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Aim: This study aimed to evaluate the effect of two platelet preparations used in the clinic, pure platelet-
rich plasma (P-PRP) and the supernatant of calcium-activated P-PRP (S-PRP), on the phenotype of hu-
man macrophages. Materials & methods: Surface markers and cytokine production of human monocyte-
derived macrophages were analyzed after 24 h stimulation with P-PRP or S-PRP. Results: P-PRP and S-PRP
present no difference in the expression of CD206, a M2 tissue-repair macrophage-related marker. How-
ever, these same macrophages presented different levels of CD163, CD86 as well as different IL-10 secre-
tion capacities after 24 h incubation. Conclusion: These platelet preparations do not have an equivalent
biological effect over macrophages, which suggest that they may present different clinical regenerative
potentials.
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Presently, platelet-rich plasma (PRP) and derived preparations are used in regenerative medicine to facilitate tissue
and organ repair [1]. Products, such as PRP, autologous platelet lysates or activated PRP, have been reported
to accelerate tissue regenerations of diabetic ulcers, as well as cutaneous, retinal and bone tissue injuries [1,2].
Nonetheless, extensive use of platelet preparations is still controversial, due to the great variability observed in clinical
trials [3–5]. The diversity of existing protocols and the lack of a consensus terminology for platelet preparations
have complicated the comparison of tissue regenerative effects [6–10]. Even now, many platelet products available
for regenerative medicine are still considered to have an equivalent biological effect, and used indistinctively in the
clinic [10,11].

Part of the beneficial effects of PRP are mediated by growth factors contained in platelets, such as the PDGF,
TGF-β1, IGF-I, FGF-2, HGF and VEGF-A. All these growth factors and cytokines are stored in cytoplasmic
granules and liberated during platelets activation induced by thrombin, collagen, PAF or calcium [12]. In some
cases, clot formed after PRP activation can be discarded and the supernatant itself can be used as a platelet product
for tissue-repair therapies, as it contains the growth factors released by activated platelets [13,14]. A large number
of studies indicate that platelets and their released content are capable to modify the function, proliferation and
migration of various types of cells involved in tissue repair, such as smooth muscle cells, mesenchymal stem cells,
fibroblasts and macrophages [1,15,16].

Macrophages are immune cells that also participate of tissue repair and remodeling [17,18]. In response to diverse
stimuli, macrophages are capable to polarize into different phenotypic profiles, traditionally simplified as proin-
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flammatory macrophages (M1) and reparatory-type macrophages (M2) [19]. Proinflammatory M1 macrophages
can be generated by stimulation with bacterial lipopolysaccharides (LPS) in combination with IFN-γ [20]. This
type of stimulation also increases secretion of TNF-α, which correspondingly inhibits macrophage polarization
toward M2 reparatory macrophages [19]. M2 macrophages are associated with tissue repair and remodeling, are
more heterogeneous and can be generated by various stimuli [21,22]. Commonly, M2 macrophages are identified
by the expression of surface markers as the scavenger receptor CD163, the mannose receptor CD206 and the
production of the cytokine IL-10 [20].

Platelets contain pro- and anti-inflammatory factors that participate in macrophage polarization [20,23]. Further-
more, platelet activation produces microparticles with immunoregulatory properties that are capable to polarize
monocytes to tissue-resident macrophages type-M2 [24]. As different platelet preparations are used as equivalent
biological effect in the clinic, it is not clear how these could distinctively affect immune cells that participate
in tissue regeneration. To address this, in this study we characterized two commonly used platelet preparations:
leukocyte-depleted ‘pure platelet-rich plasma’ (P-PRP), as defined by Dohan et al. [10], and the supernatant released
from the calcium-activated P-PRP clot (S-PRP). We then compared their effects over the phenotype of human
monocyte-derived macrophages.

