We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Cellular replacement and regenerative medicine therapies in ischemic stroke

    John W Thwaites

    Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK

    Division of Surgery & Cancer, HPB Unit, Hammersmith Hospital, Imperial College, London, UK

    ,
    Vikash Reebye

    Division of Surgery & Cancer, HPB Unit, Hammersmith Hospital, Imperial College, London, UK

    ,
    Paul Mintz

    Division of Surgery & Cancer, HPB Unit, Hammersmith Hospital, Imperial College, London, UK

    ,
    Natasa Levicar

    Division of Surgery & Cancer, HPB Unit, Hammersmith Hospital, Imperial College, London, UK

    &
    Nagy Habib

    * Author for correspondence

    Division of Surgery & Cancer, HPB Unit, Hammersmith Hospital, Imperial College, London, UK.

    Published Online:https://doi.org/10.2217/rme.12.2

    Worldwide, tissue engineering and cellular replacement therapies are at the forefront of the regenerative medicine agenda, and researchers are addressing key diseases, including diabetes, stroke and neurological disorders. It is becoming evident that neurological cell therapy is a necessarily complex endeavor. The brain as a cellular environment is complex, with diverse cell populations, including specialized neurons (e.g., dopaminergic, motor and glutamatergic neurons), each with specific functions. The population also contains glial cells (astrocytes and oligodendrocytes) that offer the supportive network for neuronal function. Neurological disorders have wide and varied pathologies; they can affect predominantly one cell type or a multitude of cell types, which is the case for ischemic stroke. Both neuronal and glial cells are affected by stroke and, depending on the region of the brain affected, different specialized cells are influenced. This review will address currently available therapies and focus on the application and potential of cell replacement, including stem cells and immortalized cell line-derived neurons as regenerative therapies for ischemic stroke, addressing current advances and challenges ahead.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Bacigaluppi M, Comi G, Hermann DM. Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol. J.4,34–38 (2010).
    • Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology17(3),197–218 (2010).
    • The Nervous System – Basic Science and Clinical Conditions. Michael-Titus A, Revest P, Shortland P (Eds). Churchill Livingstone, NY, USA, 217–243 (2007).
    • Banerjee DS. Stem cells in stroke. Presented at: Symposium in Stem Cell Repair and Regeneration. London, UK, 8 November 2010.
    • Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet367(9524),1747–1757 (2006).
    • Albers GW, Bates VE, Clark WM, Bell R, Verro P, Hamilton SA. Intravenous tissue-type plasminogen activator for treatment of acute stroke: the Standard Treatment with Alteplase to Reverse Stroke (STARS) study. JAMA283(9),1145–1150 (2000).
    • Alberts MJ. Hyperacute stroke therapy with tissue plasminogen activator. Am. J. Cardiol.80(4C),29D–34D (1997); discussion 35D–39D (1997).
    • Cohen JE, Itshayek E, Moskovici S et al. State-of-the-art reperfusion strategies for acute ischemic stroke. J. Clin. Neurosci.18(3),319–323 (2011).
    • Chen ZM, Sandercock P, Pan HC et al. Indications for early aspirin use in acute ischemic stroke: a combined analysis of 40 000 randomized patients from the Chinese Acute Stroke Trial and the International Stroke Trial. On behalf of the CAST and IST collaborative groups. Stroke31(6),1240–1249 (2000).
    • 10  Ansara AJ, Nisly SA, Arif SA, Koehler JM, Nordmeyer ST. Aspirin dosing for the prevention and treatment of ischemic stroke: an indication-specific review of the literature. Ann. Pharmacother.44(5),851–862 (2010).
    • 11  Marsh JD, Keyrouz SG. Stroke prevention and treatment. J. Am. Coll. Cardiol.56(9),683–691 (2010).
    • 12  Bernstein RA, Passman R. Prevention of stroke in patients with high-risk atrial fibrillation. Curr. Neurol. Neurosci. Rep.10(1),34–39 (2010).
    • 13  Bose A, Henkes H, Alfke K et al. The Penumbra System: a mechanical device for the treatment of acute stroke due to thromboembolism. AJNR Am. J. Neuroradiol.29(7),1409–1413 (2008).
    • 14  Smith WS, Sung G, Saver J et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI Trial. Stroke39(4),1205–1212 (2008).
