence of dementia due to Alzheimer's disease: a systematic review and meta-analysis. Can. J. Neurol. Sci. 43(Suppl. 1), S51–S82 (2016).
    • 4 Cacabelos R. The application of functional genomics to Alzheimer's disease. Pharmacogenomics 4(5), 597–621 (2003).
    • 5 Cacabelos R. Molecular pathology and pharmacogenomics in Alzheimer's disease: polygenic-related effects of multifactorial treatments on cognition, anxiety and depression. Meth. Find. Exper. Clin. Pharmacol. 29(Suppl. A), 1–91 (2007).
    • 6 Cacabelos R. Pharmacogenomics and therapeutic strategies for dementia. Expert Rev. Mol. Diag. 9(6), 567–611 (2009).
    • 7 Cacabelos R, Fernández-Novoa L, Corzo L et al. Phenotypic profiles and functional genomics in Alzheimer's disease and in dementia with a vascular component. Neurol. Res. 26, 459–480 (2004).
    • 8 de la Torre JC. Cerebral perfusion enhancing interventions: a new strategy for the prevention of Alzheimer dementia. Brain Pathol. 26(5), 618–631 (2016).
    • 9 Chen Y, Sillaire AR, Dallongeville J et al. Low prevalence and clinical effect of vascular risk factors in early-onset Alzheimer's disease. J. Alzheimers Dis. 60(3), 1045–1054 (2017).
    • 10 Azarpazhooh MR, Avan A, Cipriano LE, Munoz DG, Sposato LA, Hachinski V. Concomitant vascular and neurodegenerative pathologies double the risk of dementia. Alzheimers Dement. S1552–S5260(17), 33685-6 (2017).
    • 11 Gorelick PB, Scuteri A, Black SE et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American heart association/American stroke association. Stroke 42(9), 2672–2713 (2011).
    • 12 Cacabelos R, Goldgaber D, Roses AD et al. Gene interactions in the pharmacogenomics of Alzheimer's disease. Int. J. Mol. Genet. Gene Ther. 1(1), http://dx.doi. org/10.16966/sggt.102 (2015).
    • 13 Cacabelos R, Goldgaber D, Vostrov A et al. APOE-TOMM40 in the pharmacogenomics of dementia. J. Pharmacogenomics Pharmacoproteomics. 5, 135 (2014). • First report on APOE-TOMM40-related pharmacogenetics in Alzheimer's disease (AD).
    • 14 Cacabelos R, Torrellas C, Carrera I. Opportunities in pharmacogenomics for the treatment of Alzheimer's disease. Future Neurol. 10(3), 229–252 (2015). • Updated review on AD pharmacogenetics.
    • 15 Taipale H, Koponen M, Tanskanen A, Tolppanen AM, Tiihonen J, Hartikainen S. Drug use in persons with and without Alzheimer's disease aged 90 years or more. Age Ageing 45(6), 900–904 (2016).
    • 16 Törmälehto S, Martikainen J, Bell JS, Hallikainen I, Koivisto AM. Use of psychotropic medications in relation to neuropsychiatric symptoms, cognition and functional performance in Alzheimer's disease over a 3-year period: Kuopio ALSOVA study. Int. Psychogeriatr. 29(10), 1723–1733 (2017).
    • 17 Tifratene K, Manera V, Fabre R et al. Antipsychotic prescribing for Alzheimer's disease and related disorders in specialized settings from 2010 to 2014 in France: a repeated cross-sectional study. Alzheimers Res. Ther. 9(1), 34 (2017).
    • 18 Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol. Biol. 1175, 323–556 (2014).
    • 19 Cacabelos R, Torrellas C, Carrera I et al. Novel therapeutic strategies for dementia. CNS Neurol. Disord. Drug Targets 15(2), 141–241 (2016).
    • 20 Wang J, Zhao Z, Lin E et al. Unintended effects of cardiovascular drugs on the pathogenesis of Alzheimer's disease. PLoS ONE 8(6), e65232 (2013).
