We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Endothelial progenitor cells for cellular angiogenesis and repair: lessons learned from experimental animal models

    Khawaja Husnain Haider

    *Author for correspondence: Tel.: +966 6335 5555 ext. 7704;

    E-mail Address: kh.haider@sr.edu.sa

    Department of Basic Sciences, Sulaiman Al Rajhi Colleges, Kingdom of Saudi Arabia

    ,
    Salim Aziz

    Department of CV Surgery, George Washington University, 2440 M Street NW, Suite 505, Washington DC 20037, USA

    &
    Mateq Ali Al-Reshidi

    Department of Basic Sciences, Sulaiman Al Rajhi Colleges, Kingdom of Saudi Arabia

    Published Online:https://doi.org/10.2217/rme-2017-0074

    Stem/progenitor cell-based therapy has been extensively studied for angiomyogenic repair of the ischemic heart by regeneration of the damaged myocytes and neovascularization of the ischemic tissue through biological bypassing. Given their inherent ability to assume functionally competent endothelial phenotype and release of broad array of proangiogenic cytokines, endothelial progenitor cells (EPCs)-based therapy is deemed as most appropriate for vaculogenesis in the ischemic heart. Emulating the natural repair process that encompasses mobilization and homing-in of the bone marrow and peripheral blood EPCs, their reparability has been extensively studied in the animal models of myocardial ischemia with encouraging results. Our literature review is a compilation of the lessons learned from the use of EPCs in experimental animal models with emphasis on the in vitro manipulation and delivery strategies to enhance their retention, survival and functioning post-engraftment in the heart.

