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Aim: To explore the role of pharmacogenetics in determining the risk of congenital 
heart anomalies (CHA) with prenatal use of serotonin reuptake inhibitors. 
Methods: We included 33 case-mother dyads and 2 mother-only (child deceased) 
cases of CHA in a case-only study. Ten genes important in determining fetal exposure 
to serotonin reuptake inhibitors were examined: CYP1A2, CYP2C9, CYP2C19, CYP2D6, 
ABCB1, SLC6A4, HTR1A, HTR1B, HTR2A and HTR3B. Results: Among the exposed cases, 
polymorphisms that tended to be associated with an increased risk of CHA were 
SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 and rs6298 and 
HTR3B rs1176744, but none reached statistical significance due to our limited sample 
sizes. Conclusion: We identified several polymorphisms that might potentially affect 
the risk of CHA among exposed fetuses, which warrants further investigation.
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One of the most prescribed antidepres-
sant groups is the selective serotonin reup-
take inhibitors (SSRIs), with up to 4 in 
100 pregnant women being prescribed with 
this group of antidepressants [1–3]. SSRIs 
are generally well tolerated with the excep-
tion of concerns about increased risk of fetal 
congenital anomalies following prenatal 
exposure to these drugs. Following the US 
FDA warning about this risk in 2005, many 
studies have been performed to elucidate 
the magnitude and effect of this associa-
tion. However, the results of these studies 
have been inconsistent. Meta-analyses by 
two groups of researchers reported around a 
40% increase in the risk of fetal congenital 
heart anomalies (CHA) following prenatal 
exposure to paroxetine [4–6], but a similar 
risk increment was not found for all the 
SSRIs combined [7]. Because clinical trials 
are not an option for measuring the risk of 
an exposure during pregnancy, most studies 

were done retrospectively using data from 
pregnancy and/or prescription registries. 
The conflicting study results in impede 
decision-making among clinicians on a safe 
and effective therapy for their patients, and 
best practice at present is to assess indi-
vidual risk factors before any treatment 
recommendation.

We previously identified several genes 
that might be important in the metabolism 
and mechanism of action of SRIs that may 
also potentially play a role in the develop-
ment of SRI-related CHA [8]. Several poly-
morphisms of metabolic enzymes (CYP1A2, 
CYP2C9, CYPC19 and CYP2D6) were 
reported to affect the pharmaco kinetics 
and the risk of side effects of SRIs [9,10]. 
P-glycoprotein (P-gp) expressed in the pla-
centa plays a role in limiting fetal exposure 
to SRIs, and several SNPs were found to 
reduce P-gp function [11]. In addition, a 
number of poly morphisms of the serotonin 
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transporter (SERT) and the serotonin receptor genes 
were associated with variation in the clinical response 
to SRIs and the severity of side effects [12–14].

We therefore aimed to explore the genetic variations 
that may be involved in fetal exposure to SRIs, and 
their mechanism of action, to further understand why 
some children exposed to SRIs in the first trimester 
of pregnancy develop CHA while others do not. Our 
objective was to determine the effect of the gene × 
environment (G × E) interaction between pharmaco-
genetic predictors of the SRIs and prenatal exposure to 
these drugs on the risk of CHA.

Methods 
Study design
We performed an exploratory G × E interaction study 
using case-only design. This design can detect the 
effect of genotype and exposure in a group of cases 
when the disease is rare. In our case, we considered 
CHA as a relatively rare disease, and G × E interaction 
studies have been commonly performed to investigate 
the genetic and environmental risk factors for congeni-
tal anomalies. One of the assumptions made is that the 
genotype and environment are independent of each 
other [15–17].

Patient sampling
The study population includes children with CHA 
registered in the EUROCAT Northern Netherlands 
(NNL) database, a population-based birth defect reg-
istry covering the three northern provinces of The 
Netherlands. EUROCAT NNL registers fetuses or 
children diagnosed with major congenital anomalies 
before or after birth, and up to 10 years old, upon 
consent of their parents. For cases registered up to 
2001, the types of CHA were classified according to 
the EUROCAT Subgroup of Congenital Anomalies 
version 2012 [18] and the International Classification 
of Diseases (ICD) coding system 9th revision. For 
cases registered from 2002 onwards, the ICD cod-
ing system 10th revision was used for classification. 
We included only major CHA cases, either as single 
heart anomalies, as part of complex heart anomalies 
(including cardiovascular anomalies) or as part of 
complex anomalies involving other organ systems. 
Diagnosis codes included were ICD9 745–746, 7470–
7474 (excluding 74550, persistent foramen ovale) and 
ICD10 Q20–Q26 (excluding Q2111, persistent fora-
men ovale), which include common arterial truncus, 
transposition of great vessels, single ventricle, ven-
tricular/atrial/atrioventricular septal defects, tetral-
ogy of Fallot, triscuspid atresia and stenosis, Ebstein’s 
anomaly, pulmonary valve stenosis, pulmonary valve 
atresia, aortic valve atresia/stenosis, hypoplastic 