    • 21 Renom-Guiteras A, Thürmann PA, Miralles R et al. Potentially inappropriate medication among people with dementia in eight European countries. Age Ageing 1, 1–7 (2017). • Interesting paper on inappropriate medication in European countries.
    • 22 Montastruc F, Gardette V, Cantet C et al. Potentially inappropriate medication use among patients with Alzheimer disease in the REAL.FR cohort: be aware of atropinic and benzodiazepine drugs! Eur. J. Clin. Pharmacol. 69(8), 1589–1597 (2013).
    • 23 Liu H, Wang L, Lv M et al. AlzPlatform: an Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J. Chem. Inf. Model. 54(4), 1050–1060 (2014).
    • 24 Cacabelos R, Teijido O, Carril JC. Can cloud-based tools accelerate Alzheimer's disease drug discovery? Expert Opin. Drug Discov. 11(3), 215–223 (2016).
    • 25 Cacabelos R, Torrellas C, Teijido O, Carril JC. Pharmacogenetic considerations in the treatment of Alzheimer's Disease. Pharmacogenomics 17(9), 1041–1074 (2016). • Recent contributions in AD pharmacogenetics.
    • 26 Cummings JL, Morstorf T, Zhong K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res. Ther. 6(4), 37 (2014). • Excellent study on the failure of clinical trials in AD.
    • 27 Bond M, Rogers G, Peters J et al. The effectiveness and cost–effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease (review of Technology Appraisal No. 111): a systematic review and economic model. Health Technol. Assess. 16(21), 1–470 (2012).
    • 28 Cacabelos R, Carril JC, Cacabelos P, Teijido O, Goldgaber D. Pharmacogenomics of Alzheimer's disease: genetic determinants of phenotypic variation and therapeutic outcome. J. Genomic Med. Pharmacogenomics 1(2), 151–209 (2016). • Extensive study on AD pharmacogenetics and concomitant disorders.
    • 29 Cacabelos R, Fernández-Novoa L, Lombardi V, Kubota Y, Takeda M. Molecular genetics of Alzheimer's disease and aging. Meth. Find. Exp. Clin. Pharmacol. 27(Suppl. A), 1–573 (2005).
    • 30 Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39(1), 17–23 (2007).
    • 31 Karch CM, Cruchaga C, Goate A. Alzheimer's disease genetics: from the bench to the clinic. Neuron 83(1), 11–26 (2014). • Excellent review on AD genetics.
    • 32 Cacabelos R, Torrellas C. Epigenetics of aging and Alzheimer's disease: implications for pharmacogenomics and drug response. Int. J. Mol. Sci. 16(12), 30483–30543 (2015). • Review of epigenetics and pharmacoepigenetics in AD.
    • 33 Schenk D, Barbour R, Dunn W et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740), 173–177 (1999). • Seminal paper on AD immunization.
    • 34 Carrera I, Fernandez-Novoa L, Aliev G, Vigo C, Cacabelos R. Validating immunotherapy in Alzheimer's disease: the EB101 vaccine. Curr. Pharm. Des. 22(7), 849–858 (2016).
    • 35 Cacabelos R, Fernández-Novoa L, Martínez-Bouza R et al. Future trends in the pharmacogenomics of brain disorders and dementia: influence of APOE and CYP2D6 variants. Pharmaceuticals 3(10), 3040–3100 (2010).
    • 36 Cacabelos R, Llovo R, Fraile C, Fernández-Novoa L. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: The role of CYP2D6 in Alzheimer's disease pharmacogenetics. Curr. Alzheimer Res. 4(4), 479–500 (2007).
    • 37 Yoon H, Myung W, Lim SW et al. Association of the choline acetyltransferase gene with responsiveness to acetylcholinesterase inhibitors in Alzheimer's disease. Pharmacopsychiatry 48(3), 111–117 (2015).
