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Aim: Fenofibrate, a PPAR-α inhibitor used for treating dyslipidemia, has well-
documented anti-inflammatory effects that vary between individuals. While DNA 
sequence variation explains some of the observed variability in response, epigenetic 
patterns present another promising avenue of inquiry due to the biological links 
between the PPAR-α pathway, homocysteine and S-adenosylmethionine – a source 
of methyl groups for the DNA methylation reaction. Hypothesis: DNA methylation 
variation at baseline is associated with the inflammatory response to a short-term 
fenofibrate treatment. Methods: We have conducted the first epigenome-wide study 
of inflammatory response to daily treatment with 160 mg of micronized fenofibrate 
over a 3-week period in the Genetics of Lipid Lowering Drugs and Diet Network 
(GOLDN, n = 750). Epigenome-wide DNA methylation was quantified on CD4+ T cells 
using the Illumina Infinium HumanMethylation450 array. Results: We identified 
multiple CpG sites significantly associated with the changes in plasma concentrations 
of inflammatory cytokines such as high sensitivity CRP (hsCRP, 7 CpG sites), IL-2 
soluble receptor (IL-2sR, one CpG site), and IL-6 (4 CpG sites). Top CpG sites mapped to 
KIAA1324L (p = 2.63E-10), SMPD3 (p = 2.14E-08), SYNPO2 (p = 5.00E-08), ILF3 (p = 1.04E-
07), PRR3, GNL1 (p = 6.80E-09), FAM50B (p = 3.19E-08), RPTOR (p = 9.79e-07) and 
several intergenic regions (p < 1.03E-07). We also derived two inflammatory patterns 
using principal component analysis and uncovered additional epigenetic hits for 
each pattern before and after fenofibrate treatment. Conclusion: Our study provides 
preliminary evidence of a relationship between DNA methylation and inflammatory 
response to fenofibrate treatment.
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Fenofibrate is a second generation fibric acid 
drug derived from the prototype clofibrate. 
In comparison to first generation drugs, it 
has improved efficacy and safety  [1]. Fenofi-
brate is an agonist of PPAR-α, and is known 
to improve lipid profiles, mainly by reducing 
the levels of triglycerides (TG) and increas-
ing high density lipoprotein cholesterol  [2,3]. 
It has also been shown to reduce systemic 
inflammation  [4–6]. For example, treat-
ment with fenofibrate reduced proinflam-
matory markers like TNF-α and CRP and 

improved insulin sensitivity in patients with 
hypertriglyceridemia  [7]. In another study, 
fenofibrate therapy reduced plasma levels of 
inflammatory cytokines such as the MCP-1, 
MIP-1α and IL-1β in patients with hyper-
triglyceridemia and metabolic syndrome  [8]. 
Effective fenofibrate therapy had a significant 
inhibitory effect on the release of monocyte-
derived inflammatory cytokines IL-1β, IL-6 
and MCP-1 in patients with type IIb dyslip-
idemia [9] and hyperlipidemia [10]. Both feno-
fibrate and simvastatin markedly reduced 
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plasma levels of high-sensitivity CRP (hsCRP), IL-1β 
and sCD40L in patients with hyperlipidemia  [11]. 
Fenofibrate was also found to be effective in decreasing 
lipids (total cholesterol, TGs, low density lipoproteins 
and apolipoprotein B), and cytokines like TNF-α 
and interferon (IFN)-γ in plasma in patients with 
atherosclerosis and hyperlipoproteinemia IIb  [12]. The 
anti-inflammatory effect of fenofibrate likely occurs 
via the very low density lipoprotein and low density 
lipoprotein mediated pathways, although the exact 
mechanisms remain to be elucidated in patients with 
hypertriglyceridemia and metabolic syndrome [8].