Materials & methods
P-PRP preparation
Peripheral blood of 15 healthy donors between 18 and 60 years old, excluding patients with chronical diseases,
sexually transmitted infections or a hemoglobin concentration under 12 g/l, was obtained from the Blood Bank
of the Clinical Hospital of University of Chile in Santiago, Chile, after signed an informed consent. Blood
samples were retrieved in 10 ml vacutainer tubes with sodium citrate, and centrifuged at 100 ×g for 5 min at
room temperature. After centrifugation, three fractions are formed in the tube: red blood cells at the bottom; a
platelet-enriched fraction corresponding to PRP in the middle; and a third fraction with less number of platelets
in the upper fraction, here named platelet-low plasma (PLP). Carefully avoiding red blood cells, PRP and PLP
fractions were retrieved from the tube, and transferred to a new vacutainer without anticoagulant. PLP was used as
a control to compare the platelet and cytokine concentration with the PRP fraction. To prepare P-PRP, the PRP
fraction was passed through a leukocyte filter (high-efficiency leukocyte reduction filtration system for platelets;
Hemonetics, CA, USA) that retained residual leukocytes and microaggregates (PLP fraction was also filtered).
Platelets and leukocyte concentrations in P-PRP and PLP from each donor were determined with a Hematologic
Counter Machine (ADVIA 2120i; Siemens, CA, USA). Purity and activation degree of P-PRP were assessed by flow
cytometry using a BD FACSCalibur flow cytometer (Becton-Dickinson, NJ, USA), after staining with antihuman
monoclonal antibodies CD61-FITC (clone VI-PL2 conjugated with fluorescein isothiocyanate; BD Bioscience,
NJ, USA) and CD62P-PE (clone AK-4 conjugated with phycoerythrin; BD Bioscience).

P-PRP activation & S-PRP preparation
P-PRP and PLP were activated with 50 μl/ml of 10% CaCl2, and incubated at 37◦C. After 10 min, a clot is formed.
Activated P-PRP and PLP were incubated for 20 min more at room temperature to liberate the activated-platelet
content during the clot retraction. Preparations were centrifuged at 2000× g for 10 min and S-PRP and activated
PLP (S-PLP) were retrieved. Supernatants were passed by a 0.2-μm pore size filter to ensure elimination of any
remaining platelets. Both S-PRP and S-PLP preparations cytokine levels of TGF-β, IL-1β, IL-10 and TNF-α were
measured by ELISA (ELISA Ready-SET-Go!; eBioscience, CA, USA).

Generation of monocyte-derived macrophages
Buffy coats of 15 healthy donors between 18 and 60 years old, excluding patients with chronical diseases, sexually
transmitted infections or a hemoglobin concentration under 12 g/l, were obtained from the Blood Bank of
the Hospital del Salvador, Santiago, Chile, after signed an informed consent. Human monocytes were isolated
and cultured, as previously described, with minor modifications [25]. Briefly, monocytes were isolated using the
RosetteSep™ Human Monocyte Enrichment Cocktail (STEMCELL Technologies, Vancouver, Canada) according
to the manufacturer’s instructions. Residual erythrocytes and platelets were removed by ammonium-chloride-
potassium lysing buffer and low-speed centrifugation (200 ×g), respectively. Monocyte-derived macrophages were
obtained by culturing monocytes for 7 days at 37◦C in RPMI 1640 (Gibco, Invitrogen Corporation, CA, USA)
supplemented with 10% fetal bovine serum (HyClone, IL, USA), 50 U/ml penicillin, 50 μg/ml streptomycin
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(Gibco, Invitrogen Corporation) and 50 ng/ml of M-CSF (MiltenyiBiotec, Bergisch Gladbach, Alemania) in 6-well
plates at a density of 3 × 106 cells per well (2 ml total volume). Monocyte-derived macrophages were collected
by a soft-cell scraping, and morphological features were evaluated by hematoxylin and eosin staining. Same
monocyte-derived macrophages were stained with the antihuman monoclonal antibodies CD14-PE (clone M5E2;
BD Biosciences, NJ, USA), CD32-APC (clone FLI8.26 conjugated with allophycocyanin; BD Biosciences) and
CD11c-PE (clone B-ly6; BD Biosciences), and analyzed by flow cytometry. Macrophages incubated for an additional
24 h in conditioned medium were compared with proinflammatory-polarized macrophages. Proinflammatory
macrophages were induced by replacing the culture medium for RPMI 1640 supplemented with 10% fetal
bovine serum, 50 U/ml penicillin, 50 μg/ml streptomycin and 100 ng/ml LPS (Sigma-Aldrich, MO, USA)
plus 20 ng/ml IFN-γ (MiltenyiBiotec) for an additional 24 h at 37◦C [25]. Phenotypic markers CD206-PECy5
(clone 1502 conjugated with phycoerythrin-cyanine 5; BioLegend, CA, USA) and CD163-PE (clone GHI/61;
eBioscience) were measured by flow cytometry. TNF-α production was also measured in the culture supernatant
by ELISA, to confirm a proinflammatory macrophage profile. Experimental n corresponds to different macrophage
donors.

Macrophages stimulation with different dose of P-PRP
3 × 105 macrophagesof six individuals were stimulated with different amount of P-PRP (1 macrophage for 125–
1000 platelets). These were coincubated in a 24-well plates for 24 h at 37◦C. Expression of CD206 (antihuman
monoclonal antibody CD206-FITC clone 19.2; eBioscience) on macrophages was analyzed by flow cytometry.

