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Desktop Genetics is a bioinformatics company building a gene-editing platform for 
personalized medicine. The company works with scientists around the world to design 
and execute state-of-the-art clustered regularly interspaced short palindromic repeats 
(CRISPR) experiments. Desktop Genetics feeds the lessons learned about experimental 
intent, single-guide RNA design and data from international genomics projects 
into a novel CRISPR artificial intelligence system. We believe that machine learning 
techniques can transform this information into a cognitive therapeutic development 
tool that will revolutionize medicine.
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Desktop Genetics was founded in 2012 
by three University of Cambridge (UK) 
graduates with the goal of marrying mod-
ern genomics with rapid advancements in 
data science. CRISPR, a cheap and precise 
tool to manipulate the genome both in vitro 
and in vivo, has opened the door to new 
basic, preclinical and translational research 
studies. In 2013, with the emergence of 
CRISPR, the company shifted its focus to 
gene editing.

CRISPR works by associating a target-
specific single-guide RNA (sgRNA) with an 
RNA-guided endonuclease (RGEN) such as 
Cas9. The sgRNA directs the RGEN to a 
specific locus in the genome where the com-
plex induces double-stranded breaks in the 
DNA. The cell then endogenously repairs 
the genome through either nonhomologous 
end joining or homology-directed repair 
(HDR). Nonhomologous end joining hap-
pens at a higher (and inversely proportional) 
frequency to HDR and introduces indel 
mutations, while HDR uses an exogenous 
donor molecule to make precision edits [1].

The promise of CRISPR
Over the last decade, clinical genomics data 
have provided insight into the origins of 
human disease. Personal genome databases 
have revealed genetic variations, such as 
chromosomal inversions and SNPs, across 
human populations. The advent of CRISPR 
allows us to empirically establish relation-
ships between mutations and disease patho-
genesis. Taking this further, CRISPR can 
be used as a therapeutic option to correct 
these events in the clinic for somatic cell 
and gene therapy.

For example, hemophilia A is caused by 
chromosomal inversions, which knock-
out the Factor VIII clotting protein. In the 
hemophiliac population, inversions occur 
in major and minor forms. In a study by 
Park  et  al., researchers isolated endothelial 
cells from hemophilia patients and repro-
grammed them into pluripotent stem cells. 
The group then corrected both inversions 
with CRISPR and injected them into FVIII-
deficient mice. This approach successfully 
ameliorated disease symptoms [2].
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In another landmark study, researchers used thera-
peutic CRISPR editing in live organisms. Yin  et  al. 
hydrodynamically injected a CRISPR plasmid into the 
livers of mice suffering from hereditary tyrosinemia 
type 1 (HT1). HT1 is caused by cytotoxic build-up 
of Fah proteins in liver cells due to an SNP. Owing to 
the regenerative nature of hepatocytes and the fact that 
healthy cells were selected for, a healthy phenotype was 
restored after 30 days [3].

Challenges of CRISPR research
While these therapeutic studies are promising, there 
are still barriers to CRISPR research. Many sgRNA 
design algorithms do not take into account experimen-
tal intent and provide broad scoring algorithms which, 
while generally helpful for CRISPR experiments, may 
not meet the specific needs of a given investigation.

For example, exploiting HDR for precise nucleo-
tide adjustment remains a challenge. While some 
researchers have suggested solutions such as asymmet-
ric DNA donors, these options are not offered by most 
online tools  [4–6]. Such roadblocks prevent advanced 
gene-editing options from reaching therapeutic 
development.

Therapeutic delivery options are also limited. 
Delivering CRISPR components into specific patient 
tissues will likely require viruses or nanoparticles with 
restrictive cargo size. This is problematic when trying 
to fit both a CRISPR nuclease, such as the standard 
4.2-kb Streptococcus pyogenes Cas9, and an sgRNA into 
a relatively small vector such as an adeno-associated 
virus [7].

Some studies suggest that noncoding DNA can reg-
ulate gene function [8]. With this in mind, researchers 
must work to limit CRISPR off-target events both in 
the coding and noncoding regions of the genome. We 
can further interrogate the so-called epigenome with 
CRISPR functional assays. This may produce poten-
tial drug targets and help us better understand the 
ramifications of off-target editing.

Another challenge is that most guide RNAs are 
designed against the reference genome of the model 
organism. In reality, cell-line genomes tend to differ 
due to perturbations such as cell-line-specific SNPs 
and copy number variants. Not only do these changes 
have an effect on sgRNA on-target activity, but they 
may also introduce unexpected off-target events. A 
lack of cell-line-specific genotypes stymies both basic 
and clinical CRISPR research. Understanding genetic 
variations in cells and human populations will help 
investigators design more effect guides and address the 
off-target effect [9,10].

