We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Detection of colonization capacity of probiotic Bifidobacterium breve CCFM1025 in the human gut

    Xin Qian‡

    State Key Laboratory of Food Science & Resources, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China

    School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Peijun Tian‡

    State Key Laboratory of Food Science & Resources, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China

    School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Guopeng Lin

    State Key Laboratory of Food Science & Resources, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China

    School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China

    ,
    Xinglong Xu

    Jingjiang Chinese Medicine Hospital, Taizhou, Jiangsu, 214500, China

    ,
    Gang Wang

    State Key Laboratory of Food Science & Resources, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China

    School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China

    National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China

    (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China

    ,
    Hao Zhang

    *Author for correspondence: Tel.: +0510 8591 2155;

    E-mail Address: zhanghao61@jiangnan.edu.cn

    State Key Laboratory of Food Science & Resources, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China

    School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China

    National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China

    (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China

    &
    Wei Chen

    State Key Laboratory of Food Science & Resources, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China

    School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China

    National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China

    Published Online:https://doi.org/10.2217/fmb-2022-0131

    Aim: To detect the gut colonization capacity of Bifidobacterium breve CCFM1025 with clinical antidepressant-like effects. Materials & methods: A unique gene sequence of B. breve CCFM1025 was discovered based on the genome analysis of 104 B. breve strains and a strain-specific primer (1025T5) was designed. In vitro and in vivo samples were used to validate the specificity and quantitative capability of this primer in the PCR system. Results: Quantitative PCR using strain-specific primers enabled absolute quantification of CCFM1025 in fecal samples within 104–1010 cells/g (R2 >0.99). CCFM1025 remained highly detectable in volunteer feces 14 days after cessation of administration, demonstrating its favorable colonization characteristics. Conclusion: CCFM1025 can colonize the healthy human gut.

