We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Advances in studies of nanoparticle–biomembrane interactions

    Xiao Cong He

    Key Laboratory of Thermo-Fluid Science & Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China

    Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China

    Authors contributed equally

    Search for more papers by this author

    ,
    Min Lin

    Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China

    The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China

    Authors contributed equally

    Search for more papers by this author

    ,
    Fei Li

    Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China

    Department of Chemistry, School of Sciences, Xi’an Jiaotong University, Xi’an 710049, PR China

    ,
    Bao Yong Sha

    Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China

    Institute of Basic Medical Science, Xi’an Medical University, Xi’an 710021, PR China

    ,
    Feng Xu

    The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China

    ,
    Zhi Guo Qu

    *Authors for correspondence: Qu ZG:

    E-mail Address: zgqu@mail.xjtu.edu.cn

    ; Wang L:

    E-mail Address: wanglin0527@126.com

    Key Laboratory of Thermo-Fluid Science & Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China

    Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China

    &
    Lin Wang

    *Authors for correspondence: Qu ZG:

    E-mail Address: zgqu@mail.xjtu.edu.cn

    ; Wang L:

    E-mail Address: wanglin0527@126.com

    Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China

    The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China

    Published Online:https://doi.org/10.2217/nnm.14.167

    Nanoparticles (NPs) are widely applied in nanomedicine and diagnostics based on the interactions between NPs and the basic barrier (biomembrane). Understanding the underlying mechanism of these interactions is important for enhancing their beneficial effects and avoiding potential nanotoxicity. Experimental, mathematical and numerical modeling techniques are involved in this field. This article reviews the state-of-the-art techniques in studies of NP–biomembrane interactions with a focus on each technology's advantages and disadvantages. The aim is to better understand the mechanism of NP–biomembrane interactions and provide significant guidance for various fields, such as nanomedicine and diagnosis.