left/right heart syndrome, coarctation of aorta, total 
anomalous pulmonary venous return and patent duc-
tus arteriosus. Cases born between 1 January 1997 
and 31 December 2013 were eligible for this study. 
Exclusion criteria were: cases with genetic disorders, 
including chromosomal anomalies, micro deletions, 
monogenic disorders and those with known terato-
genic causes; case mothers with a previous history of 
a malformed child or history unknown; and cases in 
which the mother never used any medication dur-
ing pregnancy in order to reduce the selection bias 
of including mothers among the unexposed group 
who were generally ‘healthy’. Cases were invited to 
participate in this study via the Pediatric Cardiol-
ogy Clinic, University Medical Center Groningen 
(UMCG) and were asked to provide DNA samples. 
This study received a waiver from ethical clearance 
consideration by the Medical Ethical Committee of 
the UMCG.

Drug exposure
Exposed cases were defined as CHA cases whose 
mothers had used at least one of the following SRIs 
(ATC codes) at some point between 30 days before 
conception and 90 days of gestation: fluoxetine 
(N06AB03), citalopram (N06AB04), paroxetine 
(N06AB05), sertraline (N06AB06), fluvoxamine 
(N06AB08), escitalopram (N06AB10), venlafax-
ine (N06AX16) and duloxetine (N06AX21). The 
information on drug use in EUROCAT NNL was 
obtained primarily via pharmacy records, upon con-
sent of the mother, and later verified by telephonic 
interviews to ensure the validity of the information 
obtained. The unexposed cases were CHA cases 
whose mothers had used any drugs other than SRIs 
during pregnancy. Variables like smoking during 
the pregnancy, alcohol intake during the pregnancy, 
maternal medical history and folic acid supplement-
ation were obtained from a questionnaire given upon 
registration with EUROCAT NNL.

Selection of candidate genes & SNPs
We selected ten genes that encode enzymes or pro-
teins important in determining fetal exposure to SRIs: 
the CYP450 enzymes (CYP1A2, CYP2C9, CYP2C19 
and CYP2D6), P-gp (ABCB1), SERT (SLC6A4) and 
serotonin receptors (HTR1A, HTR1B, HTR2A and 
HTR3B). The CYP450 metabolic enzymes are involved 
in the pharmacokinetics of SRIs and influence the drug 
concentration in the maternal circulation. Since all 
the SRIs examined in this study are substrates of P-gp, 
changes in P-gp expression or activity may alter the 
fetal exposure to SRIs [19,20]. SRIs inhibit the uptake 
of serotonin (5-HT) through SERT and 5-HT signals 
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through serotonin receptors. Normal 5-HT signaling is 
important for normal development of fetal heart cells [21].

For the CYP1A2, CYP2C9, CYP2C19 and 
CYP2D6 genes, we selected 37 SNPs with known 
phenotypes of either ‘ultrarapid metabolizer’, ‘rapid 
metabolizer’, ‘extensive metabolizer’, ‘intermediate 
metabolizer’ or ‘poor metabolizer’ [22]. The selection 
of poly morphisms in ABCB1, SLC6A4 and serotonin 
receptor genes was based on their clinical effects on 
the SRI treatment. We selected eight SNPs in ABCB1, 
two repeat markers in SLC6A4, two SNPs in HTR1A, 
two SNPs in HTR1B, five SNPs in HTR2A and two 
SNPs in HTR3B (Supplementary Table 1) [8,14,23–24]. 
SNPs with call rates of <90% were excluded from the 
analysis.

DNA collection
An invitation letter and package was sent to the mother 
of each exposed case, followed by a reminder letter 
after 4 weeks, if necessary. Once written informed 
consent was received from the mothers (and children), 
we sent them the sample collection kit including cyto-
brushes to collect buccal cell samples (Isohelix SK-1 
swab kits with Isohelix Dri-capsules, Cell Projects Ltd, 
UK). Clear instructions about how to use the sample 
collection kit were provided, together with a link to an 
instructional video (in Dutch). Mothers (and children) 
were asked to return the cytobrushes to the researchers 
in prepaid mail envelopes, with a silica gel enclosed. 
A reminder letter was sent if we did not receive the 
samples after 4 weeks. Each collection tube contain-
ing the samples was labeled with the identifier code 
and with ‘Mother’ or ‘Child’. For the unexposed cases, 
DNA samples were retrieved from CHA patients from 
the Department of Genetics, UMCG who had con-
sented to the use of their residual materials in future 
research. DNA was obtained from the blood and the 
isolation process was performed in the same facility as 
the samples from exposed cases.