    Tweetable abstract

    Investigators developed an assay based on a specific gene to quantify Bifidobacterium in the human gut. Autochthonous B. breve in the human gut exhibited stronger gut colonization capacity than some exogenous commercial probiotics.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Araya M, Morelli L, Reid G et al. Guidelines for the Evaluation of Probiotics in Food. MDC Publishers Sdn Bhd, London, ON, Canada (2015).
    • 2. Maldonado-Gomez MX, Martinez I, Bottacini F et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20(4), 515–526 (2016). • Describes the colonization capacity of a specific Bifidobacterium longum strain in healthy humans.
    • 3. Ford AC, Harris LA, Lacy BE et al. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther. 48(10), 1044–1060 (2018).
    • 4. Capurso L. Thirty years of Lactobacillus rhamnosus GG: a review. J. Clin. Gastroenterol. 53(Suppl. 1), S1–S41 (2019).
    • 5. Ou Y, Chen S, Ren F et al. Lactobacillus casei strain shirota alleviates constipation in adults by increasing the pipecolinic acid level in the gut. Front. Microbiol. 10, 324 (2019).
    • 6. Mikkel J, Anette W,EricJ et al. The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12(?). Microorganisms 2(2), 92–110 (2014).
    • 7. Wong CB, Odamaki T, Xiao JZ. Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: modulation of gut microbiome as the principal action. J. Funct. Foods 54, 506–519 (2019).
    • 8. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol. Psychiatry 74(10), 720–726 (2013).
    • 9. Yoon Y, Kim G, Jeon BN et al. Bifidobacterium strain-specific enhances the efficacy of cancer therapeutics in tumor-bearing mice. Cancers (Basel) 13(5), 957 (2021).
    • 10. Juan J, Jordan P, Wang W et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol. 7, 459 (2016).
    • 11. Takada T, Matsumoto K, Nomoto K. Development of multi-color FISH method for analysis of seven Bifidobacterium species in human feces. J. Microbiol. Methods 58(3), 413–421 (2004).
    • 12. Wang RF, Kim SJ, Robertson LH et al. Development of a membrane-array method for the detection of human intestinal bacteria in fecal samples. Mol. Cell. Probes 16(5), 341–350 (2002).
    • 13. Matsuki T, Watanabe K, Fujimoto J et al. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl. Environ. Microbiol. 70(1), 167–173 (2004). •• Describes quantitative detection of Bifidobacterium breve species with species-specific primers in fecal samples.
    • 14. Sheu SJ, Chen HC, Lin CK et al. Development and application of tuf gene-based PCR and PCR-DGGE methods for the detection of 16 Bifidobacterium species. J. Food Drug Anal. 21(2), 177–183 (2013).
    • 15. von Ah U, Mozzetti V, Lacroix C et al. Classification of a moderately oxygen-tolerant isolate from baby faeces as Bifidobacterium thermophilum. BMC Microbiol. 7(1), 79 (2007).
    • 16. Morita H, Toh H, Oshima K et al. Complete genome sequence of Bifidobacterium bifidum JCM 1255(T) isolated from feces of a breast-fed infant. J. Biotechnol. 210, 66–67 (2015).
    • 17. Junick J, Blaut M. Quantification of human fecal Bifidobacterium species by use of quantitative real-time PCR analysis targeting the groEL gene. Appl. Environ. Microbiol. 78(8), 2613–2622 (2012). •• Describes quantitative detection of Bifidobacterium breve species with species-specific primers in human fecal samples.
    • 18. Zhu G, Guo M, Zhao J et al. Integrative metabolomic characterization reveals the mediating effect of Bifidobacterium breve on amino acid metabolism in a mouse model of Alzheimer's disease. Nutrients 14(4), 735 (2022).
    • 19. Zhu G, Zhao J, Zhang H et al. Administration of Bifidobacterium breve improves the brain function of Aβ1-42-treated mice via the modulation of the gut microbiome. Nutrients 13(5), 1602 (2021).
    • 20. Tian PJ, Bastiaanssen TFS, Song LH et al. Unraveling the microbial mechanisms underlying the psychobiotic potential of a Bifidobacterium breve strain. Mol. Nutr. Food Res. 65(8), 2000704 (2021).
    • 21. Tian P, Zhu H, Qian X et al. Consumption of butylated starch alleviates the chronic restraint stress-induced neurobehavioral and gut barrier deficits through reshaping the gut microbiota. Front. Immunol. 12, 755481 (2021).
    • 22. Tian P, Chen Y, Zhu H et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: a randomized clinical trial. Brain Behav. Immun. 100, 233–241 (2022). •• Bifidobacterium breve CCFM1025 exhibits clinical antidepressant-like effects.
    • 23. Richter M, Rossello-Mora R, Oliver Glockner F et al. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6), 929–931 (2016).
    • 24. Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36, W181–W184 (2008).
    • 25. Chen F, Mackey AJ, Stoeckert CJ Jr et al. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 34, D363–D368 (2006).
    • 26. Zhao YB, Wu JY, Yang JH et al. PGAP: pan-genomes analysis pipeline. Bioinformatics 28(3), 416–418 (2012).
    • 27. Xiao Y, Wang C, Zhao JX et al. Quantitative detection of Bifidobacterium longum strains in feces using strain-specific primers. Microorganisms 9(6), 1159 (2021).
    • 28. Tian P, O'riordan K, Lee Y et al. Towards a psychobiotic therapy for depression: bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol. Stress 12, 100216 (2020).
    • 29. Kordy K, Gaufin T, Mwangi M et al. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLOS ONE 15(1), e0219633 (2020).
    • 30. Toshimitsu T, Nakamura M, Ikegami S et al. Strain-specific identification of Bifidobacterium bifidum OLB6378 by PCR. Biosci. Biotechnol. Biochem. 77(3), 572–576 (2013).
    • 31. Karjalainen H, Ahlroos T, Myllyluoma E et al. Real-time PCR assays for strain-specific quantification of probiotic strains in human faecal samples. Int. Dairy J. 27(1–2), 58–64 (2012).