    Papers of special note have been highlighted as: •• of considerable interest

    References

    • 1 Mozaffarian D, Benjamin EJ, Go AS et al. on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation 131(4), E38–E360 (2015).
    • 2 Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann. Transl. Med. 4(13), 256 (2016).
    • 3 Reimer KA, Jennings RB. The ‘wavefront phenomenon’ of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest. 40(6), 633–644 (1979).
    • 4 Morris MW Jr, Liechty KW. Cardiac progenitor cells in myocardial infarction wound healing: a critical review. Adv. Wound Care (New Rochelle) 2(6), 317–326 (2013).
    • 5 Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85(3), 221–228 (1999).
    • 6 Carmeliet P. Mechanism of angiogenesis and arteriogenesis. Nat. Med. 6(4), 389–395 (2000).
    • 7 Lutton A, Carmeliet P. De novo vasculogenesis in the heart. Cardiovasc. Res. 58, 378–389 (2003).
    • 8 Haider KHH, Jiang J, Idris NM, Ashraf M. IGF-1 overexpressing mesenchymal stem cells accelerate bone marrow mobilization via paracrine activation of SDF-1/CXCR4 signalling to promote myocardial repair. Circ. Res. 103(11), 1300–1308 (2008).
    • 9 Konoplyannikov M, Haider KHH, Lai VK, Jiang S, Ashraf M. Activation of diverse signalling pathways by ex vivo delivery of multiple cytokines for myocardial repair. Stem Cells Dev. 22(2), 204–215 (2013). •• An interesting study describes multimodal approach based on ex vivo multiple gene delivery strategy.
    • 10 Wang ZZ, Au P, Chen T et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat. Biotechnol. 25(3), 317–318 (2007).
    • 11 Christoforou N, Oskouei BN, Esteso P et al. Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS ONE 5, e11536 (2010).
    • 12 Rufaihah AJ, Haider HK, Heng BC et al. Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair. Regen. Med. 5(2), 231–244 (2010). •• Reports derivation of endothelial progenitor cells (EPCs) from embryonic stem cells for subsequent use in angiogenic therapy of the infarcted heart.
    • 13 Rufaihah AJ, Huang NF, Jame S et al. Endothelial cells derived from human iPSCs increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler. Thromb. Vasc. Biol. 31(11), E72–E79 (2011).
    • 14 Buccini S, Haider HKH, Ahmed RPH, Jiang S, Ashraf M. Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res. Cardiol. 107(6), 301 (2012).
    • 15 Ahmed RPH, Ashraf M, Buccini S, Jiang S, Haider HKH. Cardiac tumorgenic potential of induced pluripotent stem cells in an immunocompetent host with myocardial infarction. Regen. Med. 6(2), 171–178 (2011).
    • 16 Kawamoto A, Losordo DW. Endothelial progenitor cells for cardiovascular regeneration. Trends Cardiovasc. Med. 18(1), 33–37 (2008).
    • 17 Asahara T, Murohara T, Sullivan A. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302), 964–966 (1997).
    • 18 Peichev M, Naiyer AJ, Pereira D et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95(3), 952–958 (2000). •• Defines the use of surface markers for identification of EPCs in peripheral circulation.
    • 19 Yoder MC. Human endothelial progenitor cells. Cold Spring Harb. Perspect. Med. 2(7), a006692 (2012).
    • 20 Cheng CC, Chang SJ, Chueh Y-N et al. Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics 14, 182 (2013).
    • 21 Krenning G, Van Luyn MJA, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol. Med. 15(4), 180–189 (2009).
    • 22 Fritzenwanger M, Lorenz F, Jung C et al. Differential number of CD34+, CD133+ and CD34+/CD133+ cells in peripheral blood of patients with congestive heart failure. Eur. J. Med. Res. 14(3), 113–117 (2009). •• Exploits changes in EPCs number in the peripheral circulation as biomarkers of congestive heart failure.
    • 23 Tagawa S, Nakanishi C, Mori M et al. Determination of early and late endothelial progenitor cells in peripheral circulation and their clinical association with coronary artery disease. Int. J. Vasc. Med. 2015, 674213 (2015).
    • 24 Werner N, Kosiol S, Schiegl T et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med. 353(10), 999–1007 (2005).