Genotyping
DNA samples received from the exposed cases were 
labeled and stored until they were genotyped. DNA 
from exposed cases was extracted from the buccal cells 
using Isohelix DNA isolation kit (DDK-50/DDK-3, 
Cell Projects Ltd, UK). SNP genotyping for CYPs, 
ABCB1 and HTR genes was performed using 10 ng of 
DNA samples using the iPLEX® Gold platform (Agena 
Bioscience GmbH, Hamburg, Germany) according to 
the standard protocol. The region of interest was ampli-
fied by PCR using gene-specific primers, followed by 
single base extension using the iPLEX Gold cocktail 
of primer, enzyme, buffer and terminator nucleotides, 
resulting in extended fragments with a specific mass 

for each allele. The mass was detected by the MassAR-
RAY® System and genotype calling was performed 
using the MassARRAY® Typer Analyzer 4.0 software 
tools (Agena Bioscience GmbH or Sequenom, Ham-
burg, Germany). Manual inspection and adjustment 
of the genotype classifications was also performed by 
authors on all the SNPs with call rates of less than 
90%. For the SLC6A4 repeat markers, the regions of 
5-HTTLPR and 5-HTTVNTR were amplified by 
PCR using specific primers. Amplified DNA frag-
ments were separated by electrophoresis: 5-HTTLPR 
long and short alleles (530 and 486 bp, respectively) 
and 5-HTTVNTR STin2.9, STin2.10 and STin2.12 
(250, 271 and 302 bp, respectively). Details on primer 
sequences are available upon request.

Phenotype & genotype scoring
The genotypes of CYP enzyme polymorphisms were 
grouped into phenotypes that depict the functional-
ity of the enzymes (i.e., normal metabolizer, poor 
metabolizer or rapid metabolizer, etc.), and were 
reported according to the standardized terms from the 
Clinical Pharmacogenomics Implementation Consor-
tium [25,26]. Since the CYP enzymes in the fetus are 
not fully developed during the first trimester, only the 
genotype from the mothers was analyzed.

The risk of CHA was determined for each genetic 
variation of the ABCB1, HTR1A, HTR1B, HTR2A 
and HTR2B genes using a recessive model and for 
the SLC6A4 gene using a dominant model, based on 
the number of exposed cases to perform the analysis. 
To further explore the cumulative effect of ABCB1 
SNPs, we calculated a genetic score per individual 
based on the number of risk alleles present as done 
previously [27–29]. The score is associated with the 
transport of SRIs through P-gp. In the mother, P-gp 
is expressed in the intestines, liver and kidney where 
it helps to eliminate substrate drugs, while P-gp in 
the placenta limits drug transport into the fetal cir-
culation. A maternal ABCB1 genotype encoding for 
reduced P-gp function increases the plasma drug 
concentration available for transfer through the pla-
centa, while the same genotype in the fetus increases 
the transfer of the drug into the fetus. Seven SNPs in 
the ABCB1 gene previously associated with reduced 
expression or function were included in the scor-
ing: rs1045642, rs1128503, rs1882478, rs2032582, 
rs2235040, rs4148739 and rs9282564. The risk 
alleles can occur in a homozygous or heterozygous 
form; therefore each individual could have zero, one 
or two alleles for each SNP, resulting in a cumulative 
risk score up to 14. For the SLC6A4 5-HTTLPR and 
5-HTTVNTR polymorphisms, the cumulative score 
was up to four.
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Figure 1. Case sampling.

Cases of major CHA born in
1997–2013 (n = 2172)

Exclusion of known cause anomalies:
Chromosomal anomalies (n = 277)

Microdeletion (n = 44)
Monogenic disorder (n = 78)
Teratogenic causes (n = 5)

Cases included (n = 1768)

Cases included (n = 1383)

Exposed to SRIs
(n = 32)

Not exposed to SRIs
(n = 1351)

Exclusion of exposure in:
Preconception only (n = 3)

2nd and/or 3rd trimester (n = 5)

DNA samples not received
(n = 1)

Exposed cases
genotyped (n = 7)

Unexposed cases
genotyped (n = 28)

Random selection to
match exposed cases

with 1:4 ratio

Cases with available
DNA samples (n = 59)
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Statistical analysis
Deviations from Hardy–Weinberg equilibrium were 
tested using Pearson’s χ2 test. To test for the effect of 
pharmacogenetic predictors (genotype) and prenatal 
exposure to SRIs (environment) on the risk of fetal 
CHA, we determined the departure from multipli-
cative interaction between gene and environment 
using multivariable logistic regression and expressed 
as interaction odds ratio (OR) and 95% CI. An OR 
of more than 1 indicates that the presence of both 
pharmacogenetic predictors and SRI use increases the 
risk of CHA.