The response to fenofibrate treatment is highly 
variable among individuals. There are very few 
studies, however, that have investigated the role of 
genetic variation in the anti-inflammatory effects of 
fenofibrate treatment. Results from previous analy-
ses of the Genetics of Lipid Lowering Drugs and 
Diet Network (GOLDN) have shown that common 
genetic polymorphisms are associated with variation 
in lipid response to fenofibrate  [13–17]. Additionally, 
several novel biologically relevant loci are shown to 
be associated with systemic inflammation before and 
after fenofibrate treatment [18], but no significant pre-
dictors of change in individual cytokine concentra-
tions were reported. In a candidate gene study, CRP 
variants were shown to be associated with response to 
fenofibrate treatment in participants with metabolic 
syndrome  [19]. Even though the findings of genetic 
studies have been scant, it is plausible that epigenetic 
factors like DNA methylation may be a more fruitful 
area of inquiry due to homocysteine, an important 
component of the methionine biosynthetic path-
way. Fenofibrate has been shown to elevate homo-
cysteine in a PPAR-α dependent manner  [20]. Spe-
cifically, fenofibrate activates PPAR-α, which in 
turn increases the expression of enzyme MAT that 
converts methionine into SAM [21]. SAM undergoes 
demethylation to form S-adenosyl homocysteine, 
which is then converted to homocysteine [22]. SAM, 
thus produced during conversion of methionine to 
homocysteine, serves as a source of methyl groups 
required for DNA methylation [23]. Despite the bio-
logical plausibility of an epigenetic effect, a previous 
analysis of GOLDN data [24] has reported that lipid 
changes due to fenofibrate treatment were not associ-
ated with DNA methylation patterns, but no stud-
ies to date have explored epigenomic determinants 
of changes in inflammatory biomarkers following a 
fenofibrate intervention. To address this gap in evi-
dence, we have conducted the first epigenome-wide 
study of inflammatory response to fenofibrate treat-
ment, set within a 3-week intervention in GOLDN 
study participants (n = 750).

Methods 
Study design
The GOLDN study recruited families of European 
ancestry from the field centers of the NHLBI Family 
Heart Study in Minneapolis, MN and Salt Lake City, 
UT. It was initiated to assess how genetic contribu-
tion to environmental stimuli (diet and drug) influ-
ence blood levels of TGs and other atherogenic lipid 
species as well as inflammatory markers (registered 
at ClinicalTrials.gov, number NCT00083369). The 
GOLDN study investigated genetic determinants of 
lipid response to two interventions: challenge with a 
high-fat meal, and treatment with fenofibrate (160 mg) 
for 3  weeks. For the purposes of this study, we used 
data from the second intervention. Families with two 
siblings were recruited and were asked to abstain from 
lipid lowering agents (nutraceuticals and pharmaceuti-
cals) for at least 4 weeks prior to their first visit. They 
were also asked to fast for 8 h prior to study visits, and 
abstain from alcohol 24 h prior to their study visit [18]. 
Validated questionnaires were used to collect demo-
graphic, lifestyle and dietary information. Each partici-
pant provided informed consent during the screening 
visit. The protocol was approved by the Institutional 
Review Boards of University of Minnesota, Univer-
sity of Utah, Tufts University/New England Medical 
Center, and the University of Alabama at Birmingham. 
More details about the GOLDN study have been pub-
lished in earlier reports [17–18,25–27]. Baseline and postfe-
nofibrate intervention data were available for 750 par-
ticipants with DNA methylation measurements. We 
included all available participants; power was estimated 
a priori and found sufficient to detect effects >2%.

Measurement of inflammatory biomarkers
For measurement of inflammatory biomarkers in 
serum, the blood samples were collected from the par-
ticipants and centrifuged at 2000  ×  g for 15  min at 
4°C within 20  min of collection. The samples were 
stored at -70°C until analysis. All the samples were 
analyzed at the same time to rule out variation within 
the assays. HsCRP was measured on the Hitachi 911 
using a latex particle enhanced immunoturbidimet-
ric assay (Kamiya Biomedical Company, WA, USA). 
IL-6, IL-2 soluble receptor (sR)-α, TNF-α and che-
mokine MCP-1 were all measured using quantitative 
sandwich enzyme immunoassay (ELISA kits, R&D 
systems, MN, USA) according to the protocol from 
the manufacturer [28].

