We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.4155/fseb2013.14.48

References

  • 1. Stack GD , Walsh JJ . Optimising the delivery of tubulin targeting agents through antibody conjugation . Pharm. Res. 29 ( 11 ), 2972 – 2984 ( 2012 ).
  • 2. Zolot RS , Basu S , Million RP . Antibody-drug conjugates . Nat. Rev. Drug Discov. 12 ( 4 ), 259 – 260 ( 2013 ).
  • 3. Senter PD . Potent antibody drug conjugates for cancer therapy . Curr. Opin. Chem. Biol. 13 ( 3 ), 235 – 244 ( 2009 ).
  • 4. Drachman JG , Senter PD . Antibody-drug conjugates: the chemistry behind empowering antibodies to fight cancer . Hematol. Am. Soc. Hematol. Educ. Program 2013 , 306 – 310 ( 2013 ).
  • 5. Trail PA , Willner D , Lasch SJ et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates . Science 261 ( 5118 ), 212 – 215 ( 1993 ).
  • 6. Sapra P , Stein R , Pickett J et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys . Clin. Cancer Res. 11 ( 14 ), 5257 – 5264 ( 2005 ).
  • 7. Sievers EL , Larson RA , Stadtmauer EA et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse . J. Clin. Oncol. 19 ( 13 ), 3244 – 3254 ( 2001 ).
  • 8. Linenberger ML , Hong T , Flowers D et al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin . Blood 98 ( 4 ), 988 – 994 ( 2001 ).
  • 9. Casi G , Neri D . Antibody-drug conjugates: basic concepts, examples and future perspectives . J. Control. Release 161 ( 2 ), 422 – 428 ( 2012 ).
  • 10. Widdison WC , Wilhelm SD , Cavanagh EE et al. Semisynthetic maytansine analogues for the targeted treatment of cancer . J. Med. Chem. 49 ( 14 ), 4392 – 4408 ( 2006 ).
  • 11. Ikeda H , Hideshima T , Fulciniti M et al. The monoclonal antibody nBT062 conjugated to cytotoxic maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo . Clin. Cancer Res. 15 ( 12 ), 4028 – 4037 ( 2009 ).
  • 12. Lutz RJ , Whiteman KR . Antibody-maytansinoid conjugates for the treatment of myeloma . MAbs 1 ( 6 ), 548 – 551 ( 2009 ).
  • 13. Kovtun YV , Audette CA , Ye Y et al. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen . Cancer Res. 66 ( 6 ), 3214 – 3221 ( 2006 ).
  • 14. Kovtun YV , Goldmacher VS . Cell killing by antibody–drug conjugates . Cancer Lett. 255 ( 2 ), 232 – 240 ( 2007 ).
  • 15. Lopus M , Oroudjev E , Wilson L et al. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules . Mol. Cancer Ther. 9 ( 10 ), 2689 – 2699 ( 2010 ).
  • 16. Erickson HK , Park PU , Widdison WC et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing . Cancer Res. 66 ( 8 ), 4426 – 4433 ( 2006 ).
  • 17. Ma DS , Hopf CE , Malewicz AD et al. Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen . Clin. Cancer Res. 12 ( 8 ), 2591 – 2596 ( 2006 ).
  • 18. Blencowe CA , Russell AT , Greco F , Hayes W , Thornthwaite DW . Self-immolative linkers in polymeric delivery systems . Polym. Chem. 2 ( 4 ), 773 – 790 ( 2011 ).
  • 19. Podgorski I , Sloane BF . Cathepsin B and its role(s) in cancer progression . Biochem. Soc. Symp. ( 70 ), 263 – 276 ( 2003 ).
  • 20. Doronina SO , Toki BE , Torgov MY et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy . Nat. Biotechnol. 21 ( 7 ), 778 – 784 ( 2003 ).
  • 21. Jeffrey SC , Andreyka JB , Bernhardt SX et al. Development and properties of β-glucuronide linkers for monoclonal antibody−drug conjugates . Bioconj. Chem. 17 ( 3 ), 831 – 840 ( 2006 ).
  • 22. Webb S . Pharma interest surges in antibody drug conjugates . Nat. Biotechnol. 29 ( 4 ), 297 – 298 ( 2011 ).
  • 23. Fishkin N , Maloney EK , Chari RV , Singh R . A novel pathway for maytansinoid release from thioether linked antibody-drug conjugates (ADCs) under oxidative conditions . Chem. Commun. (Camb.) 47 ( 38 ), 10752 – 10754 ( 2011 ).
  • 24. Perez HL , Cardarelli PM , Deshpande S et al. Antibody-drug conjugates: current status and future directions . Drug Discov. Today , ( 2013 ).
  • 25. Kovtun YV , Audette CA , Mayo MF et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance . Cancer Res. 70 ( 6 ), 2528 – 2537 ( 2010 ).
  • 26. Zhao RY , Wilhelm SD , Audette C et al. Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates . J. Med. Chem. 54 ( 10 ), 3606 – 3623 ( 2011 ).
  • 27. Bernardes GJ , Casi G , Trussel S et al. A traceless vascular-targeting antibody-drug conjugate for cancer therapy . Angew. Chem. Int. Ed. Engl. 51 ( 4 ), 941 – 944 ( 2012 ).