    • 25 Güven H, Shepherd RM, Bach RG, Capoccia BJ, Link DC. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J. Am. Coll. Cardiol. 48(8), 1579–1587 (2006). •• Provides an evidence of association of EPC number and coronary artery disease.
    • 26 Iwasaki H, Kawamoto A, Ishikawa M et al. Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 113(10), 1311–1325 (2006).
    • 27 Kawamoto A, Iwasaki H, Kusano K et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114(20), 2163–2169 (2006).
    • 28 Cheng Y, Jiang S, Hu R, Lv L. Potential mechanism for endothelial progenitor cell therapy in acute myocardial infarction: activation of VEGF- PI3K/AkteNOS pathway. Ann. Clin. Lab. Sci. 43(4), 395–401 (2013).
    • 29 Abdelaziz MT, Abdel NEA, Abdel HM et al. Endothelial progenitor cells regenerate infracted myocardium with neovascularization development. J. Adv. Res. 6(2), 133–144 (2015).
    • 30 Kupatt C, Hinkel R, Lamparter M et al. Retroinfusion of embryonic endothelial progenitor cells attenuates ischemia–reperfusion injury in pigs: role of phosphatidylinositol 3-kinase/Akt kinase. Circulation 112(Suppl. I), I117–I122 (2005).
    • 31 Kawamoto A, Gwon H-C, Iwaguro H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103(5), 634–637 (2001).
    • 32 Werner L, Deutschb V, Barshackc I, Millera H, Kerena G, Georg J. Transfer of endothelial progenitor cells improves myocardial performance in rats with dilated cardiomyopathy induced following experimental myocarditis. J. Mol. Cell. Cardiol. 39(4), 691–697 (2005).
    • 33 Leor J, Guetta E, Feinberg MS et al. Human umbilical cord blood-derived CD133+ cells enhances function and repair of the infarcted myocardium. Stem Cells 24(3), 772–780 (2006).
    • 34 Forest VF, Tirouvanziam AM, Perigaud C et al. Cell distribution after intracoronary bone marrow stem cell delivery in damaged and undamaged myocardium: implications for clinical trials. Stem Cell Res. Ther. 1(1), 4 (2010).
    • 35 Grøgaard HK, Sigurjonsson OE, Brekke M et al. Cardiac accumulation of bone marrow mononuclear progenitor cells after intracoronary or intravenous injection in pigs subjected to acute myocardial infarction with subsequent reperfusion. Cardiovasc. Revasc. Med. 8(1), 21–27 (2007). •• An interesting translational study describes myocardial reparability of EPCs in large animal model.
    • 36 Graham JJ, Foltz WD, Vaags AK et al. Long-term tracking of bone marrow progenitor cells following intracoronary injection post-myocardial infarction in swine using MRI. Am. J. Physiol. Heart Circ. Physiol. 299(1), H125–H133 (2010).
    • 37 Doyle B, Sorajja P, Hynes B et al. Progenitor cell therapy in a porcine acute myocardial infarction model induces cardiac hypertrophy, mediated by paracrine secretion of cardiotrophic factors including TGFβ1. Stem Cells Dev. 17(5), 941–951 (2008).
    • 38 Ly HQ, Hoshino K, Pomerantseva I et al. In vivo myocardial distribution of multipotent progenitor cells following intracoronary delivery in a swine model of myocardial infarction. Eur. Heart J. 30(23), 2861–2868 (2009).
    • 39 Dubois C, Liu X, Claus P et al. Differential effects of progenitor cell populations on left ventricular remodeling and myocardial neovascularization after myocardial infarction. J. Am. Coll. Cardiol. 55(20), 2232–2243 (2010).
    • 40 Ott I, Keller U, Knoedler M et al. Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction. FASEB J. 19(8), 992–994 (2005).
    • 41 Ma N, Ladilov Y, Moebius JM et al. Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs cord blood-derived cells. Cardiovasc. Res. 71(1), 158–169 (2006).
    • 42 Senegaglia AC, Barboza LA, Dallagiovanna B et al. Are purified or expanded cord blood-derived CD133+ cells better at improving cardiac function? Exp. Biol. Med. (Maywood), 235(1), 119–129 (2010).
    • 43 Tomita S, Li RK, Weisel RD et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100, II247–II256 (1999).
