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The now familiar, yet extraordinary, discov-
ery of the capacity for terminally committed 
adult cells to be reprogrammed to a pluripo-
tent stem cell (PSC) state has raised the entic-
ing possibility that any adult cell could be 
used to autologously replace diseased or dam-
aged tissue. Furthermore, the recent develop-
ment of direct transdifferentiation techniques 
have added to the interest in developing cel-
lular replacement therapies derived from the 
patient’s own cells. However, is this realistic 
from a practical, scientific and ultimately 
financial perspective?

The first human transplantation of an 
autologous pluripotent stem cell derived prod-
uct took place in Japan in September 2014 [1]. 
The clinical trial, based at the RIKEN Insti-
tute (Japan), involved the transplantation of 
a sheet of retinal pigmentary epithelium cells 
generated from induced PSCs (iPSCs) for the 
treatment of age-related macular degenera-
tion. This first treated patient has shown no 
adverse effects at 12 months and her visual 
acuity, which had been declining prior to 
the procedure, stabilized following the treat-
ment [2]. However, during the safety testing of 
the second patient’s iPSCs, genetic sequenc-
ing revealed several mutations that were not 
present in the patient’s original fibroblasts. 
Three single nucleotide variations and three 
copy number variants were identified. These 
genetic changes are well recognized to occur 
in the iPSC reprogramming process [3,4], 
and in the case of this second patient one of 
the single nucleotide variations identified is 

listed in a curated database of somatic cancer-
associated mutations, although only linked to 
a single cancer [5].

There are currently no clear guidelines on 
how to interpret such genetic data. The cell 
line with these mutations had been tested 
in vivo and reportedly shown no evidence of 
tumorgenicity [6], albeit within the lifespan 
of experimental animals. While the study 
investigators felt that these data indicated 
the cells were safe to transplant, a decision 
was made to suspend the trial while further 
evaluation was undertaken. A recent change 
in the regulatory environment in Japan, 
together with the uncertainty surrounding 
the oncogenic potential of the cells, were 
cited as the reasons for the decision [6]. The 
trial investigators have also now indicated 
that they feel that the autologous approach 
is not currently feasible for clinical therapy, 
given the costs of making individual cell 
lines, and have amended their protocol to use 
allogenic cells [5].

The present challenges for developing an 
autologous therapy are considerable. The 
quality and safety of each iPSC line is vari-
able, and in the case of the first transplanted 
patient, 30 lines were generated in order to 
select a satisfactory cell line. Masayo Taka-
hashi, the principal investigator of this study, 
estimates that the safety testing alone cost 
US$500,000 [2]. The total cost per patient 
treated is estimated to be US$1,000,000. 
Even if these costs could be met, it is difficult 
to envision the capacity, at least in the short 
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term, to generate the number of cell lines needed to 
serve the populations affected by the target diseases.

Autologous iPSC-derived therapies face greater 
regulatory hurdles than allogeneic approaches [7] given 
the individual nature of the therapeutic so developed. 
The central issue is that each patient cell line developed 
for therapy will individually require comprehensive 
characterization and safety analysis. In the develop-
ment of allogeneic therapies, the cell product can be 
extensively characterized and studied over long peri-
ods of preclinical assessment – and then can be used 
for many different patients. In the autologous setting, 
the time available for this assessment is much shorter 
and, in some circumstances, it may not be feasible to 
complete long-term animal safety studies in a clinically 
relevant time frame. For this reason, some proponents 
of the autologous approach argue for a more permis-
sive regulatory approach for such treatments. However, 
the inherent variabilities in the starting material, the 
reprogramming process and the output from differ-
entiation make it difficult to establish a manufactur-
ing process that delivers a comparable cell product 
between patients. As a result, it is difficult to justify 
any change to the regulatory requirements that does 
not require strict characterization and safety analysis 
of each individual cell line.

There are also other reasons why autologous trans-
plantation may not be desirable. In patients with Men-
delian disease, the transplantation of tissue that carries 
the mutation that lead to the disease in the first place 
is unlikely to be an optimal therapy – and even though 
this could be corrected, this brings with it another level 
of uncertainty and regulatory scrutiny. Indeed, the 
impact of genetic background upon long-term graft 
function may still be relevant in patients with diseases 
that have a complex genetic basis – such as Parkinson’s 
disease.