Results 
Case sampling
From 2172 CHA cases born between 1997 and 2013 
and registered in EUROCAT NNL, we selected 1383 
cases that matched the inclusion criteria (Figure 1). 
For the exposed cases, 24 case mothers were invited 
to participate in the study and 8 case-mother dyads 
gave their consent. For cases under the age of 12, 
written informed consent was obtained from their 
mothers. The DNA samples were available for five 
exposed dyads and two mothers-only (with deceased 
child) cases; four exposed case-mother dyads and two 
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mothers-only cases provided their DNA samples, and 
the samples of one case-mother dyad were retrieved 
from the clinical diagnostic laboratory. The number 
of unexposed cases was chosen to be four-times the 
number of exposed cases because increasing the ratio 
would not have added to the significance of the results. 
Therefore, 28 unexposed case-mother dyads were 
randomly selected from the available DNA samples.

The characteristics of all the cases and mothers can 
be found in Table 1. Majority of our cases and case 
mothers are Caucasians (91.4%). Of the seven exposed 
case-mothers, three were recorded to have depression. 
No chronic illness was registered of the other four 
mothers, but we can assume they will all have had 
depression or anxiety symptoms. Of the 28 unexposed 
case-mothers, none had a registered psychiatric illness. 
The SRIs used by the case-mothers were paroxetine 
(three), fluoxetine (two), venlafaxine (one), and par-
oxetine and venlafaxine (one). None of the exposed 
mothers were using psychoactive drugs other than 
SRIs and none of the unexposed mothers were using 
psychoactive drugs.

Other types of medications used by these mothers 
in the first trimester are: antiemetics (six), analgesics 
(six), hormone preparations (five), antacids (four), lax-
atives (four), antibiotics (three), antihistamines (two), 
thyroid preparation (one), cholesterol lowering agent 
(one) and cough preparation (one).

Genotyping
A total of 65 DNA samples were obtained and 
genotyped: 12 samples from the exposed cases 
(five children and seven mothers) and 53 samples from 
the unexposed cases (28 children and 25 mothers). 
Genotype and allele frequencies for all case-mother 
dyads are listed in Table 2. Out of 58 polymorphisms 
analyzed, five SNPs (CYP2D6 *4, *6, *8,*17 and 
*41) failed to be genotyped. Out of 53 SNPs, four 
SNPs (CYP2D6*2, *9, *11 and *12) had allele calling 
rates of less than 90% and the genotype frequency 
for HTR2A rs7997012 was not in Hardy–Weinberg 
equilibrium (p = 0.03). Due to the different call 
rates among SNPs, the number of case-mother dyads 
differed for each G × E interaction analysis.

CYP enzyme & P-glycoprotein phenotypes
The interaction between maternal CYP enzyme pheno-
types and SRI exposure does not indicate an effect on 
the risk of CHA. Among cases exposed to paroxetine 
(n = 4), all the case-mothers were normal CYP2D6 
metabolizers (Supplementary Table 2). Two cases 
were exposed to venlafaxine and one of them was an 
intermediate CYP2C19 metabolizer. Fluoxetine was 
used by two case-mothers who were both normal 

Table 1. Characteristics of case-mother 
dyads included in the study (n = 35).

Characteristics n %

Child’s sex

Boy 27 77.1

Girl 8 22.9

Year of birth   

2003–2007 24 68.6

2008–2013 11 31.4

First pregnancy 8 22.9

Types of birth   

Live birth 33 94.3

Termination of pregnancy 2 5.7

Types of CHA   

Single 22 62.9

Complex 13 37.1

Subtypes of CHA†

Cardiac cambers and connections, 
ICD10 Q20

5 14.3

Cardiac septa, ICD10 Q21 11 31.4

Pulmonary and tricuspid valves, 
ICD10 Q22

2 5.7

Aortic and mitral valves, ICD10 Q23 22 62.9

Great arteries, ICD10 Q25 12 34.3

Maternal age at delivery, mean 
years (range)

31 24–
39

Maternal education level

Low 2 5.7

Middle 18 51.4

High 15 42.9

Folic acid use during pregnancy 33 94.3

Smoking during first trimester 6 17.1

Alcohol intake in the first trimester 14 40.0

Medication use in the first trimester

SRIs 7 20

Other medication‡ 23 65.7

Maternal medical history

Gestational diabetes 3 8.6

Congenital anomalies 4 11.4

Chronic disease 6 17.1
†More than one subtype is counted for cases of complex CHA.
‡Other than SRIs (for exposed group) and folic acid/
supplements (for unexposed group); within 30 days before 
conception and 90 days in the first trimester.
CHA: Congenital heart anomaly; ICD-10: 10th revision of the 
Interntional Statistical Classification of Diseases and Related 
Health Problems; SRI: Serotonin reuptake inhibitor.
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Table 2. Genotype frequency of study SNPs in case-mother dyad samples (n = 65).