    • 44 Waksman R, Fournadjiev J, Baffour R et al. Transepicardial autologous bone marrow-derived mononuclear cell therapy in a porcine model of chronically infarcted myocardium. Cardiovasc. Radiat. Med. 5(3), 125–131 (2004).
    • 45 Psaltis PJ, Zannetinno ACW, Gronthos S, Worthley SG. Intramyocardial navigation and mapping for stem cell delivery. J. Cardiovasc. Trans. Res. 3(2), 135–146 (2010).
    • 46 Grossman PM, Han ZG, Palasis M, Barry JJ, Lederman RJ. Incomplete retention after direct myocardial injection. Catheter. Cardiovasc. Interv. 55(3), 392–397 (2002).
    • 47 Mitchell AJ, Sabondjian E, Sykes J. Comparison of initial cell retention and clearance kinetics after sub-endocardial or sub-epicardial injections of endothelial progenitor cells in a canine myocardial infarction model. J. Nucl. Med. 51(3), 413–417 (2010).
    • 48 Qian C, Tio RA, Roks AJ. Promising technique for transplantation of bone marrow derived endothelial progenitor cells into rat heart. Casrdiovasc. Pathol. 16(3), 127–135 (2007).
    • 49 Schuha A, Kroh A, Konschalla S. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model. J. Cell Mol. Med. 16(10), 2311–2320 (2012).
    • 50 Schuh A, Liehn EA, Sasse A et al. Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res. Cardiol. 103(1), 69–77 (2008).
    • 51 Choi JH, Hur J, Yoon CH et al. Augmentation of therapeutic angiogenesis using genetically modified human endothelial progenitor cells with altered glycogen synthase kinase-3β activity. J. Biol. Chem. 279(47), 49430–49438 (2004).
    • 52 Akita T, Murohara T, Ikeda H et al. Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Lab. Invest. 83(1), 65–73 (2003).
    • 53 Leicht SF, Schwarz TM, Hermann PC, Seissler J, Aicher A, Heeschen C. Adiponectin pretreatment counteracts the detrimental effect of a diabetic environment on endothelial progenitors. Diabetes 60(2), 652–661 (2011).
    • 54 Yao Y, Sheng Z, Li Y et al. Tissue kallikrein-modified human endothelial progenitor cell implantation improves cardiac function via enhanced activation of akt and increased angiogenesis. Lab. Invest. 93(5), 577–591 (2013).
    • 55 Iwaguro H, Yamaghuchi J, Kalka C et al. Endothelial progenitor cells vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105(6), 732–738 (2002).
    • 56 Sen S, Merchan J, Dean J et al. Autologous transplantation of endothelial progenitor cells genetically modified by adeno-associated viral vector delivering insulin-like growth factor-1 gene after myocardial infarction. Hum. Gene Ther. 21(10), 1327–1334 (2010).
    • 57 Yu F, Lin Y, Zhan T, Chen L, Guo S. HGF expression induced by HIF-1α promotes the proliferation and tube formation of endothelial progenitor cells. Cell Biol. Int. 39(3), 310–317 (2015). •• Describes the proproliferative and tubulogenic effects of HIF-1 on EPC.
    • 58 Huang L, Wang F, Wang Y et al. Acidic fibroblast growth factor promotes endothelial progenitor cells function via Akt/FOXO3a pathway. PLoS ONE 10(6), e0129665 (2015).
    • 59 Oikonomou E, Siasos G, Zaromitidou M et al. Atorvastatin treatment improves endothelial function through endothelial progenitor cells mobilization in ischemic heart failure patients. Atherosclerosis 238(2), 159–164 (2015). •• An interesting study describes the use of statins to enhance EPC functionality.
    • 60 Schuh A, Kroh A, Konschalla S et al. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model. J. Cell. Mol. Med. 16(10), 2311–2320 (2012).
    • 61 Chen J, Xiao X, Chen S et al. Angiotensin-converting enzyme 2 priming enhances the function of endothelial progenitor cells and their therapeutic efficacy. Hypertension 61(3), 681–689 (2013).
    • 62 Song M-B, Yua XJ, Zhub GX et al. Transfection of HGF gene enhances endothelial progenitor cell (EPC) function and improves EPC transplant efficiency for balloon-induced arterial injury in hypercholesterolemic rats. Vasc. Pharmacol. 51(2–3), 205–213 (2009).
    • 63 Piret JP, Mottet D, Raes M, Michiels C. CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann. NY Acad. Sci. 973, 443–447 (2002).