Macrophages stimulation with P-PRP or S-PRP
Aliquots of 300 μl of P-PRP with a concentration of 1 × 106 platelets/μl or 300 μl of S-PRP – obtained from
P-PRP with an equal number of platelets – were added to 500 μl of culture medium with 3 × 105 macrophages
(final proportion of 1 macrophage per 1000 platelets or platelet supernatant). Dilutions of 125–1000 platelets/ml
were generated by adding phosphate-buffered saline (PBS). Coculture were incubated in 24-well plates at 37◦C and
5% CO2 for 24 h. As experimental controls, 300 μl culture medium alone or containing 17 μl of 10% CaCl2 was
added to additional macrophage cultures. After incubation, coculture supernatants were recovered and production
of IL-10 and TNF-α was measured by ELISA. Macrophages were harvested and stained with antihuman monoclonal
antibodies CD206-FITC (clone 19.2; eBioscience), CD163-PE (clone GHI/61; eBioscience) and CD86-PECy5
(clone IT2.2; eBioscience), and analyzed by flow cytometry.

Cytokine production on macrophages
IL-10 and TNF-α were measured by ELISA Ready-SET-Go! (eBioscience), using capture and detection antibodies
and following manufacturer instructions. Cytokines were measured in triplicates.

Scanning electron microscopy analysis
Aliquots of 25 μl of P-PRP (3 × 105 platelets/μl) were added to 3 × 105 macrophages (1:1 ratio) in a 24-well
plate, with glass cover slips for scanning electron microscopy (SEM) analysis. Platelets and macrophages were
coincubated for 45 min at 37◦C. Cocultures were washed once with PBS and fixed in 2% paraformaldehyde and
0.5% glutaraldehyde. Then, samples were processed as previously described [26], and examined utilizing the Jeol
JSM-IT300LV scanning electron microscope (JEOL, CA, USA). Macrophages or platelets alone were also analyzed
by SEM.

Statistical analysis
Data were analyzed by two-tailed Student’s t-test or analysis of variance (ANOVA), as applicable, to determinate
significant differences between treatments. Statistical significance was considered at p-values < 0.05. All statistical
analyses were done in GraphPad Prism software.

Results
P-PRP & S-PRP preparation & properties
There are many protocols to generate platelet preparations for regenerative medicine. Some of these preparations
use whole platelets, like PRP, while other studies use the growth factor-enriched content released by activated
platelets. However, the mechanisms of action of these preparations are poorly understood and the equivalence
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Figure 1. Pure platelet-rich plasma and supernatant of calcium-activated pure platelet-rich plasma preparation and properties. (A)
Protocol of P-PRP and S-PRP preparation from whole blood samples. P-PRP purity was increased by using a leukocyte filter to retain
residual leukocytes before further use. (B) Platelet concentration in P-PRP and PLP were measured by a Hematologic Counter Machine.
Bars represent SE. n = 6, *p < 0.05 (paired t-test). (C) Expression of CD61-FITC and CD62P-PE surface markers on platelets, analyzed by
flow cytometry. The gate (red) on the dot plot on the right shows the population selected by size (FSC) and complexity (SSC), the gate on
the dot plot on the left indicate the population of CD61-positive cells (platelets) and the histogram shows the percentage of activate
platelets in this gated population. (D) Platelet morphology in P-PRP analyzed by SEM at 12,000× magnification. No pseudopods were
observed. (E) Concentration of TGF-β in S-PRP and the S-PLP measured by ELISA. Bars represent SE. n = 6. *p < 0.05 (paired t-test). (F)
Relationship between TGF-β concentration and the number of platelets. The graphic shows a Pearson correlation coefficient r of
approximately 0.96 with a p-value < 0.0001.
FITC: Fluorescein isothiocyanate; FSC: Forward-scattered light; PE: Phycoerythrin; PLP: Platelet-low plasma; P-PRP: Pure platelet-rich
plasma; SE: Standard error; SEM: Scanning electron microscopy; S-PLP: Supernatant of calcium-activated PLP; S-PRP: Supernatant of
calcium-activated P-PRP; SSC: Side-scattered light.
Figure 1A was made by modifying SMART Servier Medical Art illustrations by LES LABORATOIRES SERVIER SAS and licensed under a
Creative Commons Attribution 3.0 Unported License.

of their biological effect has not been proven. To compare the biological effects between whole platelets and the
growth factor-enriched supernatants, two different platelet preparations were generated, P-PRP and S-PRP.