Gold standard assays for investigating the intended 
(on-target) and unintended (off-target) effects of 
CRISPR guides on in vitro and in vivo models are in 
their infancy. This uncertainty makes it difficult to 
reproduce experimental outcomes and form consen-
sus around effective guide design strategies. This also 
raises safety concerns about using CRISPR in humans.

Testing CRISPR dogma with DESKGEN
DESKGEN is our regularly curated cloud platform. 
It incorporates the latest thinking in sgRNA design 
algorithms and parameters. DESKGEN also serves as 
a proof-of-concept testing ground for an ever changing 
CRISPR dogma.

The Knockout and Knockin tools accommodate 
a range of genomes including both eukaryotes and 
prokaryotes, as well as alternative CRISPR nucleases 
such as Cas9 orthologs and Cpf1 [11]. Offering RGEN 
options in Knockin and Knockout mode gives investi-
gators options for therapeutic delivery. Further, adjust-
ing homology arm length and symmetry in Knockin 
mode can lead to more efficient HDR editing experi-
ments. In both cases, these are parameters that can all 
be found in a unified suite of cloud tools.

Guide Picker, our third DESKGEN tool, can 
directly compare literature-based sgRNA design rules. 
For example, the Doench 2016 Full function incor-
porates a percent peptide score, which represents the 

Table 1. Desktop Genetics CRISPR library design parameters.

Score Purpose

Doench (2014)/(2016) Predicted on-target score

Chari (2015) Predicted on-target score

Xu (2015) Predicted on-target score

Hsu (2013) Predicted on-target score

Percent peptide score Target location in coding DNA sequence

RGEN selection Cas9 orthologs, Cpf1 with varying PAM sequences

A snapshot of only a few of the scores and other thresholds used by Desktop Genetics to design CRISPR guide RNA libraries. These 
literature-based parameters address some of the fundamental concerns facing the CRISPR field.
PAM: Protospacer adjacent motif; RGEN: RNA-guided endonuclease.
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Figure 1. Machine learning fuels Desktop Genetics. Desktop Genetics uses data from CRISPR experiments and 
literature to fuel our cognitive machine learning algorithms. In concert with the moon shot goals of personal 
genomics initiatives, this artificial intelligence system will efficiently design CRISPR therapeutics tailored to the 
needs of individual patients.
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target locus in the coding DNA sequence  [12]. When 
we plotted Doench 2016 Full against percent peptide 
score, we saw a distinct position-based effect on Doench 
scoring; toward the 3′ end of the gene, Doench scores 
tend to drop off. Monitoring the correlation of design 
parameters can illuminate trends in our prediction 
algorithms.

Once designed using either Knockout, Knockin or 
Guide Picker, investigators can use these sequences 
to order sgRNA oligos and perform CRISPR experi-
ments at the bench. We gather feedback from scien-
tists who use DESKGEN to continuously improve 
our design principles.

High-throughput CRISPR screens
CRISPR screens are an excellent way to target large 
panels of genes or genomic regions with a pool of 
sgRNAs to test for function or essentiality. Research-
ers use these screens to understand which genes 
play key roles in phenomena like tumorigenesis 
(e.g.,  constitutive mutants of KRAS) and cytotoxic 
build-up (e.g.,  Fah in HT1). This approach equips 
scientist with tools to rapidly elucidate novel disease 

pathways, identify new drug targets and investigate 
the causality of genomic variants in human disease 
pathogenesis.

The effectiveness of a screen is reliant on sgRNA 
design rules. No individual scoring function can com-
pletely predict the behavior of a guide, but by combin-
ing different parameters, we can create a library that 
is well suited to a researcher’s experiment. Our ongo-
ing conversations with the CRISPR community influ-
ence how we adapt scoring functions from the litera-
ture. Not only do we use scoring functions found on 
DESKGEN, but we also incorporate and modify other 
sgRNA design parameters into our design process.

We understand that as versatile as DESKGEN is, 
researchers often benefit from support in designing 
high-throughput experiments. Accordingly, our bio-
informatics team is free to design libraries to meet 
experimental intent by including score thresholds and 
parameter adjustments not inherently built into our 
online software. Table 1 includes a snapshot of just a 
few of these parameters.

For example, our cloud tools do not use on-tar-
get activity scores developed by Chari  et  al.  [13] or 
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Xu et al. [14]. These scores differ from the Doench 2016 
score used on DESKGEN; they do not factor in per-
cent peptide score and were trained on log2 fold change 
rather than a ranking system. Depending on the exper-
iment, one score may be more appropriate to address a 
given intent.