Estimation of DNA methylation
For estimation of DNA methylation, DNA was 
extracted using DNeasy kits (Qiagen, USA) from 
CD4+ T cells purified from buffy coats (from whole 
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blood) using antigen-specific beads (Thermofisher 
Scientific, MA, USA). Genome-wide DNA methyla-
tion was estimated using Illumina Infinium Human-
Methylation450 Bead chip (Illumina Inc., CA, USA) 
as described in previous studies  [29]. Briefly, 500  ng 
of DNA treated with sodium bisulfite (EZ DNA, 
Zymo Research, CA, USA) was used to perform the 
standard Illumina amplification, hybridization and 
imaging steps. β scores (the proportion of total signal 
from methylation-specific probe or color channel) and 
p-values (the probability that the total intensity for a 
given probe falls within the background signal intensity) 
were estimated using Illumina Genome Studio. The 
resulting β scores were normalized using the ComBat 
package for R software to account for observed batch 
effects  [30]. Random subsets of 10,000 CpGs per run 
were run after normalization, in which each array of 
12 samples were used as batch. Correction for differing 
probe chemistry was performed on Illumina Infinium 
HumanMethylation450 Bead chip, normalizing the 
probes separately from the Infinium I and II [26–27,29,31]. 
If the probe sequence in the CpGs mapped either to a 
location that did not match the annotation file or to 
>1 locus, they were eliminated. These markers were 
identified by realigning all probes (with unconverted 
Cs) to the human reference genome. Methylation data 
were generated from CpGs after performing quality 
control (QC) procedures. Principal components (PCs) 
were generated based on the β-scores of all autosomal 
CpGs that passed QC by using the prcomp function 
in R (v2.12.1) [32]. Epigenome-wide DNA methylation 
was quantified using identical protocols before and 
after the fenofibrate intervention.

Statistical analysis
Differences in inflammatory biomarker profiles pre- 
and postfenofibrate intervention were analyzed using 
paired two-sided t-tests. A total of 244 participants 
were excluded from the analysis if they were missing 
outcome or covariate data. Outcomes were defined 
using ratios of post- to prefenofibrate treatment plasma 
concentrations of each biomarker (hsCRP, IL-2sR-α, 
IL-6, MCP1, TNF-α), as well as previously derived [28] 
inflammatory patterns pre- and postfenofibrate treat-
ment. Log- or square root-transformations were car-
ried out for non-normally distributed ratios. For the 
model with the strongest evidence of association, a 
sensitivity analysis was conducted with the outcome 
defined as the difference in post- and prefenofibrate 
treatment concentrations rather than a ratio, adjusting 
for baseline values. PC analysis (PROC FACTOR in 
SAS) was used to derive inflammatory patterns [33]. All 
five inflammatory biomarkers were measured before 
fenofibrate treatment, and entered into the model, to 

produce two inflammatory patterns based on evalua-
tion of eigenvalues and the Scree plot  [28]. Interpret-
ability was improved by rotating the patterns using 
the VARIMAX option  [34]. For derivation of post
fenofibrate inflammatory patterns, the procedure was 
repeated with the same markers measured in fasting 
serum collected at the end of the intervention.

To remove the confounding due to T-cell impurity 
in DNA methylation profiles, residuals of methylation 
were obtained by entering the four PCs derived from 
whole-genome methylation as fixed effects in linear 
mixed models  [24]. In sensitivity analyses, additional 
adjustments were made for lifestyle factors that may 
modify DNA methylation, including smoking (cur-
rent smoking yes or no), alcohol consumption (in 
grams per day) and BMI (kg/m2). Bonferroni correc-
tion was used to account for multiple comparisons, 
with the genome-wide significance level of 0.05/(num-
ber of CpGs or 450,000) = 1.1 × 10-7. Manhattan plots 
were constructed to visualize the results. To evaluate 
deviations from the expected test statistic distributions, 
quantile–quantile (Q–Q) plots were constructed. All 
the datasets on which the conclusion of report relies are 
available on request.