Gene/
SNPs

rs number WT/VT 
allele

wt/wt wt/vt vt/vt NA Allele 
calling rate

Variant 
allele fq

Variant allele 
fq (European)†

HWE 
p-value

CYP1A2 

 rs2069521 G/A 62 1 0 2 96.9 0.01 0.02 0.95

 rs2069526 T/G 62 1 0 2 96.9 0.01 0.02 0.95

 rs4646425 C/T 62 1 0 2 96.9 0.01 0.02 0.95

 rs4646427 T/C 63 1 0 1 98.5 0.01 0.02 0.95

 rs2472304 G/A 4 27 32 2 96.9 0.72 0.6 0.59

 rs2470890 C/T 5 26 33 1 98.5 0.72 0.6 0.97

CYP2C9

*2 rs1799853 C/T 65 0 0 0 100 0 0.12 NA

*3 rs1057910 A/C 57 7 0 1 98.5 0.05 0.07 0.64

*4 rs56165452 T/A 62 1 0 2 96.9 0.01 0† 0.95

*6 rs9332131 A/DEL 62 0 0 3 95.4 0 0 NA

*5 rs28371686 C/G 65 0 0 0 100 0 0 NA

*8 rs7900194 G/A 64 0 0 1 98.5 0 0 NA

*11 rs28371685 C/T 65 0 0 0 100 0 0 NA

*13 rs72558187 T/C 65 0 0 0 100 0 0 NA

*15 rs72558190 C/A 65 0 0 0 100 0 0† NA

CYP2C19

*2 rs4244285 G/A 51 12 2 0 100 0.12 0.15 0.24

*3 rs4986893 G/A 65 0 0 0 100 0 0 NA

*4 rs28399504 A/G 59 1 0 5 92.3 0.01 0 0.95

*5 rs56337013 C/T 65 0 0 0 100 0 0‡ NA

*6 rs72552267 G/A 65 0 0 0 100 0 0 NA

*7 rs72558186 T/A 64 0 0 1 98.5 0 0‡ NA

*8 rs41291556 T/C 64 0 0 1 98.5 0 0 NA

*9 rs17884712 G/C 65 0 0 0 100 0 0 NA

*10 rs6413438 C/T 65 0 0 0 100 0 0 NA

*17 rs12248560 C/T 35 23 3 4 93.8 0.24 0.22 0.75

CYP2D6

*2 rs16947 G/A 27 18 9 11 83.1 0.33 0.34 0.06

*3A rs35742686 A/DEL 61 0 0 4 93.8 0 0.02 NA

*7 rs5030867 A/C 64 0 0 1 98.5 0 0 NA

*9 rs5030656 AAG/DEL 13 0 0 52 20 0 0.03 NA

*10 rs1065852 C/T 39 22 4 0 100 0.23 0.2 0.71

*11 rs5030863 G/C 44 0 0 21 67.7 0 NA NA

*12 rs5030862 G/A 56 0 0 9 86.2 0 0 NA

ABCB1  

 rs1128503 C/T 19 29 14 3 95.4 0.46 0.42 0.65
†Allele frequency of the European population [30,31].
‡Allele frequency of population worldwide. Also, see Supplementary Table 2 for genotype frequencies in exposed and unexposed case-mothers.
Fq: Frequency; HWE: Hardy–Weinberg equilibrium; NA: Not available; VT: Variant; WT: Wild-type.
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CYP2C9 and CYP2D6 metabolizers. Therefore, we 
cannot determine the effect of metabolic enzyme pheno-
types on the risk of CHA associated with the use of SRIs 
among our case-mothers.

For ABCB1, there was no change in the risk of CHA 
with any of the ABCB1 SNPs in the mothers and the 
children, except for maternal rs1128503 (not significant, 
Table 3). Due to the low number of sample, the risks were 
not corrected for maternal risk factors, such as maternal 
obesity, history of alcohol and illicit drug use. For the 
maternal genotype, the mean score among the exposed 
case-mothers was 3.9 ± 0.7, while the mean scores of 

the unexposed case mothers was 4.3 ± 1.9 (p = 0.41). 
The distribution of the genetic scores of the exposed and 
unexposed cases is shown in Figure 2. The mean genetic 
score of the exposed cases (children) was 5.0 ± 1.9 and 
4.4 ± 1.8 for the unexposed cases (p = 0.47).