We also work internally with a more precise off-
target scoring system based on Hsu  et  al.  [15]. The 
Hsu score evenly considers off-target hits across the 
genome. Our libraries are designed to evaluate off-tar-
get effects on a broad, weighted scale; this means that 
we look at separate Hsu scores for coding and noncod-
ing regions and weight them according to factors such 
as noncanonical PAM sequences.

As an example, we know that NAG PAM sequences 
tend to be far less active CRISPR editing sites for Strep-
tococcus pyogenes Cas9  [15]. Therefore, we give NAG 
off-targets less weight than NGG. This allows more 
accurate evaluation of guide specificity and, as a result, 
produces more reliable screen data. Knowing that the 
sgRNAs designed to target a given gene are not giv-
ing false-positive results by affecting other parts of the 
genome and epigenome is essential for building a case 
for causality and generating reproducible results. More 
robust conclusions about causality will help move the 
field toward safe and effective CRISPR therapeutics in 
years to come.

Next-generation sequencing data drive 
better guide design
Standardization of editing experiments is impor-
tant for ensuring that laboratory data are reproduc-
ible across cell lines. CRISPR studies also need to be 
robust enough to meet stringent clinical regulations. 
However, current methods for validating experimental 
outcomes post-CRISPR can compromise accuracy and 
experimental throughput [16].

Mismatch cleavage assays such as Surveyor, while 
simple and cost effective, are unable to identify the 
sequence changes at the target site and are insensi-
tive to low (<5%) allelic frequencies  [17]. Compara-
tively, Sanger sequencing is highly accurate but 
not amenable to high-throughput applications in 
mixed cell populations  [18]. Researchers are adopt-
ing next-generation sequencing as the new standard 
quality threshold.

Options such as amplicon deep sequencing are effi-
cient, high-throughput approaches for validating gene-
editing outcomes. Deep sequencing assays are sensi-
tive enough to detect the identity and distribution of 
CRISPR edits within heterogeneous cell populations 
even at low frequencies. This provides comprehen-
sive data on unintended edits across the coding and 
noncoding genome of the model cell line or organism.

Next-generation sequencing is becoming increas-
ingly important in improving and demonstrating the 
accuracy of improved guide design techniques. Data 
suggest that genetic variation influences guide activ-
ity. Whole-genome sequencing of the experimental cell 
line prior to gene editing can provide model-specific 
data, improving predictions of guide efficiency and 
specificity. Data provided from personal genomes 
can improve clinical therapeutic design by addressing 
safety concerns.

This approach not only standardizes the character-
ization of guide activity, but also acts as a validation of 
guide design. Sequencing datasets that pass through 
our algorithms improve our cognitive machine 
learning tool. This creates a positive feedback loop 
that enhances our predictive capabilities. This is an 
essential step as we move toward a clinically relevant 
artificial intelligence CRISPR design system.

We imagine our gene-editing artificial intelligence 
system as a rocket (Figure 1). The only way to pro-

Executive summary

•	 CRISPR and personal genomics promise to revolutionize medicine, but several roadblocks must be addressed 
beforehand.

•	 The DESKGEN platform features multiple experiment-focused design settings while most online single guide 
RNA design tools do not.

•	 The DESKGEN platform incorporates modern strategies to improve precision editing rates via 
homology-directed repair.

•	 Vector/cargo barriers to therapeutic delivery may resolve with the use of alternative CRISPR endonucleases.
•	 Desktop Genetics designs CRISPR libraries with weighted off-target scoring to more precisely edit the genome.
•	 Next-generation sequencing (NGS) provides personal genomics that can be interrogated with CRISPR libraries.
•	 NGS sequencing can be used to characterize model (or patient) genomes leading to better single-guide RNA 

design.
•	 CRISPR libraries can be designed to target coding and noncoding (regulatory) regions of the genome.
•	 Validating CRISPR experiments with NGS deep sequencing can ensure causality and identify or confirm 

off-target effects.
•	 The more data that flow through Desktop Genetics, the better the CRISPR cognitive tool gets due to machine 

learning.
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pel it forward is to give it fuel; the more we can pro-
vide, the better our rocket will perform. The data we 
gather through library screen analyses and sequenc-
ing data power our machine learning cognitive tool. 
As Desktop Genetics begins to cement itself as the 
go-to CRISPR bioinformatics resource in the field, our 
prediction software will only improve.

The more scientists we collaborate with, the fur-
ther we can move toward a new paradigm for genom-
ics. Personal genome initiatives generate mountains 
of data that need to be analyzed and validated. We 
believe that combining CRISPR and deep learning 
approaches will allow us to meet the goals of 
personalized medicine.
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