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Tenofovir disoproxil fumarate & 
renal toxicity
Tenofovir disoproxil fumarate (TDF) is the 
prodrug of tenofovir (TFV), a nucleotide 
reverse transcriptase inhibitor active against 
HIV-1, HIV-2 and Hepatitis B virus (HBV). 
The compound is extensively used worldwide 
and over 7.5 million patient-years experi-
ence support its efficacy and tolerability  [1]. 
Nevertheless TDF has been associated with 
incident chronic kidney disease, Fanconi’s 
syndrome, subclinical tubular dysfunction, 
vitamin D deficiency and reduced bone min-
eral density  [2]. Several strategies have been 
sought in order to avoid such adverse effects 
including switches to other compounds, regi-
men modifications and the development of a 
new prodrug (tenofovir alafenamide, TAF) 
that has shown comparable efficacy and sig-
nificant tolerability improvements. TDF pat-
ent will soon expire and a better understand-
ing of its actual mid- and long-term toxicity 
is critical in order to understand whether its 
use in specific circumstances and/or specific 
patients might be safe enough to allow for a 
likely cost reduction in the future.

TFV clearance occurs both by glomerular 
filtration and active tubular secretion: organic 
anion transporter 1, MRP-4 and MRP-7 have 
been found to be responsible of TFV uptake 
and extrusion by proximal tubular cells [3,4]. 
TFV accumulation inside proximal tubu-
lar cells causing subsequent mitochondrial 
damage has been postulated as the pathogenic 

mechanism and it has been confirmed in 
electronic microscopy studies [5].

Factors involved in TDF-associated 
renal toxicity
The reported serum creatinine elevation (and 
estimated glomerular filtration decrease) 
under TDF-based treatment might be related 
to the decrease in creatinine tubular secre-
tion (that approximately accounts for 15% 
of total creatinine clearance); studies on the 
proximal tubulus revealed that this is the real 
target of TDF toxicity with urinary loss of 
low molecular weight proteins (LMWPs).

A meta-analysis including more than 5000 
subjects showed larger decreases in estimated 
creatinine clearance (3.92 ml/min; 95% CI: 
2.13–5.70) in TDF-treated patients  [6]. 
Chronic kidney disease was predicted by 
older age, intravenous drug use, Hepatitis 
C virus (HCV) co-infection, lower base-
line estimated glomerular filtration rate 
(eGFR), female gender, lower nadir CD4 
count, hypertension, diabetes and cardio-
vascular disease  [7]. Notably, every year of 
TDF exposure was associated with increased 
hazard ratios for proteinuria (1.30 [95% CI: 
1.22–1.37]), rapid decline in kidney function 
(1.17 [95% CI: 1.11–1.24]) or chronic kidney 
disease (1.44 [95% CI: 1.30–1.60]) and such 
conditions were only partially reversible [8].

In several observations the concomitant use 
of ritonavir-boosted protease inhibitors (bPIs) 
was associated with the highest risk of renal and 
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bone toxicity. The co-administration of either boosted 
or unboosted protease inhibitors leads to a greater initial 
decline in eGFR than efavirenz: this decline was higher 
with atazanavir/ritonavir than with lopinavir/ritona-
vir  [9]. Notably atazanavir has been associated with 
nephrolithiasis and, although in few case reports, with 
interstitial nephritis, thus suggesting the potential inde-
pendent nephrotoxicity of the compound  [10]. The use 
of bPIs in patients with a high baseline risk profile was 
associated with a low number needed to harm at 5 years 
(21 and nine patients according to the compound), thus 
suggesting caution in selected group of patients [7].

TFV exposure has been found to be associated with 
renal toxicity: higher TFV plasma concentrations have 
been observed in patients with proximal tubular dys-
function or reduced eGFR [11]. The combined effect of 
higher plasma exposure and longer duration of TDF 
use was recognized as the best predictor of tubular 
impairment (defined using 24-h urine analysis)  [12]. 
A recent study by our group observed a reduced TFV 
clearance in patients with subclinical tubular dysfunc-
tion defined by abnormally elevated LMWPs in spot 
urines: this provides a simple method for estimating 
TFV clearance in vivo [13].

Several genetic polymorphisms in regions coding 
for efflux transporters have been associated with TDF-
associated tubular toxicity and they have been recently 
reviewed [4]. ABCC2 (encoding for MRP-2) SNPs have 
been associated with tubular toxicity; nevertheless 
these observations are difficult to rationalize because 
tenofovir is not a substrate for MRP-2 although an 
indirect effect may not be excluded  [14]. A study in 
HIV-positive patients found that an ABCC4 (encoding 
for MRP-4) SNP (669 C>T, rs899494) was associated 
with renal toxicity and to treatment discontinuation 
(along with low body weight) [15]. In patients on TDF, 
two ABCC10 polymorphisms (encoding for MRP-7) 
(526 G>A, rs9349256 and 2843 T>C, rs2125739) 
were associated with kidney toxicity [16] but replication 
studies are lacking. A recent study comparing patients 
with TDF-induced Fanconi’s syndrome to TDF-
treated controls revealed that several rare variants in 
ABCC2 and Lowe syndrome protein OCRL gene were 
associated with decreased eGFR [17].