Platelets were separated from whole blood samples by centrifugation, and two different plasma phases with
different platelet concentrations were generated, PRP and PLP. PRP phase was recovered and passed through a
leukocyte filter to obtain P-PRP, a PRP depleted of leukocytes (Figure 1A). Means of approximately 200,000 and
800,000 platelets per microliter were obtained for PLP and P-PRP, respectively, between six donors. As expected, the
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platelet concentration in P-PRP was fourfold higher than PLP (Figure 1B). Leukocyte number was between 20 and
50 cells per microliter, less than 0.01% of P-PRP (data not shown). Platelets in P-PRP were further characterized by
analyzing different platelet markers by flow cytometry, proving that purity was almost 100% and that only 20% of
the platelets were activated (Figure 1C). Platelets nonactivated morphology, which does not present pseudopodia,
was confirmed by SEM (Figure 1D).

To generate S-PRP, P-PRP was activated with CaCl2. After clot retraction, the supernatant of activated P-PRP
were collected and filtered to obtain S-PRP (Figure 1A). Platelets in P-PRP contain different growth factors and
cytokines that are released once activated. Consequently, we evaluate the cytokine content in S-PRP, using S-PLP
as a control (Supplementary Table 1). We confirmed that S-PRP contains more TGF-β than S-PLP (Figure 1E),
and a direct correlation between platelet concentration and TGF-β secretion was determined (Figure 1F).

Preparation & characterization of monocyte-derived macrophages
To study the effect of different platelet preparation on the innate immune cells, human macrophages were generated.
CD14+ monocytes were purified from whole blood using a negative depletion cocktail followed by a density
gradient. The monocyte enriched fraction was recovered and cultured with M-CSF for macrophage differentiation
(Figure 2A). After 7 days, typical macrophage morphology was observed (Figure 2B & C). Macrophage populations
were characterized by flow cytometry, showing increased expression of CD11c, while CD14 expression decreased
and CD32 expression did not change when compared with monocytes (Figure 2D).

Some studies indicate that M-CSF induces a differentiation of monocytes toward an immature M2 macrophage
phenotype [27], therefore, M2 macrophages-associated surface markers, CD206 and CD163, were also evaluated.
Monocyte-derived macrophages incubated for an additional 24 h in conditioned medium, or M-CSF-differentiated
macrophages, were compared with monocyte-derived macrophages stimulated with IFN-γ and LPS for an additional
24 h to induce an M1 phenotype. The results showed that both CD206 and CD163 were expressed in M-CSF-
differentiated macrophages, however, their expression decreased on macrophages stimulated with IFN-γ and LPS
(Figure 2E). CD206 and CD163 mean expression in M-CSF-differentiated macrophages were twofold higher than
M1 macrophages (Figure 2F). Additionally, M1 macrophage phenotype was confirmed by high production of
TNF-α only in macrophages stimulated with IFN-γ and LPS (data not shown).

Interaction between macrophages & platelets
Macrophages are capable to activate and phagocytose platelets [16]. P-PRP contains high concentrations of whole
platelets able to directly interact with macrophages. To confirm this, macrophages were coincubated with P-PRP
for 15 and 45 min and analyzed by SEM. After 15 min, an interaction between platelets and macrophages through
macrophage prolongations was observed (Figure 3A). Activated platelet morphology was evidenced by pseudopodia
emission [28]. As shown in Figure 3B & C, after 45 min of coincubation, interactions between macrophage filopodia
and platelets were observed.

The platelets effect on CD206 marker expression
M-CSF-differentiated macrophages express high levels of CD206, which is associated with tissue-repair activity.
Platelets could induce even higher levels of expression of this macrophage surface marker, which has been associated
with higher levels of phagocytosis [29]. To prove this, macrophages were coincubated with increasing doses of platelets
in P-PRP for 24 h. Macrophages were then stained for CD206 and analyzed by flow cytometry. The expression levels
of CD206 increased in a dose-dependent manner with a maximum in 1000 platelets per macrophage (Figure 4A).
Compared with macrophages without platelets, a ratio of 1:1000 macrophages per platelets induces threefold higher
levels of CD206 expression (Figure 4B). It should be noted that higher concentrations of platelets were not included
as aggregates formed in the cell culture wells. For further assays, a ratio of 1000 platelets per macrophage was used.