    • 38 Braga IL, Silva PN, Furuya TK et al. Effect of APOE and CHRNA7 genotypes on the cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer's disease. Am. J. Alzheimers Dis. Other Demen. 30(2), 139–144 (2015).
    • 39 Sokolow S, Li X, Chen LD et al. Deleterious effect of butyrylcholinesterase K-variant in donepezil treatment of mild cognitive impairment. J. Alzheimers Dis. 56(1), 229–237 (2017).
    • 40 Cacabelos R, Torrellas C, López-Muñoz F. Epigenomics of Alzheimer's disease. J. Exp. Clin. Med. 6(3), 75–82 (2014).
    • 41 Cacabelos R, Torrellas C. Epigenetic drug discovery for Alzheimer's disease. Exper. Opin. Drug Discov. 9(9), 1059–1086 (2014).
    • 42 Xie HG, Kim RB, Wood AJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annu. Rev. Pharm. Toxicol. (41), 815–850 (2001).
    • 43 Cacabelos R. World Guide for Drug Use and Pharmacogenomics. EuroEspes Publishing Co., Corunna, Spain (2012). •• First world guide of pharmacogenetics (3000 pages).
    • 44 Cacabelos R. Donepezil in Alzheimer's disease: from conventional trials to pharmacogenetics. Neuropsychiat. Dis. Treat. 3(3), 303–333 (2007).
    • 45 Cacabelos R. Pharmacogenomics of central nervous system (CNS) drugs. Drug Dev. Res. 73(8), 461–476 (2012).
    • 46 Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokinet. 41(10), 719–739 (2002).
    • 47 Noetzli M, Eap CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer's disease. Clin. Pharmacokinet. 252(4), 225–241 (2013). •• Excellent paper on AD drugs and pharmacogenetics.
    • 48 Lilienfeld S. Galantamine-a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease. CNS Drug Rev. 8(2), 159–176 (2002).
    • 49 Farlow MR. Clinical pharmacokinetics of galantamine. Clin. Pharmacokinet. 42(15), 1383–1392 (2003).
    • 50 Zhao Q, Brett M, Van Osselaer N et al. Galantamine pharmacokinetics, safety and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J. Clin. Pharmacol. 42(9), 1002–1010 (2002).
    • 51 Noetzli M, Guidi M, Ebbing K et al. Relationship of CYP2D6, CYP3A, POR and ABCB1 genotypes with galantamine plasma concentrations. Ther. Drug Monit. 35(2), 270–275 (2013).
    • 52 Clarke JA, Cutler M, Gong I, Schwarz UI, Freeman D, Dasgupta M. Cytochrome P450 2D6 phenotyping in an elderly population with dementia and response to galantamine in dementia: a pilot study. Am. J. Geriatr. Pharmacother. 9(4), 224–233 (2011).
    • 53 Bentué-Ferrer D, Tribut O, Polard E, Allain H. Clinically significant drug interactions with cholinesterase inhibitors: a guide for neurologists. CNS Drugs 17(13), 947–963 (2003).
    • 54 Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Clin. Ther. 20(4), 634–647 (1998).
    • 55 Sonali N, Tripathi M, Sagar R, Velpandian T, Subbiah V. Clinical effectiveness of rivastigmine monotherapy and combination therapy in Alzheimer's patients. CNS Neurosci. Ther. 19(2), 91–97 (2013).
    • 56 Yang Z, Zhou X, Zhang Q. Effectiveness and safety of memantine treatment for Alzheimer's disease. J. Alzheimers Dis. 36(3), 445–458 (2013).
    • 57 Micuda S, Mundlova L, Anzenbacherova E et al. Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur. J. Clin. Pharmacol. 60(8), 583–589 (2004).
    • 58 Carril JC, Cacabelos R. Genomics and pharmacogenomics of cerebrovascular disorders. J. Genomic Med. Pharmacogenomics 1(1), 27–55 (2016).
    • 59 Xue-Shan Z, Juan P, Qi W et al. Imbalanced cholesterol metabolism in Alzheimer's disease. Clin. Chim. Acta 456, 107–114 (2016).