Results
General characteristics of the study population are 
summarized in Table 1. At baseline, the mean age 
of participants was 48  ±  16  years; about half of the 
participants were female. All participants were of self-
reported European ancestry. Paradoxically, serum 
concentrations of all inflammatory biomarkers except 
hsCRP slightly increased from baseline to postfenofi-
brate treatment (Table 1). The data meet the assump-
tion of the tests. The top loci associated with the post- 
to prefenofibrate treatment ratio for each inflammatory 
biomarker are described in Table 2. We identified seven 
CpGs significantly associated with hsCRP, one with 
IL-2sR and four with IL-6 (Table 2). The Manhattan 
plots summarizing the results of the epigenome-wide 
analyses for each outcome are shown in Figure 1. The 
quantile–quantile (Q–Q) plots were used to sum-
marize the results of the epigenome-wide analyses 
for each outcome (data not shown). The following 
lambda values were estimated for each model, indicat-
ing modest deviations for all phenotypes except for 
CRP: 1.22 (hsCRP ratio), 1.08 (IL-2sR-α ratio), 1.01 
(IL-6 ratio), 0.98 (MCP-1 ratio) and 1.03 (TNF-α 
ratio). There was no meaningful change in the results 
after sensitivity analysis after adjustment for alcohol, 
smoking and BMI (Supplementary Table 1). Consis-
tent with previous reports by Kabagambe  et  al. and 
Aslibekyan et al. [18,28], two inflammatory patterns were 
identified each before and after fenofibrate treatment: 
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hsCRP-IL6 (Factor 1) and MCP1-TNF-α (Factor 2). 
The two top hits for Factor 1 prefenofibrate treatment 
were BCL2L15 and KCNQ1, and BCL2L15 and GRIA4 
emerged as top epigenetic correlates of Factor 2 postfe-
nofibrate treatment. There were no significant hits for 
postfenofibrate treatment for Factor 1 and for prefe-
nofibrate treatment Factor 2 (Supplementary Table 2). 
These hits were not consistent with those found for 
individual cytokines.

Discussion
To our knowledge, this is the first study to investigate 
the epigenomic determinants of changes in inflamma-
tory biomarkers following a fenofibrate intervention. 
Among individual inflammatory biomarkers’ response 
to fenofibrate, the strongest association was found 
for CpG associated with the CRP-IL-2sR pattern, 
located in KIAA1324L (chromosome 7). Human 
KIAA1324L, or EIG121L, is markedly downregulated 

by a constitutively active mutant of Ras  [35]. At least 
seven of the top ten genes shown to interact with 
KIAA1324L were related to inflammation: DLC1, 
ERBB4, PDCD4, TSPAN3, RPS23, ESR1, TCEAL4 
and PDE5A  [36]. DLC1 is a tumor suppressor gene, 
absence of which results in inflammation in gastric 
cancer  [37]. ERBB4 has been shown to function both 
as an oncogene as well as a tumor suppressor gene. 
Over-expression of ERBB2 has been shown to enhance 
cellular transformation in human colon cancer  [38]. 
Loss of ERBB4 led to exacerbation of acute or chronic 
inflammation in mouse models of liver injury  [39]. 
PDCD4 is a neoplastic transformation inhibitor and 
thus acts as a tumor suppressor but inhibiting tumor 
promoter-induced neoplastic transformation that is 
usually driven by inflammation [40]. RPS23 belongs to 
the family of ribosomal proteins, and is found to be 
optimal in bowel inflammation and cancer [41]. ESR1 
is one form of the estrogen receptor that is involved 

Table 1. Characteristics of the Genetics of Lipid Lowering Drugs and Diet Network study participants 
(n = 750).

Variable   Baseline (n = 750) After 3 weeks (n = 750) p-value

Age (years) 48.90 (15.97) –  

Sex (% female) 49.7   –  

High sensitivity C-reactive protein (mg/dl) 0.24 (0.35) 0.26 (0.47) 0.20

IL-2 soluble receptor-α (pg/ml) 1015.80 (359.37) 1163.30 (534.58) <0.0001

IL-6 (pg/ml) 2.07 (3.62) 2.23 (3.55) 0.009

TNF-α (pg/ml) 3.51 (6.10) 3.79 (4.22) 0.002

MCP-1 (pg/ml) 208.49 (68.31) 224.03 (76.92) <0.0001

Data are presented as mean ± SD or N (%).