Effect of P-PRP & S-PRP in the macrophage phenotype
Although platelet preparations are used to promote tissue repair, the immunological mechanisms involved in this
process remain poorly understood. Particularly, macrophages are present in large numbers surrounding damaged
tissues [30], thus the importance to evaluate the effect of different platelet preparations over these phagocytes and
their phenotype. To examine this effect, macrophages were stimulated with either P-PRP or S-PRP preparations for
24 h after which surface markers and cytokine production were analyzed by flow cytometry and ELISA, respectively.
Since S-PRP preparations contain calcium, macrophages stimulated with CaCl2 were used as a control.
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Figure 2. Preparation and characterization of human monocyte-derived macrophages. (A) Protocol for the
generation of monocyte-derived macrophages. CD14-positive monocytes were obtained from whole blood samples
using RossetteSep Beads followed by centrifugation on a density gradient. Macrophage differentiation was induced
by stimulating monocytes with M-CSF at 37◦C and 5% CO2 for 7 days. (B) Hematoxylin and eosin staining of
monocyte-derived macrophages and monocytes. The macrophage morphology was examined after 7 days of
incubation with or without M-CSF. Scale bar in arbitrary units (au). (C) Scanning electron microscopy analysis of
macrophage morphology at 3300× magnification. Arrows indicate macrophage prolongations. (D) Histograms of
CD14-PE, CD32-APC and CD11c-PE expression on monocyte-derived macrophages (green) and monocytes (blue). The
histograms were generated from a CD14-positive population analyzed by flow cytometry. The red curve indicates
basal fluorescence. (E) Histograms of CD206-PECy5 and CD163-PE expression levels on M-CSF-differentiated
macrophages and LPS- and IFN-γ-stimulated macrophages. Macrophages stimulated with M-CSF for 7 days were then
stimulated with IFN-γ and LPS or conditioned medium for an additional 24 h (A). (F) The mean fluorescence intensity
of CD206 PECy5 and CD163-PE molecules expression on M-CSF-differentiated macrophages and LPS- and
IFN-γ-stimulated macrophages determined by flow cytometer analysis. Bars represent standard error. n = 3. *p < 0.05
(paired t-test).
APC: Allophycocyanin; LPS: Lipopolysaccharides; PE: Phycoerythrin; PECy5: Phycoerythrin-cyanine 5.
Figure 2A was made by modifying SMART Servier Medical Art Illustrations by LES LABORATOIRES SERVIER SAS and
licensed under a Creative Commons Attribution 3.0 Unported License.
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Figure 2. Preparation and characterization of human monocyte-derived macrophages (cont.). (A) Protocol for the generation of
monocyte-derived macrophages. CD14-positive monocytes were obtained from whole blood samples using RossetteSep Beads followed
by centrifugation on a density gradient. Macrophage differentiation was induced by stimulating monocytes with M-CSF at 37◦C and 5%
CO2 for 7 days. (B) Hematoxylin and eosin staining of monocyte-derived macrophages and monocytes. The macrophage morphology was
examined after 7 days of incubation with or without M-CSF. Scale bar in arbitrary units (au). (C) Scanning electron microscopy analysis of
macrophage morphology at 3300× magnification. Arrows indicate macrophage prolongations. (D) Histograms of CD14-PE, CD32-APC and
CD11c-PE expression on monocyte-derived macrophages (green) and monocytes (blue). The histograms were generated from a
CD14-positive population analyzed by flow cytometry. The red curve indicates basal fluorescence. (E) Histograms of CD206-PECy5 and
CD163-PE expression levels on M-CSF-differentiated macrophages and LPS- and IFN-γ-stimulated macrophages. Macrophages stimulated
with M-CSF for 7 days were then stimulated with IFN-γ and LPS or conditioned medium for an additional 24 h (A). (F) The mean
fluorescence intensity of CD206 PECy5 and CD163-PE molecules expression on M-CSF-differentiated macrophages and LPS- and
IFN-γ-stimulated macrophages determined by flow cytometer analysis. Bars represent standard error. n = 3. *p < 0.05 (paired t-test).
APC: Allophycocyanin; LPS: Lipopolysaccharides; PE: Phycoerythrin; PECy5: Phycoerythrin-cyanine 5.
Figure 2A was made by modifying SMART Servier Medical Art Illustrations by LES LABORATOIRES SERVIER SAS and licensed under a
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Figure 3. Interaction between macrophages and platelets analyzed by electron microscopy. Monocyte-derived
macrophages were coincubated with platelet for 15 (A) or 45 (B) min before processing for scanning electron
microscopy analysis at 2200× and 3700× magnification, respectively. Scanning electron microscopy analysis at 3700×
magnification was made to examine more closely the interaction (C). Yellow arrows indicate a platelet–macrophage
interaction.