    • 64 Zemani F, Silvestre JS, Fauvel-Lafeve F et al. Ex vivo priming of EPC with SDF-1 before transplantation could increase their pro-angiogenic potential. Arterioscler. Thromb. Vasc. Biol. 28(4), 644–650 (2008).
    • 65 Frederick JR, Fitzpatrick JR 3rd, McCormick RC et al. Activation of tissue engineered endothelial progenitor cell matrix enhances ventricular function after myocardial infarction by inducing neovasculogenesis. Circulation 122(11 Suppl.), S107–S117 (2010).
    • 66 Segers VFM, Lee RT. Biomaterials to enhance stem cell function in the heart. Circ. Res. 109(8), 910–922 (2011).
    • 67 Silva EA, Kim E-S, Kong HJ, Mooney DJ. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA 105(38), 14347–14352 (2008).
    • 68 Masuda H, Iwasaki H, Kawamoto A et al. Development of serum-free quality and quantity control culture of colony-forming endothelial progenitor cell for vasculogenesis. Stem Cells Trans. Med. 1(2), 160–171 (2012).
    • 69 Westenbrink BD, Lipsic E, van der Meer P et al. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur. Heart J. 28(16), 2018–2027 (2007).
    • 70 George J, Goldstein E, Abashidze A et al. Erythropoietin promotes endothelial progenitor cell proliferative and adhesive properties in a PI 3-kinase-dependent manner. Cardiovasc. Res. 68(2), 299–306 (2005).
    • 71 Khan F, Tanaka M, Ahmad SR. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J. Mater. Chem. (B) 3, 8224–8249 (2015).
    • 72 Kurdi M, Rony CR, Hoemann C, Zouein F, Zgheib C, Booz GW. Hydrogels as a platform for stem cell delivery to the heart. Congest. Heart Fail. 16(3), 132–135 (2010).
    • 73 Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23(12), H41–H56 (2011).
    • 74 Atluri P, Miller JS, Emery RJ et al. Tissue engineered, hydrogel-based endothelial progenitor cell therapy robustly revascularizes ischemic myocardium and preserves ventricular function. J. Thorac. Cardiovasc. Surg. 148(3), 1090–1098 (2014). •• An interesting study describing hydrogel-based EPC delivery strategy of cell delivery to the heart.
    • 75 Gaffey AC, Chen MH, Venkataraman CM et al. Injectable shear-thinning hydrogels to deliver endothelial progenitor cells, enhances cell engraftment, and improves ischemic myocardium. J. Thorac. Cardiovasc. Surg. 150(5), 1268–1277 (2015).
    • 76 Cui Z, Yang B, Li R-K. Application of biomaterials in cardiac repair and regeneration. Engineering 2(1), 141–148 (2016).
    • 77 Haraguchi Y, Shimizu T, Yamato M, Otkano T. Concise review: cell therapy and tissue engineering for cardiovascular disease. Stem Cells Transl. Med. 1(2), 136–141 (2012).
    • 78 Sekine H, Shimizu T, Hobo K et al. Endothelial cell co-culture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118(14 Suppl.), S145–S152 (2008).
    • 79 Kamata S, Miyagawa S, Fukushima S et al. Improvement of cardiac stem cell sheet therapy for chronic ischemic injury by adding endothelial progenitor cell transplantation: analysis of layer-specific regional cardiac function. Cell Transplant. 23(10), 1305–1319 (2014).
    • 80 Alvarez P, Carrillo E, Vélez C et al. Regulatory systems in bone marrow for hematopoietic stem/progenitor cells mobilization and homing. BioMed. Res. Int. 2013, 312656 (2013).
    • 81 Shintani S, Murohara T, Ikeda H et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103(23), 2776–2779 (2001).
    • 82 Massa M, Rosti V, Ferrario M et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105(1), 199–206 (2005).
    • 83 Pillarisetti K, Gupta SK. Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1) 1: SDF-1α mRNA is selectively induced in rat model of myocardial infarction. Inflammation 25(5), 293–300 (2001).
    • 84 Cheng M, Qin G. Pogenitor cell mobilization and recruitment: SDF-1, CXCR4, α; 4-integrin, and c-kit. Prog. Mol. Biol. Transl. Sci. 111, 243–264 (2012).
    • 85 Wang Y, Haider KHH, Ahmad N, Zhang D, Ashraf M. Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. J. Mol. Cell. Cardiol. 41(3), 478–487 (2006).
    • 86 Elmadbouh I, Haider KHH, Jiang S, Idris NM, Lu G, Ashraf M. Ex vivo delivered stromal cell-derived factor-1α promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J. Mol. Cell. Cardiol. 42(4), 792–803 (2007).