Factors associated with TFV exposure & 
clearance
Several of the above highlighted risk factors also affect 
TFV pharmacokinetics and therefore this might be 

an optimal scenario for TDF dose tailoring given the 
observed concentration-dependent effect.

Low body weight (and low weight/serum creatinine), 
older age and lower eGFR have been associated with 
increased TFV exposure [18,19]. Protease inhibitors (PI) 
co-administration (both boosted and unboosted) is the 
commonest factor associated with higher TFV plasma 
concentrations [20]. The mechanism by which boosted 
PIs increase TDF exposure (20–35%) is thought to 
be dependent upon inhibition of intestinal p-glyco
protein intestinal inhibition with increased absorption; 
their inhibitory effect on MRP-2 and MRP-4 is less 
clear. The effect of cobicistat seems similar to the one 
observed with ritonavir with increased TFV absorp-
tion; the additional inhibitory effect on MATE-1 
results in a harmless ‘cosmetic’ serum creatinine eleva-
tion (by decreased tubular secretion) with no reduction 
in actual filtration rates.

While the effect of SNPs in transporter encoding 
genes on TFV exposure is still debated, some associa-
tions have been observed. An ABCC4 SNP (4131 T>C, 
rs3742106) has been associated with increased intra
cellular concentrations of TFV triphosphate (35% 
higher, using human peripheral blood mononuclear 
cells) suggesting a similar effect in tubular cells. 
In another study eGFR, bPIs co-administration 
and SLC28A2 (encoding for concentrating nucleo-
side transporter  2) CT/TT genotypes (124 C>T, 
rs11854484) were independently associated with 
plasma TFV exposure; it should be however high-
lighted that so far no study confirmed that TFV is a 
concentrating nucleoside transporter-2 substrate  [21]. 
In the same study ABCC10 SNPs (1791+526 G>A 138, 
rs9349256) and bPIs co-administration were indepen-
dently associated with TFV clearance (as measured by 
urinary to plasma 12-h concentration ratio).

Conclusion: tailoring TDF administration
The pathogenesis of renal damage warrants studies 
aiming at reducing TFV exposure and/or its entrap-
ment into tubular cells. It is already recommended 
to decrease TDF frequency of administration in 
patients with reduced estimated glomerular filtra-
tion: with eGFR in the 30–49 ml/min range, a every 
other day administration of a 300 mg tablet is sug-
gested. A recent study in Thai patients supported the 
equivalence of TDF 150 mg every day to the stan-
dard 300 mg dose in a group of renally impaired 
patients [22]. Apart from this study no reports on TDF 
dose reduction have been published; however the 
promising results of a ‘5 days on/2 days off ’ strategy 
with efavirenz/TDF/emtricitabine support a less fre-
quent administration of TDF in stable and adherent 
patients [23]. This approach is further endorsed by the 

“...the association of TDF with protease inhibitors 
or cobicistat-boosted drugs should be carefully 

evaluated and alternative treatments considered.”
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long intracellular half-life of TFV diphosphate, which 
is about 120 h.

The pharmacology of TAF, associated with 86.1% 
lower TFV plasma but higher intra-lymphocyte con-
centrations, possibly accounts for its favorable renal 
and bone safety profile. These properties fit with 
the improved tubular safety recorded in a small case 
series of HIV/HBV co-infected patients with pre-
vious severe tubular damage, in whom probenecid 
(an organic anion transporter 1 inhibitor, probably 
limiting TFV uptake by tubular cells) was added to 
the TDF-containing regimen.

Waiting for the results of prospective studies assess-
ing the efficacy and safety of TDF reduced doses when 
associated with protease inhibitors (as recently envis-
aged) [24] and for the long-term studies on TAF safety 
and compartmental efficacy, a personalized approach 
to TDF might be used. Although the pathogenic link 
between subclinical tubular dysfunction and reduced 
bone mineral density is unclear, the recent observa-
tion of lower BMD in patients with high urinary 
retinol binding protein (corrected for urinary cre-
atinine) suggests caution in certain high-risk groups. 
The specific monitoring of tubular function (either 
through 24-h urine analysis or through LMWPs on 
spot urines) might be envisaged given the available 
alternatives.

In specific high-risk groups including subjects with 
low BMI, postmenopausal females, patients aged 
>65  years and those with reduced eGFR or renal-
affecting concomitant diseases (including diabetes, 
hypertension and kidney stones or renal abnormalities), 

the association of TDF with protease inhibitors or 
cobicistat-boosted drugs should be carefully evaluated 
and alternative treatments considered.

Recent international guidelines suggest the use of 
integrase inhibitor-based combination treatments in 
naive patients thus reducing the potential detrimental 
effect of PI co-administration. In this group of previ-
ously untreated subjects antiretroviral efficacy is the 
main objective of treatment and short-term toxicity less 
a concern thus advising the use of standard TDF dose.

In stable patients with durable suppression of viral 
replication under ritonavir or cobicistat-boosted antiret-
roviral treatments, the presence of another risk factor 
(including BMI <20 kg/m2, age >65 years or postmeno-
pausal state) might warrant the use of TDF 300 mg 
every other day. Whether the use of pharmacokinetics 
(ABCC10 and ABCC4 SNPs) could be cost-effective 
for avoiding unnecessary toxicity to patients with less 
common variants need to be prospectively evaluated.
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