Macrophages stimulated with either P-PRP or S-PRP presented no differences in CD206 expression, however,
both CD163 and CD86 presented higher expression levels when macrophages were stimulated with S-PRP
instead of P-PRP (Figure 5A). Similarly, CD86 expression also increased when macrophages were stimulated with
CaCl2. Interestingly, nonsignificant differences in the macrophage surface markers were observed by comparing
unstimulated macrophages with macrophages stimulated with S-PRP (Supplementary Figure 1), however, CaCl2-
stimulated macrophages reduce both CD206 and CD163 expression. The IL-10 production in P-PRP-stimulated
macrophages was higher than S-PRP-stimulated macrophages, however, no differences were obtained in TNF-α
production (Figure 5B). Notably, macrophages stimulated with P-PRP produced tenfold higher levels of IL-10 when
compared with unstimulated macrophages (Supplementary Figure 2). Furthermore, IL-10/TNF-α production
ratio was sevenfold higher in P-PRP-stimulated macrophages than S-PRP-stimulated macrophages (Figure 5C).
No difference in cytokine production was observed between macrophages stimulated with S-PRP or CaCl2.

Discussion
In this study, we evaluated the effect of two platelet preparations used in the clinic over human monocyte-derived
macrophages. Our results showed that P-PRP and S-PRP generate different macrophage phenotypes. There are
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no significant differences on CD206 surface expression, a M2-macrophage marker. However, S-PRP-stimulated
macrophages showed higher levels of expression of CD163 and CD86 than P-PRP-stimulated macrophages, and on
the other hand, P-PRP-stimulated macrophages secreted more IL-10. These results indicate that these preparations
do not have an equivalent biological effect on macrophages, and suggest that they could present a different clinical
tissue-repair potential.

Comparison between platelet preparations has been complicated due to the different nomenclature and tech-
niques utilized to generate platelet concentrates, thus increasing the difficulties to compare different contents and
preparation methods [10,31]. This study compares two well-described platelet preparation effects on immune cells.
It is important to notice that these preparations utilized have different compositions. For example, fibrins and fib-
rinogens are present in P-PRP but not in S-PRP, as S-PRP was obtained from the supernatant after clot retraction,
and these molecules are in the clot [13]. Fibrins and fibrinogens enhance IL-10 production while reducing TNF-α
production in macrophages [32], which could explain the results we observed with P-PRP. Second, P-PRP contains
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Figure 5. Comparative effect of pure platelet-rich plasma and supernatant of calcium-activated pure platelet-rich plasma on
macrophages phenotype. (A) MFI of CD206-FITC, CD163-PE and CD86-PECy5 molecule expression on monocyte-derived macrophages
stimulated with P-PRP, S-PRP or CaCl2 (Ca2+) for 24 h determined by flow cytometry. Bars represent SE. n = 5. *p < 0.05 (paired t-test). (B)
Cytokine production of IL-10 and TNF-α by monocyte-derived macrophages stimulated with P-PRP, S-PRP or CaCl2 after 24 h, determined
by ELISA. (C) Relationship between IL-10 and TNF-α production by macrophages. Each bar represents SE. n = 3. *p < 0.05 (two-way analysis
of variance).
FITC: Fluorescein isothiocyanate; MFI: Mean fluorescence intensity; PE: Phycoerythrin; PECy5: Phycoerythrin-cyanine 5; P-PRP: Pure
platelet-rich plasma; SE: Standard error; S-PRP: Supernatant of calcium-activated P-PRP.

whole platelets while S-PRP, which passed through a microbiological filter of 0.2 μm, only contains serum and
the molecules released during the platelet activation. Activated platelets and platelet-derived microparticles interact
with leukocytes through CD62P, inducing activation and rapid local cytokine liberation [16]. In P-PRP generated
in this study, 19% of platelets were CD62P+, a marker of activated platelets, and interaction between platelets and
macrophages could be observed after 15 min of coincubation. This interaction may induce platelets activation and
subsequent liberations of their cytoplasmic content. Therefore, growth factors and TGF-β, which could enhance
tissue-repair macrophage functions [33], are presented in both P-PRP and S-PRP preparations. Another differ-
ence between these platelet preparations is the presence of CaCl2 in S-PRP. This molecule is capable to increase
macrophages adhesion to plastic, which favors phagocytosis and antigen presentation [34]. Macrophages stimulated
with CaCl2 or S-PRP presented higher levels of CD86, an inflammatory M1-associated marker, in comparison
to P-PRP-stimulated macrophages. This protein is expressed in activated antigen-presenting cells and acts as a
costimulatory signal during lymphocytes activation. CaCl2-stimulated macrophages also decreased expression of
CD206 and CD163 when compared with unstimulated macrophages (Supplementary Figure 1), which could be
understood as a proinflammatory polarization. Interestingly, proinflammatory macrophages with enhanced bacte-
ricide capabilities can be generated with a calcium ionophore [35]. Recently, Anitua’s group has described a new
protocol to obtain supernatant of calcium-activated P-PRP – or PRGF supernatant as they called it [14] – that uses
a lower amount of anticoagulant and CaCl2 closer to physiological concentrations than our protocol. One possible
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advantage of this new supernatant preparation could be lower levels of CD86, as this preparation protocol uses less
CaCl2.