    • 60 Chen YL, Wang LM, Chen Y et al. Changes in astrocyte functional markers and β-amyloid metabolism-related proteins in the early stages of hypercholesterolemia. Neuroscience 316, 178–191 (2016).
    • 61 Dias HK, Brown CL, Polidori MC, Lip GY, Griffiths HR. LDL-lipids from patients with hypercholesterolaemia and Alzheimer's disease are inflammatory to microvascular endothelial cells: mitigation by statin intervention. Clin. Sci. 129(12), 1195–1206 (2015).
    • 62 Chakrabarti S, Khemka VK, Banerjee A, Chatterjee G, Ganguly A, Biswas A. Metabolic risk factors of sporadic Alzheimer's disease: implications in the pathology, pathogenesis and treatment. Aging Dis. 6(4), 282–299 (2015).
    • 63 Sallustio F, Studer V. Targeting new pharmacological approaches for Alzheimer's disease: potential for statins and phosphodiesterase inhibitors. CNS Neurol. Disord. Drug Targets 15(6), 647–659 (2016).
    • 64 Zhou X, Li Y, Shi X, Ma C. An overview on therapeutics attenuating amyloid β level in Alzheimer's disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels. Am. J. Transl. Res. 8(2), 246–269 (2016).
    • 65 Daneschvar HL, Aronson MD, Smetana GW. Do statins prevent Alzheimer's disease? A narrative review. Eur. J. Intern Med. 26, 666–669 (2015).
    • 66 Barone E, Di Domenico F, Butterfield DA. Statins more than cholesterol lowering agents in Alzheimer disease: their pleiotropic functions as potential therapeutic targets. Biochem. Pharmacol. 88, 605–616 (2014).
    • 67 Tamaoka A. Dyslipidemia and dementia. Brain Nerve 68(7), 737–742 (2016).
    • 68 Hamel E, Royea J, Ongali B, Tong XK. Neurovascular and cognitive failure in Alzheimer's disease: benefits of cardiovascular therapy. Cell. Mol. Neurobiol. 36(2), 219–232 (2016).
    • 69 Samaras K, Brodaty H, Sachdev PS. Does statin use cause memory decline in the elderly? Trends Cardiovasc. Med. 26(6), 550–665 (2016).
    • 70 Zissimopoulos JM, Barthold D, Brinton RD, Joyce G. Sex and race differences in the association between statin use and the incidence of Alzheimer's disease. JAMA Neurol. 74(2), 225–232 (2017).
    • 71 Kou J, Song M, Pattanayak A et al. Combined treatment of Abeta immunization with statin in a mouse model of Alzheimer's disease. J. Neuroimmunol. 244, 70–83 (2012).
    • 72 Buxbaum JD, Cullen EI, Friedhoff LT. Pharmacological concentrations of the HMGCoA reductase inhibitor lovastatin decrease the formation of the Alzheimer beta-amyloid peptide in vitro and in patients. Front. Biosci. 7, a50–a59 (2002).
    • 73 Yamamoto N, Fujii Y, Kasahara R et al. Simvastatin and atorvastatin facilitates amyloid β-protein degradation in extracellular spaces by increasing neprilysin secretion from astrocytes through activation of MAPK/Erk1/2 pathways. Glia 64(6), 952–962 (2016).
    • 74 Cacabelos R, Carril JC, Teijido O. Pharmacogenomics and epigenomics of age-related neurodegenerative disorders: strategies for drug development. In: Anti-aging drugs. From Basic Research to Clinical Practice. RSC Drug Discovery Series. Vaiserman AM (Ed.). 57, 75–141 (2017).
    • 75 Cacabelos R, Vallejo AI, Lombardi V, Fernández-Novoa L, Pichel V. E-SAR-94010 (LipoEsar®): a pleiotropic lipoprotein compound with powerful anti-atheromatous and lipid lowering effects. CNS Drug Rev. 10(2), 200–201 (2004).