Serotonin transporter & receptor 
polymorphisms
The LL genotype of the SLC6A4 5-HTTLPR and 
12/12 genotype of 5-HTTVNTR indicated an increase 
in the risk of CHA among the cases exposed to SRIs, 
but our sample size was too small to reach statistical 

Gene/
SNPs

rs number WT/VT 
allele

wt/wt wt/vt vt/vt NA Allele 
calling rate

Variant 
allele fq

Variant allele 
fq (European)†

HWE 
p-value

ABCB1 (cont.)

 rs2032582 G/T/A 19 29 14 (TT),  
1 (TA)

2 96.9 0.46 (T), 
0.01 (A)

0.41 (T), 0.02 
(A)

0.71

 rs1045642 C/T 13 27 23 2 96.9 0.58 0.52 0.34

 rs2235040 G/A 43 19 1 2 96.9 0.17 0.13 0.5

 rs4148739 A/G 43 18 1 3 95.4 0.16 0.13 0.57

 rs1882478 G/A 40 20 2 3 95.4 0.19 0.26 0.79

 rs9282564 A/G 46 14 2 3 95.4 0.15 0.08 0.48

 rs10256836 G/C 3 26 34 2 96.9 0.75 0.3 0.48

SLC6A4

5HTTLPR rs4795541 S/L 18 32 13 2 96.9 0.46 (L) 0.40 0.86

5HTTVNT rs57098334 STin2.9, 
10,12

- 4 (9/10) 
5 (9/12) 
22 (10/12)

8 (10/10) 
25 (12/12)

1 98.5 0.07 (9) 
0.33 (10) 
0.6 (12)

0.47 (10) 0.69

HTR1A  

 rs1364043 A/C 38 21 4 2 96.9 0.23 0.21 0.64

 rs6295 G/C 16 34 14 1 98.5 0.48 0.54 0.61

HTR1B     

 rs6296 G/C 30 24 9 2 96.9 0.33 0.74 0.26

 rs6298 C/T 30 24 9 2 96.9 0.33 0.26 0.26

HTR2A     

 rs7997012 C/T 25 23 16 1 98.5 0.43 0.43 0.03

 rs6313 C/T 26 29 8 2 96.9 0.36 0.44 0.98

 rs6314 C/T 51 12 0 2 96.9 0.09 0.08 0.4

 rs1928040 C/T 16 30 17 2 96.9 0.38 0.49 0.71

 rs6311 G/A 26 28 10 1 98.5 0.37 0.44 0.59

HTR3B     

 rs1176744 A/C 37 23 3 2 96.9 0.23 0.31 0.81

 rs3831455 TCC/DEL 63 0 0 2 96.9 0 NA NA
†Allele frequency of the European population [30,31].
‡Allele frequency of population worldwide. Also, see Supplementary Table 2 for genotype frequencies in exposed and unexposed case-mothers.
Fq: Frequency; HWE: Hardy–Weinberg equilibrium; NA: Not available; VT: Variant; WT: Wild-type.

Table 2. Genotype frequency of study SNPs in case-mother dyad samples (n = 65) (cont.).
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significance (Table 3). The mean genetic scores of the 
exposed mothers tended to be higher than those of the 
unexposed mothers (2.5 ± 0.8 vs 1.88 ± 0.7, respectively; 
p = 0.061) (Figure 3). Meanwhile, the mean genetic 
scores of the exposed and unexposed cases (children) 
were comparable (2.4 ± 0.5 and 2.18 ± 0.8, respectively; 
p = 0.57).

For fetal 5-HT receptors, the SNPs in HTR1A, 
HTR1B and HTR3B showed increase in the 

interaction OR, although none achieved statistical 
significance (Table 3). We then calculated the genetic 
scores for these SNPs, which included HTR1A 
rs1364043, HTR1B rs6296, HTR1B rs6298 and 
HTR3B rs1176744 (maximum score of 8). The 
mean genetic score for exposed cases tended to be 
higher compared with unexposed cases (3.4 ± 2.2 vs 
1.9 ± 1.6, respectively; p = 0.065), and the distribution 
was skewed toward higher genetic scores (Figure 4).

Table 3. Interaction odds ratio of the multiplicative interaction between each serotonin reuptake inhibitors of the 
ABCB1 gene (coding for P-glycoprotein) and HTR genes (coding for the serotonin receptors) and serotonin reuptake 
inhibitors exposure on the risk of congenital heart anomalies.