High plasticity and the lack of specific markers have made it difficult for researchers to precisely describe
macrophage populations. Thus, it is recommended detailing the characterization strategy and the stimuli used, as
a way to avoid confusion and reach common understanding [22]. In this study, monocytes stimulated with M-CSF
for 7 days presented a macrophage-like morphology when analyzed hematoxylin and eosin staining and these same
cells also presented long pseudopodium characteristic of macrophages when analyzed by SEM. Flow cytometry
analysis demonstrated that these cells also presented common monocyte/macrophage linage markers as CD14,
CD32 and CD11c, but also M2-associated markers as CD206 and CD163. After treating these macrophages
with LPS and IFN-γ, the expression of CD206 and CD163 were reduced, while macrophages treated with P-PRP
showed a doses-dependent increase of CD206 surface expression (Figures 2F & 4A). CD206 is a mannose receptor,
a C-type lectin responsible of eliminating pathogenic cellular debris, as well as eliminating inflammatory agents and
components of the cellular matrix such as collagen [36,37]. Therefore, increased levels of CD206 on macrophages,
as obtained with P-PRP (Figure 4), could be a key factor to reducing inflammation, as this marker is also related
to macrophages’ phagocytic activity [38].

As previously mentioned, P-PRP-stimulated macrophages presented higher levels of IL-10 production than
S-PRP-stimulated macrophages. IL-10 is a potent anti-inflammatory cytokine that promotes production of IL-4
by type 2 T-helper cells, as well as wound healing, as it activates arginase 1, contributing to extracellular matrix
production [39]. Although P-PRP enhanced IL-10 production and CD206 expression, it decreased expression of
CD163, a haptoglobin–hemoglobin scavenger receptor related to M2 macrophages, compared with macrophages
without stimulation (Supplementary Figure 1). A study by Porcheray et al. has proven that CD206 and CD163
present mutually excluding induction patterns [40]. These researchers observed that TGF-β stimulation increases
CD206 expression while decreases CD163 expression on macrophages, phenotype similar to what is observed in
P-PRP-stimulated macrophages. On the other hand, S-PRP-stimulated macrophages presented higher levels of
CD163 compared with P-PRP. Even though S-PRP contains TGF-β, which is liberated during CaCl2 platelet
activation, its concentration may not be enough to produce this effect. In fact, to generate S-PRP, activated P-PRP
was incubated 10 min at 37◦C for clotting and 20 min more at room temperature for clot retraction, a procedure
standardized and performed by the Clinical Hospital of University of Chile. Correspondingly, even though TGF-β
concentration was twofold higher in S-PRP than S-PLP, it is likely that more TGF-β could be released after more
clot retraction time, as used in Anitua et al., since PRP contains four-times more platelets than PLP [41]. Optimal
clot retraction time is an interesting point to be evaluated in a further study. Furthermore, it is important to notice
that part of the TGF-β secreted by S-PRP is in an inactive form as it is activated by serine protease and other factors
liberated by platelets and other cells [42]. A hypothesis is that during P-PRP stimulation of macrophages, cell-cell
interactions could allow the activation of TGF-β released by platelets, generating high local concentrations of this
cytokine, favoring rapid macrophage activation.

The PRP and PRP-derived products’ preparation procedures differ in centrifugation times and force, activation
methods, platelet concentrations, presence of fibrin/fibrinogen or leukocytes, among other [10,31,43]. Protocol
variations for platelet preparations and the lack of an established nomenclature have generated contradictory results
of the efficacy of platelet-related therapies [10,11,44]. In the same way, defining standard operating procedures is
indispensable to obtain a standard composition of these platelet preparations and to able to reliably compare their
effectiveness [31,45]. In this study, we used a nomenclature according to the content of the platelet preparation,
P-PRP – for PRP without leukocytes – and S-PRP – for the supernatant of calcium-activated P-PRP – to be
able to describe in detail the procedure to obtain both products. Lastly, some clinically used platelet preparations
are compared in Table 1. These preparations were classified in three groups: nonactivated platelet products, gel
products and supernatants. PRP with or without leukocytes was indicated as L-PRP or P-PRP, respectively, as
classified by Dohan et al. [10]. PRP gel is activated PRP with the clot mixed with the plasma, and L-PRP gel and
P-PRP gel correspond to gels generated from PRP with or without leukocytes, as classified by Dohan et al. [10]. The
supernatants correspond to S-PRP, which contains serum, and S-PL, a supernatant obtained by centrifugation of
repeated freeze and thawed washed platelets [46].Table 1 summarizes some of the different contents which would
explain the different biological effects of these preparations.
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Table 1. Platelet preparations contents.
Nonactivated PRP PRP gel PRP supernatants