    • 15  Smith WS, Sung G, Starkman S et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke36(7),1432–1438 (2005).
    • 16  Kang DH, Hwang YH, Kim YS, Park J, Kwon O, Jung C. Direct thrombus retrieval using the reperfusion catheter of the penumbra system: forced-suction thrombectomy in acute ischemic stroke. AJNR Am. J. Neuroradiol.32(2),283–287 (2011).
    • 17  Bliss TM, Andres RH, Steinberg GK. Optimizing the success of cell transplantation therapy for stroke. Neurobiol. Dis.37(2),275–283 (2010).
    • 18  Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci.4(5),399–415 (2003).
    • 19  Savitz SI, Dinsmore JH, Wechsler LR, Rosenbaum DM, Caplan LR. Cell therapy for stroke. NeuroRx1(4),406–414 (2004).
    • 20  Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H. Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke32(4),1012–1019 (2001).
    • 21  Taguchi A, Soma T, Tanaka H et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest.114(3),330–338 (2004).▪ Demonstrates the benefit of CD34+ cell implantation in mouse models, suggesting an essential role of CD34+ cells in angiogeneisis and neuronal regeneration.
    • 22  Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol.27(3),275–280 (2009).▪▪ Shows an efficient method of directing human embryonic stem and induced pluripotent stem cells towards a neuronal lineage. This paper builds upon a number of neuronal differentiation publications.
    • 23  Reubinoff BE, Itsykson P, Turetsky T et al. Neural progenitors from human embryonic stem cells. Nat. Biotechnol.19(12),1134–1140 (2001).
    • 24  Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol.19(12),1129–1133 (2001).
    • 25  Friling S, Andersson E, Thompson LH et al. Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc. Natl Acad. Sci. USA106(18),7613–7618 (2009).
    • 26  Andrews PW, Damjanov I, Simon D et al. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab. Invest.50(2),147–162 (1984).
    • 27  Wertkin AM, Turner RS, Pleasure SJ et al. Human neurons derived from a teratocarcinoma cell line express solely the 695-amino acid amyloid precursor protein and produce intracellular beta-amyloid or A4 peptides. Proc. Natl Acad. Sci. USA90(20),9513–9517 (1993).
    • 28  Pleasure SJ, Lee VM. NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J. Neurosci. Res.35(6),585–602 (1993).
    • 29  Pleasure SJ, Page C, Lee VM. Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci.12(5),1802–1815 (1992).
    • 30  Pfisterer U, Wood J, Nihlberg K et al. Efficient induction of functional neurons from adult human fibroblasts. Cell Cycle10(19),3311–3316 (2011).
    • 31  Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol.164(2),247–256 (2000).
    • 32  Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp. Neurol.183(2),355–366 (2003).
    • 33  Schwarting S, Litwak S, Hao W, Bahr M, Weise J, Neumann H. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke39(10),2867–2875 (2008).
    • 34  Shyu W-C, Lin S-Z, Yang H-I et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation110(13),1847–1854 (2004).
    • 35  Fasano CA, Chambers SM, Lee G, Tomishima MJ, Studer L. Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell6(4),336–347 (2010).
    • 36  Trounson A, Thakar RG, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med.9,52 (2011).
    • 37  Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor. Neurol. Neurosci.28(4),589–603 (2010).
    • 38  Cho KJ, Trzaska KA, Greco SJ et al. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 alpha. Stem Cells23(3),383–391 (2005).
    • 39  Choong PF, Mok PL, Cheong SK, Leong CF, Then KY. Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro. Cytotherapy9(2),170–183 (2007).
    • 40  Guillemain I, Alonso G, Patey G, Privat A, Chaudieu I. Human NT2 neurons express a large variety of neurotransmission phenotypes in vitro. J. Comp. Neurol.422(3),380–395 (2000).
    • 41  Younkin DP, Tang CM, Hardy M et al. Inducible expression of neuronal glutamate receptor channels in the NT2 human cell line. Proc. Natl Acad. Sci. USA90(6),2174–2178 (1993).
    • 42  Neelands TR, King AP, Macdonald RL. Functional expression of L-, N-, P/Q-, and R-type calcium channels in the human NT2-N cell line. J. Neurophysiol.84(6),2933–2944 (2000).
    • 43  Trojanowski JQ, Mantione JR, Lee JH et al. Neurons derived from a human teratocarcinoma cell line establish molecular and structural polarity following transplantation into the rodent brain. Exp. Neurol.122(2),283–294 (1993).
