We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair

    Abdul Jalil Rufaihah

    † Author for correspondence

    Falk Cardiovascular Research Centre, Stanford School of Medicine, USA

    Department of Surgery, National University of Singapore, Singapore.

    ,
    Husnain Khawaja Haider

    Department of Pathology & Laboratory Medicine, University of Cincinnati, USA

    ,
    Boon Chin Heng

    Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, Singapore

    ,
    Lei Ye

    Department of Surgery, National University of Singapore, Singapore.

    ,
    Ru San Tan

    National Heart Centre, Singapore

    ,
    Wei Seong Toh

    Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, Singapore

    ,
    Xian Feng Tian

    Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, Singapore

    ,
    Eugene Kwang-Wei Sim

    Department of Surgery, National University of Singapore, Singapore.

    National Heart Centre, Singapore

    &
    Tong Cao

    Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, Singapore

    Published Online:https://doi.org/10.2217/rme.09.83

    Objective: This study aim to enhance endothelial differentiation of human embryonic stem cells (hESCs) by transduction of an adenovirus (Ad) vector expressing hVEGF165 gene (Ad-hVEGF165). Purified hESC-derived CD133+ endothelial progenitors were transplanted into a rat myocardial infarct model to assess their ability to contribute to heart regeneration. Methods: Optimal transduction efficiency with high cell viability was achieved by exposing differentiating hESCs to viral particles at a ratio of 1:500 for 4 h on three consecutive days. Results: Reverse transcription-PCR analysis showed positive upregulation of VEGF, Ang-1, Flt-1, Tie-2, CD34, CD31, CD133 and Flk-1 gene expression in Ad-hVEGF165-transduced cells. Additionally, flow cytometric analysis of CD133, a cell surface marker, revealed an approximately fivefold increase of CD133 marker expression in Ad-hVEGF165-transduced cells compared with the nontransduced control. Within a rat myocardial infarct model, transplanted CD133+ endothelial progenitor cells survived and participated, both actively and passively, in the regeneration of the infarcted myocardium, as seen by an approximately threefold increase in mature blood vessel density (13.62 ± 1.56 vs 5.11 ± 1.23; p < 0.01), as well as significantly reduced infarct size (28% ± 8.2% vs 76% ± 5.6%; p < 0.01) in the transplanted group compared with the culture medium-injected control. There was significant improvement in heart function 6 weeks post-transplantation, as confirmed by regional blood-flow analysis (1.72 ± 0.612 ml/min/g vs 0.8 ± 0.256 ml/min/g; p < 0.05), as well as echocardiography assessment of left ventricular ejection fraction (60.855% ± 7.7% vs 38.22 ± 8.6%; p < 0.05) and fractional shortening (38.63% ± 9.3% vs 25.2% ± 7.11%; p < 0.05). Conclusion: hESC-derived CD133+ endothelial progenitor cells can be utilized to regenerate the infarcted heart.