    • 76 Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers. Med. 9, 97–106 (2016).
    • 77 Leduc V, Bourque L, Poirier J, Dufour R. Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. Pharmacogenet. Genomics 26(1), 1–11 (2016).
    • 78 Peters BJ, Rodin AS, Klungel OH et al. Pharmacogenetic interactions between ABCB1 and SLCO1B1 tagging SNPs and the effectiveness of statins in the prevention of myocardial infarction. Pharmacogenomics 11(8), 1065–1076 (2010).
    • 79 Keskitalo J, Kurkinen K, Neuvonen P, Niemi M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin. Pharmacol. Ther. 84(4), 457–461 (2008).
    • 80 Wang D, Guo Y, Wrughton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 11(4), 274–286 (2011).
    • 81 Westlind-Johnson A, Malmebo S, Johansson A et al. Comparative analysis of CYP3A4 expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab. Dispos. 31(6), 755–761 (2003).
    • 82 Kim KA, Park PW, Lee OJ, Kang DK, Park JY. Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J. Clin. Pharmacol. 47(1), 87–93 (2007).
    • 83 Crous-Bou M, Minguillón C, Gramunt N, Molinuevo JL. Alzheimer's disease prevention: from risk factors to early intervention. Alzheimers Res. Ther. 9(1), 71 (2017).
    • 84 Charidimou A, Blacker D, Viswanathan A. Context is everything: from cardiovascular disease to cerebral microbleeds. Int. J. Stroke 13(1), 6–10 (2018).
    • 85 Deckers K, Schievink SHJ, Rodriquez MMF et al. Coronary heart disease and risk for cognitive impairment or dementia: systematic review and meta-analysis. PLoS ONE 12(9), e0184244 (2017).
    • 86 Chong JSX, Liu S, Loke YM et al. Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer's disease. Brain 140(11), 3012–3022 (2017).
    • 87 Graff-Radford J, Simino J, Kantarci K et al. Neuroimaging correlates of cerebral microbleeds: the ARIC study (Atherosclerosis Risk In Communities). Stroke 48(11), 2964–2972 (2017).
    • 88 Csiszar A, Tarantini S, Fülöp GA et al. Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer's disease. Geroscience 39(4), 359–372 (2017).
    • 89 Oishi E, Ohara T, Sakata S et al. Day-to-day blood pressure variability and risk of dementia in a general japanese elderly population: the Hisayama study. Circulation 136(6), 516–525 (2017).
    • 90 Benn M, Nordestgaard BG, Frikke-Schmidt R, Tybjærg-Hansen A. Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer's disease and Parkinson's disease: mendelian randomization study. BMJ 357, j1648 (2017).
    • 91 Schneider ALC, Selvin E, Sharrett AR et al. Diabetes, prediabetes and brain volumes and subclinical cerebrovascular disease on MRI: the atherosclerosis risk in communities neurocognitive study (ARIC-NCS). Diabetes Care 40(11), 1514–1521 (2017).
    • 92 An Y, Varma VR, Varma S et al. Evidence for brain glucose dysregulation in Alzheimer's disease. Alzheimers Dement. doi:10.1016/j.jalz.2017.09.011 (2017).
    • 93 Bangen KJ, Preis SR, Delano-Wood L et al. Baseline white matter hyperintensities and hippocampal volume are associated with conversion from normal cognition to mild cognitive impairment in the framingham offspring study. Alzheimer Dis. Assoc. Disord. doi:10.1097/WAD.0000000000000215 (2017).
    • 94 Dong S, Maniar S, Manole MD, Sun D. Cerebral hypoperfusion and other shared brain pathologies in ischemic stroke and Alzheimer's disease. Transl. Stroke Res. doi:10.1007/s12975-017-0570-2 (2017).
    • 95 Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin. Sci. (Lond.) 131(19), 2451–2468 (2017).
    • 96 Cacabelos R. Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics. Drug Dev. Res. 75(6), 348–365 (2014).