    • 87 Atluri P, Panlilio CM, Liao GP et al. Acute myocardial rescue with endogenous endothelial progenitor cell therapy. Heart Lung Circ. 19(11), 644–654 (2010).
    • 88 Wang Y, Haider HK, Ahmad N, Xu M, Ge R, Ashraf M. Combining pharmacological mobilization with intramyocardial delivery of bone marrow cells over-expressing VEGF is more effective for cardiac repair. J. Mol. Cell. Cardiol. 40(5), 736–745 (2006). •• An interesting approach of ex vivo cell-based gene delivery for mobilization of intrinsic pool of stem/progenitor cells to the infarcted heart.
    • 89 Kong D, Melo LG, Gnecchi M et al. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 110(14), 2039–2046 (2004).
    • 90 Möhle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell mobilization and expansion. Semin. Hematol. 44(3), 193–202 (2007).
    • 91 Salvinoa MA, Ruizb J. Hematopoietic progenitor cell mobilization for autologous transplantation – a literature review. Rev. Bras. Hematol. Hemoter. 38(1), 28–36 (2016).
    • 92 Xu S, Zhu J, Yu L, Fu G. Endothelial progenitor cells: current development of their paracrine factors in cardiovascular therapy. J. Cardiovasc. Pharmacol. 59(4), 387–396 (2012).
    • 93 Urbich C, De Souza AI, Rossig L et al. Proteomic characterization of human early pro-angiogenic cells. J. Mol. Cell. Cardiol. 50(2), 333–336 (2011).
    • 94 Di Santo S, Yang Z, von Ballmoos MW et al. Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS ONE 4(5), e5643 (2009). •• Shows the effectiveness of cell-free intervention using conditioned medium containing paracrine factors from the in vitro cultured cells.
    • 95 Choi JH, Nguyen MP, Lee D, Oh GT, Lee YM. Hypoxia-induced endothelial progenitor cell function is blunted in angiotensinogen knockout mice. Mol. Cells 37(6), 487–496 (2014).
    • 96 von Ballmoos MW, Yang Z, Völzmann J et al. Endothelial progenitor cells induce a phenotype shift in differentiated endothelial cells towards PDGF/PDGFRβ axis-mediated angiogenesis. PLoS ONE 5(11), e14107 (2010).
    • 97 He T, Peterson TE, Katusic ZS. Paracrine mitogenic effect of human endothelial progenitor cells: role of interleukin-8. Am. J. Physiol. Heart Circ. Physiol. 289(2), H968–H972 (2005).
    • 98 Yang Z, von Ballmoos MW, Faessler D, Voelzmann J, Ortmann J. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis 211(1), 103–109 (2010).
    • 99 Di Santo S, Fuchs A-L, Periasamy R, Seiler S, Widmer HR. The cytoprotective effects of human endothelial progenitor cell-conditioned medium against an ischemic insult are not dependent on VEGF and IL-8. Cell Transplant. 25(4), 735–747 (2016).
    • 100 Urbich C, Aicher A, Heeschen C et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol. 39(5), 733–742 (2005).
    • 101 Cho HJ, Lee N, Lee JY et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J. Exp. Med. 204(13), 3257–3269 (2007).
    • 102 Sahoo S, Klychko E, Thorne T et al. Exosomes from human CD34+ stem cells mediate their pro-angiogenic paracrine activity. Circ. Res. 109(7), 724–728 (2011).
    • 103 Li X, Chen C, Wei L et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function. Cytotherapy 18(2), 253–262 (2016). •• Very interesting study providing direct evidence that EPC-derived exosomes are carriers of bioactive molecules.
    • 104 Zhang J, Chen C, Hu B et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through ERK1/2 signaling. Int. J. Biol. Sci. 12(12), 1472–1487 (2016).
    • 105 Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9(21), 4997–5000 (2009).
    • 106 Hynes B, Kumar AH, O’Sullivan J et al. Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. Eur. Heart J. 34(10), 782–789 (2013).
    • 107 Thal MA, Krishnamurthy P, Mackie AR et al. Enhanced angiogenic and cardiomyocyte differentiation capacity of epigenetically reprogrammed mouse and human endothelial progenitor cells augments their efficacy for ischemic myocardial repair. Circ. Res. 111(2), 180–190 (2012).