P-PRP L-PRP P-PRP Gel L-PRP Gel S-PRP S-PL

Citations † † ‡ § ¶ #

Nonactivated platelets + +

Activated platelets + +

GFs and cytokines + + + + + +

Fibrinogen + +

Fibrin + +

Coagulation factors + + + +

Leukocytes + +

Activating agent + + +

Presence (+) in different platelets preparations.
†Fitzpatrick et al. [5].
‡PRGF of Anitua et al. [2].
§PLG of Jia et al. [49].
¶S-PRP Clinical Hospital of University of Chile in Santiago, Chile; PRGF supernatant of Anitua et al. [14].
#PL supernatant of Bernardi et al. [46].
GF: Growth factor; L-PRP: Leukocyte and platelet-rich plasma; PL: Platelet lysates; PLG: Platelet-leukocyte gel; P-PRP: Pure platelet-rich plasma; PRGF: Plasma rich in growth factors;
S-PL: Supernatant of repeated freeze and thawed washed platelet; S-PRP: Supernatant of calcium-activated P-PRP.

Conclusion
In this study we demonstrated that macrophages stimulated in vitro for 24 h with platelet preparations, P-PRP and
S-PRP, favored the generation of different profiles of tissue-repair macrophages. While both preparations increased
the expression of CD206 mannose receptor, they induced different levels expression of CD163 and CD86, as well
as IL-10 production. However, our study has limitations, as cocultures between platelets and macrophages were
allogeneic and some results have a low number of samples. Further studies are necessary to corroborate these results
and evaluate if the same effects are detected in autologous cultures.

Translational perspective
Despite the aforementioned limitations, this study reinforces the idea that different platelet preparations do not
possess the same biological effect [47]. This is an interesting finding considering that controversial results have
emerged from the implementation of platelet-related therapies in regenerative medicine. In this regard, platelet
preparations should be evaluated in vitro to understand and identify their optimal clinical use. The therapy
of choice should be defined according to the effects on cells involved in inflammation and tissue-remodeling.
We have discussed that one of the main problems between different preparations are their different contents.
We demonstrated that leukocyte-depleted P-PRP improves tissue-repair macrophage phenotype and functions
including IL-10 production. P-PRP could be used in tissue damage areas to promote tissue regeneration, partially
mediated by platelets interaction with resident macrophages. On the other hand, S-PRP-stimulated macrophages
increased CD163 expression. These macrophages could play a key role in the removal of hemoglobin–haptoglobin
complex at sites of physiologic or pathologic intravascular hemolysis, but by itself is not able to promote tissue
repair [48]. Finally, proinflammatory macrophages are presented in the initial states of the healing process and
in several chronical inflammatory diseases, the use of P-PRP to repolarize in vitro these cells into tissue-repair
macrophages is an interesting proposal to further studies.
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Summary points

• Because of variations in the methods of preparation and nomenclature of platelets products, different studies
present contradictory data about platelets’ therapeutic efficacy.

• The effect of pure platelet-rich plasma (P-PRP) and supernatant of calcium-activated P-PRP (S-PRP) over innate
immune cells could shed some light on the clinical significance of their differences.

• S-PRP contains growth factors such as TGF-β1 released by activated platelets as well as CaCl2.

• P-PRP contains whole platelets that can directly interact with macrophages.

• M-CSF-differentiated macrophages present CD206 expression marker, a M2 macrophage-related marker, which is
enhanced after stimulation with P-PRP.

• S-PRP-stimulated macrophages present higher levels of the expression markers CD163 and CD86 compared with
macrophages stimulated with P-PRP. While CD163 is a M2 macrophage-related marker, CD86 is a
proinflammatory marker that could have been enhanced by the presence of CaCl2 in S-PRP preparations.

• Only P-PRP induced macrophages to have a higher IL-10 production, a potent anti-inflammatory cytokine that
promotes tissue regeneration.

• Although many researchers consider that different platelet preparation have an equivalent biological effect,
outcomes of the present study provide evidence that they may present different clinical regenerative potentials.
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