    • 44  Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res.61(4),364–370 (2000).
    • 45  Deng W, Obrocka M, Fischer I, Prockop DJ. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun.282(1),148–152 (2001).
    • 46  Hermann A, Gastl R, Liebau S et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J. Cell Sci.117(Pt 19),4411–4422 (2004).
    • 47  Pfisterer U, Kirkeby A, Torper O et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl Acad. Sci. USA108(25),10343–10348 (2011).▪ Demonstrates the potential of forced gene expression for converting fibroblasts into a neuronal lineage.
    • 48  Andrews PW. Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol.103(2),285–293 (1984).
    • 49  Bliss TM, Kelly S, Shah AK et al. Transplantation of hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor behavior. J. Neurosci. Res.83(6),1004–1014 (2006).
    • 50  Kleppner SR, Robinson KA, Trojanowski JQ, Lee VM. Transplanted human neurons derived from a teratocarcinoma cell line (NTera-2) mature, integrate, and survive for over 1 month in the nude mouse brain. J. Comp. Neurol.357(4),618–632 (1995).
    • 51  Miyazono M, Lee VM, Trojanowski JQ. Proliferation, cell death, and neuronal differentiation in transplanted human embryonal carcinoma (NTera2) cells depend on the graft site in nude and severe combined immunodeficient mice. Lab. Invest.73(2),273–283 (1995).
    • 52  Pedersen ED, Aass HC, Rootwelt T, Fung M, Lambris JD, Mollnes TE. CD59 efficiently protects human NT2-N neurons against complement-mediated damage. Scand. J. Immunol.66(2–3),345–351 (2007).
    • 53  Yang LB, Li R, Meri S, Rogers J, Shen Y. Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer’s disease. J. Neurosci.20(20),7505–7509 (2000).
    • 54  Chen J, Li Y, Wang L et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke32(4),1005–1011 (2001).
    • 55  Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J. Neurol. Sci.189(1–2),49–57 (2001).
    • 56  Shen LH, Li Y, Chen J et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J. Cereb. Blood Flow Metab.27(1),6–13 (2007).
    • 57  Sheridan WP, Fox RM, Begley CG et al. Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet339(8794),640–644 (1992).
    • 58  Petit I, Szyper-Kravitz M, Nagler A et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol.3(7),687–694 (2002).
    • 59  Burns TC, Verfaillie CM, Low WC. Stem cells for ischemic brain injury: a critical review. J. Comp. Neurol.515(1),125–144 (2009).
    • 60  Du HW, Liu N, Wang JH, Zhang YX, Chen RH, Xiao YC. [The effects of adipose-derived stem cell transplantation on the expression of IL-10 and TNF-α after cerebral ischaemia in rats.]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi25(11),998–1001 (2009).
    • 61  Kelly S, Bliss TM, Shah AK et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl Acad. Sci. USA101(32),11839–11844 (2004).
    • 62  Darsalia V, Kallur T, Kokaia Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur. J. Neurosci.26(3),605–614 (2007).
    • 63  Nelson PT, Kondziolka D, Wechsler L et al. Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol.160(4),1201–1206 (2002).
    • 64  Kondziolka D, Steinberg GK, Wechsler L et al. Neurotransplantation for patients with subcortical motor stroke: a Phase 2 randomized trial. J. Neurosurg.103(1),38–45 (2005).
    • 65  Hara K, Yasuhara T, Maki M et al. Neural progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in stroke. Prog. Neurobiol.85(3),318–334 (2008).
    • 66  Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol.57(6),874–882 (2005).
    • 67  Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells28(6),1099–1106 (2010).
    • 68  Suárez-Monteagudo C, Hernandez-Ramirez P, Alvarez-Gonzalez L et al. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor. Neurol. Neurosci.27(3),151–161 (2009).
    • 69  Savitz SI, Misra V, Kasam M et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann. Neurol.70(1),59–69 (2011).
    • 70  Banerjee S, Williamson D, Habib N, Gordon M, Chataway J. Human stem cell therapy in ischaemic stroke: a review. Age Ageing40(1),7–13 (2010).
    • 71  Wise J. Stroke patients take part in ‘milestone’ UK trial of stem cell therapy. BMJ341,C6574 (2010).
    • 101  ReNeuron. ReNeuron receives UK ethics committee favourable opinion for stroke clinical trial. www.reneuron.com/press-release/reneuron-receives-uk-ethics-committee-favourable-opinion-for-stroke-clinical-trial-30-07-09