Gene/SNPs  Case mothers with variant alleles, n (%) Cases with variant alleles, n (%)

Exposed,  
n (%) n = 7

Unexposed n 
(%) n = 25

OR (95% CI) Exposed  
n (%) n = 5

Unexposed  
n (%) n = 28

OR (95% CI)

ABCB1 

rs1045642 7 (100.0) 19 (76.0) 0.94 (0.48–41.82) 3 (60.0) 21 (75.0) 0.43 (0.058–053.14)

rs1128503 6 (85.7) 14 (56.0) 3.86 (0.4–37.58) 3 (60.0) 20 (71.4) 0.53 (0.072–073.82)

rs1882478 2 (28.6) 9 (36.0) 0.64 (0.13–13.06) 2 (40.0) 9 (32.1) 0.80 (0.32–31.99)

rs2032582 6 (58.7) 15 (60.0) 0.95 (0.52–51.76) 3 (60.0) 20 (71.4) 0.52 (0.086–083.59)

rs2235040 2 (28.6) 8 (32.0) 0.71 (0.19–12.67) 2 (40.0) 8 (28.6) 0.89 (0.38–32.10)

rs4148739 2 (28.6) 7 (28.0) 0.71 (0.24–22.09) 2 (40.0) 8 (28.6) 0.89 (0.38–32.10)

rs9282564 0 7 (28.0) - 1 (20.0) 8 (28.6) 0.58 (0.07–05.08)

rs10256836 7 (100) 22 (88.0) 0.84 (0.32–32.18) 5 (100) 26 (92.9) -

SLC6A4   

n = 6 n = 24 n = 5 n = 28

5-HTTLPR (LL) 2 (33.3) 5 (20.8) 1.90 (0.27–13.52) 1 (20) 5 (17.9) 1.15 (0.11–12.62)

 n = 6 n = 25  n = 5 n = 28  

5HTTVNTR (12/12) 3 (50) 9 (36) 1.78 (0.3–10.72) 2 (40) 11 (39.3) 1.03 (0.15–17.19)

HTR1A       

rs1364043    3 (60.0) 9 (32.1) 3.0 (0.42–21.30)

rs6295    5 (100) 21 (75.0) -

HTR1B       

rs6296    3 (60.0) 11 (39.3) 2.18 (0.31–15.29)

rs6298    3 (60.0) 11 (39.3) 2.18 (0.31–15.29)

HTR2A       

rs6313    2 (40.0) 13 (46.4) 0.72 (0.10–15.01)

rs6314    1 (20.0) 6 (21.4) 0.88 (0.082–089.38)

rs1928040    3 (60.0) 20 (74.1) 0.45 (0.06–03.35)

rs6311    2 (40.0) 14 (50.0) 0.67 (0.10–14.62)

HTR3B       

rs1176744    4 (80.0) 11 (39.3) 5.82 (0.57–59.32)

rs3831455    0 1 (3.6) -

OR: Odds ratio.
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Figure 2. Distribution of maternal and child ABCB1 genetic scoring associated with reduced P-glycoprotein 
function.
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Discussion
In this exploratory study, we aimed to find associa-
tions between polymorphisms in ten genes involved 
in the metabolism of drugs in pregnant women and 
the occurrence of CHA in their children. Concern-
ing the ABCB1 SNPs, only maternal rs1128503 
had an increased, although nonsignificant, inter-
action OR and could therefore be associated with an 
increased risk of CHA following exposure to SRIs. 

This SNP, together with rs1045642 (C3435T) and 
rs2030582 (G2677T/A), was previously associated 
with reduced expression/function of placental P-gp 
and shown to modulate the placental transfer of 
substrate drugs [32–35]. This modulation may affect 
the protective barrier against xenobiotics in the 
early stage of pregnancy. It has also been suggested 
that these SNPs play a role in the clinical response 
of SRIs because P-gp regulates the transport of 
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Figure 3. Distribution of maternal and child SLC6A4 genetic scoring associated with increased serotonin 
transporter function.
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SSRIs through the blood–brain barrier [36–41]. With 
regard to congenital anomalies, two previous obser-
vational studies reported that maternal and fetal 
C3435T increased fetal susceptibility to CHA and 
cleft lip following general medication use during 
pregnancy [42–44]. This association was not found in 
our study, probably because of the different types of 
medication included in the exposure groups, as we 

have focused on SRI use instead of medication use 
in general.