An alternative to the autologous approach is the 
development of iPSC haplobanks. The idea of these 
banks is to provide an established source of clinical-
grade pluripotent stem cells from selected homozygous 
HLA-typed donors to provide HLA-matched cells for 
as large a proportion of the population as possible. It has 
been demonstrated, for example, that a stem cell bank 
for 150 selected donors could match 93% of the UK 
population [8]. A similar figure has been calculated for 
Japan [9] where plans for such a bank are underway [5]. It 
is anticipated that a global network of mutually recog-
nized iPSC banks could provide access to cellular thera-

peutics for the majority of people [10]. This approach 
offers the benefits of a cellular replacement material 
that is closely matched to the patient without the chal-
lenges associated with generating a new cell line for each 
individual patient. It is not clear whether this approach 
will eliminate or simply reduce the need for immuno-
suppression and this may vary depending on the site of 
transplantation and the nature of the graft [11].

Haplobanking is not without its disadvantages [12]. 
To achieve coverage of the population with a relatively 
small number of cell lines requires acceptance of a mis-
match at up to two HLA loci. This imperfect match 
will contribute to the need for immunosuppression in 
these ‘matched’ transplants. In more ethnically diverse 
populations, the number of cell lines required will be 
much greater, and it is likely that there will always 
be some individuals who cannot be matched from a 
haplobank. There are also practical shortcomings to 
the haplobanking approach that arise from the lim-
ited number of cell lines generated from each donor. 
We cannot necessarily assume that any cell type can 
be generated from a single-banked cell line, despite its 
theoretical pluripotency. This will be particularly the 
case when a specific subtype of cell is required for ther-
apy. In our experience, only a fraction of stem cell lines, 
all genuinely characterized as pluripotent, are capable 
of robustly being differentiated to the A9 dopaminer-
gic subtype of neurons required for transplantation in 
Parkinson’s disease [13]. There is no current method for 
determining this potential prospectively and it will not 
be possible to predict which cell lines in a haplobank 
will be called upon to produce a particular cell type 
for a patient.

The principal reason for interest in autologous, or 
HLA-matched therapies, is the elimination or reduc-
tion of the need for immunosuppression. There has 
been some uncertainty about the immunogencity of 
autologous pluripotent stem cells and their differen-
tiated progeny. In 2011, a study demonstrated that 
iPSC-derived teratomas do elicit an immune response 
in syngeneic hosts [14]. However, subsequent studies 
have demonstrated that terminally differentiated cells 
derived from iPSCs can be transplanted into synge-
neic hosts without eliciting any significant immune 
rejection response [15,16].

It is important to recognize that the requirements 
for immunotherapy are not necessarily absolute for 
allogeneic cell transplantation and will vary depend-
ing on the site and nature of the graft. In allogeneic 
solid organ transplantation, a population of patients 
exists whose grafts have survived despite the cessation 
of immunotherapy (usually for unavoidable medical 
reasons). These patients are being actively studied in 
an attempt to identify the factors that might contrib-

“...the requirements for immunotherapy are 
not necessarily absolute for allogeneic cell 

transplantation and will vary depending on the 
site and nature of the graft.”
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ute to the development of their immune tolerance to 
the allograft [17]. In the field of neural transplantation, 
where grafts are transplanted to a relatively immuno-
logically privileged site, long-term immunosuppression 
appears not to be necessary [18,19]. This therefore under-
mines one of the major advantages in using iPS-derived 
cells, and raises questions as to whether it is more sen-
sible, at least with neural grafting, to concentrate on the 
better characterized human embryonic stem cell lines.

The challenges of autologous transplantation faced 
by the RIKEN group have led to a shift away from this 
approach as a viable clinical therapy of a personalized 
nature, at least in the short to medium term. The imme-
diate priority for the field is to establish whether PSC-
based cellular therapies can provide effective treatment 
for human disease. If this is established, there will 
be a stronger impetus for further refinement includ-
ing alternate cellular sources to minimize or eliminate 
the need for immunosuppression, as well as allevi-
ate the ethical issues linked to some sources of stem 

cells. While it is always precarious to make predictions 
about the future of major new technologies, it seems 
that for now the focus will be on undertaking clinical 
trials utilizing allogeneic cellular material, either from 
well-established stem cell lines or HLA-matched to the 
patient using national iPSC haplobanks.
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