Table 2. Top loci associated with inflammatory response to ratio of pre- and postfenofibrate 
treatment in Genetics of Lipid Lowering Drugs and Diet Network study participants.

CpG site CHR Genes BP BETA SE p-value n Phenotype

cg22616933 7 KIAA1324L  86547833 -55.88 8.72 2.63E-10 749 ratio_crp

cg13215593 2 – 558823 -23.32 4.01 9.45E-09 738 ratio_crp

cg05591728 16 SMPD3 68477022 -47.30 8.35 2.14E-08 749 ratio_crp

cg09245319 2 – 227049703 -73.22 13.21 4.22E-08 749 ratio_crp

cg14717666 4 SYNPO2 119862992 32.46 5.89 5.00E-08 748 ratio_crp

cg08623156 12 – 113577046 -41.66 7.75 1.03E-07 749 ratio_crp

cg18630811 19 ILF3 10791805 -83.20 15.48 1.04E-07 748 ratio_crp

cg18221028 6 PRR3; GNL1 30523418 11.91 2.03 6.80E-09 748 ratio_il2

cg27445347 6 FAM50B 3849801 -6.64 1.19 3.19E-08 749 ratio_il6

cg06343673 17 RPTOR 78778232 -1.34 0. 27 9.79E-07 749 ratio_il6

cg13098428 17 RPTOR 78775814 -1.36 0.28 2.03E-06 749 ratio_il6

cg16896879 17 RPTOR 78778094 -6.58 1.45 6.71E-06 749 ratio_il6
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Figure 1. Manhattan plots of the epigenome-wide association study in Genetics of Lipid Lowering Drugs and Diet 
Network participants (see previous page). Manhattan plots of genome-wide results of testing for association 
between CpGs and Inflammatory response to ratio of pre- and postfenofibrate treatment (A–E) inflammatory 
patterns. The X-axes display the chromosome on which the CpG is located, the Y-axes display −log10 (p-value). 
(A) High-sensitivity CRP; (B) IL-2 soluble receptor-α; (C) IL-6; (D) MCP-1; (E) TNF-α.
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in inflammation and cancer [42,43]. TCEAL4 is a tran-
scription elongation factor that is downregulated in 
thyroid cancer  [44]. PDE5A is an enzyme from the 
phosphodiesterase class, and has been recently discov-
ered to downregulate inflammatory cytokines partially 
through the activation of Akt signaling pathway [45].

Other strong associations were found for IL-2sR, 
specifically at cg18221028 near PRR3, GNL1 and for 
IL-6, namely at cg27445347 near FAM50B (all on 
chromosome 6). Pseudo response regulator 3 (PRR3) 
transcript levels vary in a circadian pattern with peak 
expression at dusk under long and short day condi-
tions [46]. Of the ten top genes interacting with PRR3, 
five (GCN20, ABCF1, TRIM27, BLMH and LIG3) 
were associated with inflammation [36]. GNL1, a puta-
tive nucleolar GTPase, belongs to the MMR1-HSR1 
family of large GTPases that are emerging as crucial 
coordinators of signaling cascades in different cellular 
compartments  [47]. Additional associations that were 
approaching statistical significance were found for 
CpGs (cg06343673, cg13098428 and cg16896879) 
associated with IL-6, near RPTOR (chromosome 17). 
RPTOR is involved in the control of the mTORC1 
activity which regulates cell growth and survival, and 
autophagy in response to nutrient and hormonal sig-
nals; functions as a scaffold for recruiting mTORC1 
substrates. mTORC1 is activated in response to growth 
factors or amino acids. Growth factor-stimulated 
mTORC1 activation involves AKT1-mediated phos-
phorylation of TSC1-TSC2, which leads to the activa-
tion of the RHEB GTPase that potently activates the 
protein kinase activity of mTORC1 [48,49]. Several stud-
ies have demonstrated an important role for RPTOR 
in regulation of inflammation in various diseased con-
ditions. Micro RNA (miR)-155 has been shown to tar-
get RPTOR in lung epithelial cells from patients with 
cystic fibrosis  [50]. The disruption of mTORC1 sig-
naling in macrophages had a protective effect against 
inflammation and insulin resistance  [51]. In another 
study, treatment with rapamycin or hepatocyte-specific 
ablation of Raptor resulted in increased levels of IL-6 
production, activation of signal transducer and activa-
tor of STAT3, and increase in development of hepa-
tocellular carcinoma  [52]. mTOR signal pathway acti-
vation resulted in activation of TLR-4 during THP-1 
macrophage foam cells formation [53].