The L allele of the 5-HTTLPR and 12 repeats of 
the 5-HTTVNTR of SLC6A4 had previously been 
associated with higher efficacy or side effects of SRI 
treatment, effects proposed to be caused by a higher 
expression of SERT [45–49]. In this study, the G × E 
interaction between these variants and SRI use tended 
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Figure 4. Distribution of child genetic scoring of HTR genes associated with increased interaction odds ratio.
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to cause an increase in the risk of CHA, but only for 
the maternal genotype interaction. Looking at the 
effect on the fetus, one would expect that the fetal 
SLC6A4 variant would have a larger effect on SERT 
expression in the placenta that is of fetal origin. How-
ever, SERT mRNA was also detected in epithelial 
cells of early decidua, which is the uterine lining of 
the maternal endometrium [50]. The increase in SERT 
expression may cause a higher response to SRIs, and 
is manifested by the increased inhibition of 5-HT 
uptake into the placenta. The exact mechanism seems 
to be intricate and unclear; however, we can hypoth-
esize that the combination of SERT polymorphisms 
and SRI exposure might cause a disruption in the 
normal 5-HT level available for the transport into the 
fetal circulation.

Our study found four SNPs in HTR genes encod-
ing for 5-HT receptors that showed a possibly 
increased risk of CHA after the exposure to SRIs, 
although the effect was not significant. Two of the 
SNPs, HTR1A rs1364043 and HTR1B rs6296, had 
previously been associated with an increased response 
to citalopram [24], while HTR3B rs1176744 had been 
shown to reduce the side effects of paroxetine [51]. 
However, these associ ations have not yet been repli-
cated in larger studies. On the other hand, HTR1B 
rs6298 was associated with a reduced response to 
citalopram [24]. The role of genetic variations in 

5-HT receptors needs further investig ation given 
the importance of 5-HT signaling during embryo-
genesis, particularly in cell division, differentiation, 
migration and synaptogenesis [52]. Any alteration 
in the 5-HT level and receptor activity during this 
period could lead to susceptibility to faulty fetal 
heart development.

Strengths & limitations
One of the strengths of this study is that it is the first 
attempt at elucidating the role of pharmacogenetics in 
the development of CHA associated with prenatal use 
of SRIs. A further strength is the G × E interaction 
approach, which is a powerful design for determining 
the contribution of genetics to adverse drug events or 
teratogenicity. Previous studies have identified sev-
eral genetic variations associated with CHA in the 
presence of environmental factors like maternal obe-
sity, tobacco use and folic acid intake [53–56]. A third 
strength is that the EUROCAT NNL database used 
in this study records complete information on mater-
nal risk factors (i.e., smoking, alcohol and medica-
tion use). Since all cases were selected from the same 
database, any misclassification of exposure would be 
nondifferential among exposed and unexposed cases. 
Finally, we also included cases of terminated preg-
nancies, which are usually missing from the health 
surveillance databases.
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There are several limitations to this study. First, 
a case-only study can only measure the risk of the 
G × E interaction, not the separated risks of G or E. 
Second, this design is vulnerable to population 
stratification, although we can assume this effect is 
minor in this study since the majority of our popula-
tion is Caucasian [57]. Third, we cannot differenti-
ate between different SRIs and doses in the analysis 
because of the limited number of cases exposed to 
SRIs and the exploratory nature of the study. The 
type of SRI might also be a relevant factor, since SRIs 
can have different pharmacokinetic and pharmaco-
dynamic characteristics. Fourth, our participation 
rate was low (30% among cases exposed to SRIs), 
despite a concerted effort to reduce barriers to par-
ticipation that included sending reminders to poten-
tial participants and use of a noninvasive method of 
DNA collection. It is possible that the low partici-
pation was because mothers were reluctant to know 
whether the medication they took had contributed 
to the development of a heart defect in their child. 
They may also not have understood the benefit of 
pharmacogenetic tests or the results of this study for 
themselves.

In conclusion, maternal use of SRIs during the first 
trimester of pregnancy has long been studied for its 
association with fetal CHA, although the results to 
date have been conflicting. In this exploratory study, 
we were not able to find significant genetic varia-
tions that may modulate the risk of CHA in fetuses 
exposed to SRIs in the first trimester of pregnancy. 
Nevertheless, we found that polymorphisms of 5-HT 
receptors may play a role. Future studies will need 

a larger number of exposed cases and possibly to 
incorporate the effect of maternal G × E and fetal 
G × E contribution to CHA.

Future perspective
The use of pharmacogenetics as a tool in personal-
ized drug therapy has been studied before, but the 
importance of this concept among pregnant patients 
is now taking the spotlight [58–61]. The pharmaco-
genetic parameters explored in this study are a part  
of a complex interplay between other genetic variants 
and environmental factors contributing to CHA. 
Potential gene–gene (G × G) or G × E interaction 
can occur within the maternal or fetal genotypes 
and also between maternal and fetal genotypes [62]. 
Based on our current, still limited knowledge about 
the pharmaco genetics of SRIs, we need more genetic 
studies among pregnant patients with depression in 
order to identify the safest treatment option for both 
the mothers and their unborn children.
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