    Bibliography

    • Reubinoff BE, Pera MF, Fong CY et al.: Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol.18,399–404 (2000).
    • Thomson JA, Itskovitz-Eldor J, Shapino SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282,1145–1147 (1998).
    • Carpenter MK, Inokuma MS, Denham J et al.: Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol.172,383–397 (2001).
    • Toh WS, Yang Z, Liu H et al.: Effects of BMP2 and culture conditions on the extent of chondrogenesis from human embryonic stem cells. Stem Cells25,950–960 (2007).
    • Kaufman DS, Hanson ET, Lewis RL et al.: Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA98,10716–10721 (2001).
    • Mummery C, Ward D, van den Brink CE et al.: Cardiomyocytes differentiation of mouse and human embryonic stem cells. J. Anat.200,233–242 (2002).
    • Kehat I, Kenyagin-Karsetin D, Snir M et al.: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest.108,407–414 (2001).
    • Gerecht-Nir S, Ziskind A, Cohen S et al.: Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab. Invest.83,1811–1820 (2003).
    • Levenberg S, Golub JS, Amit M et al.: Endothelial cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA99,4391–4396 (2002).
    • 10  Guillaume DJ, Johnson MA, Li XJ et al.: Human embryonic stem cell-derived neural precursors develop into neurons and integrate into the host brain. J. Neurosci. Res.84(6),1165–1176 (2006).
    • 11  Caspi O, Huber I, Kehat I et al.: Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol.50(19),1884–1893 (2007).
    • 12  Oyamada N, Itoh H, Sone M et al.: Transplantation of vascular cells derived from human embryonic stem cells contributes to vascular regeneration after stroke in mice. J. Transl. Med.30(6),54–67 (2008).
    • 13  Heng BC, Cao T, Haider HK et al.: An overview and synopsis of techniques for directing stem cell differentiation in vitro. Cell Tissue Res.315(3),291–303 (2004).
    • 14  Pick M, Azzola L, Mossman A, Stanley EG, Elefanty AG: Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4 vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cell25(9),2206–2214 (2007).
    • 15  Heng BC, Cao T: Milieu-based versus gene-modulatory strategies for directing stem cell differentiation – major issue of contention in transplantation medicine. In vitro Cell. Dev. Biol. Anim.42(3–4),51–53 (2006).
    • 16  Räty JK, Lesch HP, Wirth T, Ylä-Herttuala S: Improving safety of gene therapy. Curr. Drug Saf.3(1),46–53 (2008).
    • 17  Heng BC, Hong YH, Cao T: Modulating gene expression in stem cells without recombinant DNA and permanent genetic modification. Cell Tissue Res.321(2),147–150 (2005).
    • 18  Zwaka TP, Thomson JA: Homologous recombination in human embryonic stem cells. Nat. Biotechnol.21,319–321 (2003).
    • 19  Siemen H, Nix M, Endl E et al.: Nucleofection of human embryonic stem cells. Stem Cells Dev.14,378–383 (2005).
    • 20  Koumbi D, Clement JC, Sideratou Z et al.: Factors mediating lipofection potency of a series of cationic phosphonolipids in human cell lines. Biochim. Biophys. Acta1760(8),1151–9 (2006).
    • 21  Kawabata K, Sakurai F, Koizumi N et al.: Adenovirus vector-mediated gene transfer into stem cells. Mol. Pharm.3(2),95–103 (2006).
    • 22  Gropp M, Itsykson P, Singer O et al.: Stable genetic modification of human embryonic stem cells by lentiviral vectors. Mol. Ther.7(2),281–287 (2003).
    • 23  Clements MO, Godfrey A, Crossley J et al.: Lentiviral manipulation of gene expression in human adult and embryonic stem cells. Tissue Eng.12(7),1741–1751 (2006).
    • 24  Kawabata K, Sakurai F, Koizumi N, Hayakawa T, Mizuguchi H: Adenovirus vector-mediated gene transfer into stem cells. Mol. Pharm.3(2),95–103 (2006).
    • 25  Wilber A, Linehan JL, Tian X, Woll PS et al.: Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer. Stem Cells25(11),2919–2927 (2007).
    • 26  Ma Y, Ramezani A, Lewis R et al.: High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells21,111–117 (2003).
    • 27  Lakshmipathy U, Pelacho B, Sudo K et al.: Efficient transfection of embryonic and adult stem cells. Stem Cells22,531–543 (2004).
    • 28  Brokhman I, Pomp O, Shaham L et al.: Genetic modification of human embryonic stem cells with adenoviral vectors: differences of infectability between lines and correlation of infectability with expression of the coxsackie and adenovirus receptor. Stem Cells Dev.18(3),447–456 (2008).