To date, few pharmacogenomic studies have evalu-
ated the role of methylation in the inflammatory 
response. An 8-week daily supplementation with 

200  mg oligomeric flavonoids from grape seeds did 
not cause major changes of DNA methylation state 
but influenced the expression of genes associated with 
cardiovascular disease pathways [54]. SAM is a methyl 
donor in DNA methylation, and has been shown to 
lower lipopolysaccharide-induced expression of the 
proinflammatory cytokine TNF-α and increase the 
expression of the anti-inflammatory cytokine IL-10 in 
macrophages. SAM was found to modulate the expres-
sion of inflammatory genes in association with changes 
in specific gene promoter DNA methylation [55]. Treat-
ment with folic acid (FA)/B12 was found to be asso-
ciated with more rapid progression of coronary artery 
disease (CAD). ADMA and TML are both produced 
by post-translational SAM-dependent methylation of 
precursor amino acid via proteolytic release. In patients 
with established CAD, baseline ADMA and TML was 
associated with angiographic progression of CAD, but 
treatment with FA/B12 (± B6) did not alter the levels 
of neither ADMA nor TML [56].

Epigenetic regulators are shown to be involved in 
histone acetylating and deacetylating activities that 
contribute to the pathogenesis of atherosclerosis and 
restenosis. Since these alterations in chromatin struc-
ture are reversible, these epigenetic modifications can 
be subjected to pharmacological intervention for the 
management of cardiovascular diseases  [57]. Plaques 
preferentially develop in arterial regions of disturbed 
blood flow (d-flow), thus altering endothelial gene 
expression and function. D-flow was found to regulate 
genome-wide DNA methylation patterns in a DNA 
methyltransferase-dependent manner. This was fol-
lowed by alteration of endothelial gene expression and 
induction of atherosclerosis [58]. Finally, a previous anal-
ysis of GOLDN data reported that lipid changes due 
to fenofibrate treatment are not associated with changes 
in DNA methylation patterns  [24], although it did not 
investigate baseline methylation as a potential predictor. 
Overall, our study provides a unique perspective on the 
modulation of inflammatory biomarkers by fenofibrate 
and its association with epigenomic determinants.

There are several limitations of our study. First, 
the current study was only conducted in one cohort, 
and false positive results remain a concern. Replica-
tion of gene–drug response associations are costly and 
are logistically difficult to conduct, but can markedly 
improve the quality of published studies by minimiz-
ing false-positive findings. However, approaches like 
functional validation, combined analysis of several 
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populations and simulations could provide an all-
encompassing and scrupulous path for validating the 
findings from studies on genetic association [59]. Future 
studies should consider these alternative approaches 
to follow-up of our preliminary findings. Second, in 
the current epigenome-wide study, we were limited to 
interrogating DNA methylation in genomic regions 
included on the Illumina 450K array. It is possible that 
methylation patterns beyond those quantified by the 
array may also influence response to fenofibrate. Third, 
we only quantified methylation on CD4+ T  cells 
(the most abundant lymphocyte in whole blood) to 
limit confounding by cell type. Thus, future studies 
may consider other relevant cell types, for example, 
monocytes, to test the generalizability of our findings.

Conclusion
Fenofibrate is a lipid lowering drug, and has been 
reported to reduce inflammation. Our group had 
previously identified several biologically relevant 
loci that were associated with inflammation. In this 
study, we investigated the epigenomic determinants of 

changes in inflammatory biomarkers after fenofibrate 
intervention. We found that several CpG sites were 
associated with change in plasma concentrations of 
inflammatory cytokines, namely hsCRP, IL-2sR and 
IL-6. We also found additional hits for each inflamma-
tory pattern before and after fenofibrate treatment. The 
findings from our study provide basis for relationship 
between DNA methylation and fenofibrate treatment.
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