    • 29  Risau W, Flamme I: Vasculogenesis. Annu. Rev. Cell Dev. Biol.11,73–91 (1995).
    • 30  Risau W: Mechanisms of angiogenesis. Nature386,671–674 (1997).
    • 31  Jujo K, Ii M, Losordo DW: Endothelial progenitor cells in neovascularization of infarcted myocardium. J. Mol. Cell. Cardiol.45(4),530–544 (2008).
    • 32  Kawamoto A, Tkebuchava T, Yamaguchi J et al.: Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation107(3),461–468 (2003).
    • 33  Takahashi H, Shibuya M: The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. (Lond.)109(3),227–241 (2005).
    • 34  Roy H, Bhardwaj S, Yla-Herttuala S: Biology of vascular endothelial growth factors. FEBS Lett.580(12),2879–2887 (2006).
    • 35  Miller-Kasprzak E, Jagodzinski PP: Endothelial progenitor cells as a new agent contributing to vascular repair. Arch. Immunol. Ther. Exp. (Warsz.)55(4),247–259 (2007).
    • 36  Shmelkov SV, St Clair R, Lyden D et al.: AC133/CD133/Prominin-1. Int. J. Biochem. Cell Biol.37(4),715–719 (2005).
    • 37  Urbich C, Dimmeler S: Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res.95(4),343–353 (2004).
    • 38  Hristov M, Weber C: Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J. Cell. Mol. Med.8(4),498–508 (2004).
    • 39  Tatsis N, Ertl HC: Adenoviruses as vaccine vectors. Mol. Ther.10,616–629 (2004).
    • 40  Ye L, Haider HKH, Jiang S, et al.: In vitro functional assessment of human skeletal myoblasts after transduction with adenoviral bicistronic vector carrying human VEGF165 and angiopoietin-1. J. Heart Lung Transplant.24,1393–1402 (2005).
    • 41  Jiang S, Haider HKH, Idris NM et al.: Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ. Res.99(7),776–784 (2006).
    • 42  Takahashi H, Shibuya M: The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. (Lond.)109(3),227–241 (2005).
    • 43  Rufaihah AJ, Haider HK, Heng BC et al.: Directing endothelial differentiation of human embryonic stem cells via transduction with an adenoviral vector expressing the VEGF(165) gene. J. Gene Med.9(6),452–461 (2007).
    • 44  Wang I, Huang I: Adenovirus technology for gene manipulation and functional studies. Drug Discov. Today5,10–16 (2000).
    • 45  Benihoud K, Yeh P, Perricaudet M: Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol.10,440–447 (1999).
    • 46  Olivetti G, Capasso JM, Meggs LG et al.: Cellular basis of chronic ventricular remodeling after MI in rats. Circ. Res.68(3),856–869 (1991).
    • 47  Shi Q, Rafii S, Wu MH et al.: Evidence for circulating bone marrow-derived endothelial cells. Blood92,362–367 (1998).
    • 48  Kawamoto A, Gwon HC, Iwaguro H et al.: Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation103,634–637 (2001).
    • 49  Kalka C, Masuda H, Takahashi T et al.: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl Acad. Sci. USA28,3422–3427 (2000).
    • 50  Kocher AA, Schuster MD, Szabolcs MJ et al.: Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocytes apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7,430–436 (2001).
    • 51  Takashi E, Ashraf M: Pathologic assessment of myocardial necrosis and apoptosis after ischemia and reperfusion with molecular and morphological markers. J. Mol. Cell. Cardiol.32,209–224 (2000).
    • 52  Gehling UM, Ergün S, Schumacher U et al.: In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood95,3106–3112 (2000).
    • 53  Kamihata H, Matsubara H, Nishiue T et al.: Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands and cytokines. Circulation104,1046–1052 (2001).
    • 54  Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Phillips MI: Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann. Thorac. Surg.80,229–237 (2005).
    • 55  Zhang S, Zhang P, Guo J et al.: Enhanced cytoprotection and angiogenesis by bone marrow cell transplantation may contribute to improved ischemic myocardial function. Eur. J. Cardiothorac. Surg.25,188–195 (2004).
    • 56  Heba G, Krzeminski T, Pore M, Grzyb J, Ratajska A, Dembinska-Kiec A: The time course of tumour necrosis factor-α, inducible nitric oxide synthase and vascular endothelial growth factor expression in an experimental model of chronic myocardial infarction in rats. J. Vasc. Res.38,288–300 (2001).