    Papers of special note have been highlighted as: • of interest

    References

    • 1 Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 6(4), 570–574 (2010).
    • 2 Pereira C, Alves C, Monteiro A et al. Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Appl. Mater. Interfaces 3(7), 2289–2299 (2011).
    • 3 Cárdenas C, Tobón JI, García C, Vila J. Functionalized building materials: photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles. Constr. Build. Mater. 36, 820–825 (2012).
    • 4 Chen Y, Ding X, Steven Lin S-C et al. Tunable nanowire patterning using standing surface acoustic waves. ACS Nano 7(4), 3306–3314 (2013).
    • 5 Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41(7), 2885–2911 (2012).
    • 6 Schinwald A, Murphy FA, Jones A, Macnee W, Donaldson K. Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6(1), 736–746 (2011).
    • 7 Baroli B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J. Pharm. Sci. 99(1), 21–50 (2010).
    • 8 Lipka J, Semmler-Behnke M, Sperling RA et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 31(25), 6574–6581 (2010).
    • 9 Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007).
    • 10 Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56, (11), 1649–1659 (2004).
    • 11 Nam J, Won N, Jin H, Chung H, Kim S. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J. Am. Chem. Soc. 131(38), 13639–13645 (2009).
    • 12 Dickson KK, Diego AR, Carl AB. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology 21(10), 105105 (2010).
    • 13 Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 4(1), 26–49 (2008).
    • 14 Leroueil PR, Berry SA, Duthie K et al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 8(2), 420–424 (2008).
    • 15 Pan Y, Leifert A, Ruau D et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18), 2067–2076 (2009).
    • 16 Wang T, Bai J, Jiang X, Nienhaus GU. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 6(2), 1251–1259 (2012).
    • 17 Cho EC, Zhang Q, Xia Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 6(6), 385–391 (2011).
    • 18 Deloid G, Cohen JM, Darrah T et al. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 5, 3514 (2014).
    • 19 Yi X, Shi X, Gao H. Cellular uptake of elastic nanoparticles. Phys. Rev. Lett. 107(9), 098101 (2011).
    • 20 Shi X, Von Dem Bussche A, Hurt RH, Kane AB, Gao H. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat. Nanotechnol. 6(11), 714–719 (2011).• Investigates cell entry of 1D nanomaterials using a scanning electron microscopy-based experimental technique and coarse-grained molecular dynamic simulations.
    • 21 Yang K, Ma Y-Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol. 5(8), 579–583 (2010).
    • 22 Qu ZG, He XC, Lin M et al. Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical and numerical modeling. Nanomedicine (Lond.) 8(6), 995–1011 (2013).• Illustrates the recent advances in the understanding of nanomaterial–biomembrane interactions based on their numerical modeling.
    • 23 He X, Qu Z, Xu F et al. Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages. Soft Matter 10(1), 139–148 (2014).
    • 24 Li S, Malmstadt N. Deformation and poration of lipid bilayer membranes by cationic nanoparticles. Soft Matter 9(20), 4969–4976 (2013).
    • 25 Goodman CM, Mccusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15(4), 897–900 (2004).
    • 26 Vevers W, Jha A. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17(5), 410–420 (2008).
    • 27 Mecke A, Uppuluri S, Sassanella TM et al. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem. Phys. Lipids 132(1), 3–14 (2004).
    • 28 Yu J, Patel SA, Dickson RM. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed. Engl. 119(12), 2074–2076 (2007).
    • 29 Mu Q, Broughton DL, Yan B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett. 9(12), 4370–4375 (2009).
    • 30 Foerg C, Merkle HP. On the biomedical promise of cell penetrating peptides: limits versus prospects. J. Pharm. Sci. 97(1), 144–162 (2008).
    • 31 Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126(48), 15638–15639 (2004).
    • 32 Jin H, Heller DA, Strano MS. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 8(6), 1577–1585 (2008).
    • 33 Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23), 10644–10654 (2005).
    • 34 Dausend J, Musyanovych A, Dass M et al. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol. Biosci. 8(12), 1135–1143 (2008).
    • 35 Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 353(1), 26–32 (2007).
    • 36 Slowing I, Trewyn BG, Lin VSY. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J. Am. Chem. Soc. 128(46), 14792–14793 (2006).
    • 37 Rosenholm JM, Meinander A, Peuhu E et al. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3(1), 197–206 (2008).
    • 38 Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small 6(1), 12–21 (2010).
    • 39 Cheng LC, Jiang X, Wang J, Chen C, Liu RS. Nano–bio effects: interaction of nanomaterials with cells. Nanoscale 5(9), 3547–3569 (2013).
    • 40 Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VSY. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5(2), 1366–1375 (2011).
    • 41 Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF. The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32(35), 9353–9363 (2011).
    • 42 Li Y, Yuan H, Von Dem Bussche A et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl Acad. Sci. USA 110(30), 12295–12300 (2013).
    • 43 Gupta A, Curtis AG. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J. Mater. Sci. Mater. Med. 15(4), 493–496 (2004).
    • 44 Xiao X, Montaño GA, Edwards TL et al. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies. Langmuir 28(50), 17396–17403 (2012).
    • 45 Kycia AH, Wang J, Merrill AR, Lipkowski J. Atomic force microscopy studies of a floating-bilayer lipid membrane on a Au(111) surface modified with a hydrophilic monolayer. Langmuir 27(17), 10867–10877 (2011).
    • 46 Erickson B, Dimaggio SC, Mullen DG et al. Interactions of poly(amidoamine) dendrimers with survanta lung surfactant: the importance of lipid domains. Langmuir 24(19), 11003–11008 (2008).
    • 47 Peetla C, Rao KS, Labhasetwar V. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles. Mol. Pharm. 6(5), 1311–1320 (2009).
    • 48 Roiter Y, Ornatska M, Rammohan AR, Balakrishnan J, Heine DR, Minko S. Interaction of nanoparticles with lipid membrane. Nano Lett. 8(3), 941–944 (2008).
    • 49 Hong S, Bielinska AU, Mecke A et al. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug. Chem. 15(4), 774–782 (2004).
    • 50 Hong S, Leroueil PR, Janus EK et al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug. Chem. 17(3), 728–734 (2006).
    • 51 Mecke A, Lee D-K, Ramamoorthy A, Orr BG, Banaszak Holl MM. Synthetic and natural polycationic polymer nanoparticles interact selectively with fluid-phase domains of DMPC lipid bilayers. Langmuir 21(19), 8588–8590 (2005).
    • 52 Roiter Y, Ornatska M, Rammohan AR, Balakrishnan J, Heine DR, Minko S. Interaction of lipid membrane with nanostructured surfaces. Langmuir 25(11), 6287–6299 (2009).
    • 53 Morandat S, Azouzi S, Beauvais E, Mastouri A, El Kirat K. Atomic force microscopy of model lipid membranes. Anal. Bioanal. Chem. 405(5), 1445–1461 (2013).
    • 54 Cho S-J, Cho N-J, Anh JH, Jung G-E, Anariba F. Biophysical applications of scanning ion conductance microscopy (SICM). Mod. Phys. Lett. B 26(05), 1130003 (2012).
    • 55 Chen C-C, Zhou Y, Baker LA. Scanning ion conductance microscopy. Annu. Rev. Anal. Chem. 5(1), 207–228 (2012).
    • 56 Ruenraroengsak P, Novak P, Berhanu D et al. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology 6(1), 94–108 (2012).
    • 57 Yang X, Liu X, Lu H et al. Real-time investigation of acute toxicity of ZnO nanoparticles on human lung epithelia with hopping probe ion conductance microscopy. Chem. Res. Toxicol. 25(2), 297–304 (2011).
    • 58 Gorelik J, Shevchuk A, Ramalho M et al. Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging: application to single virus-like particle entry into a cell. Proc. Natl Acad. Sci. USA 99(25), 16018–16023 (2002).
    • 59 Miragoli M, Novak P, Ruenraroengsak P et al. Functional interaction between charged nanoparticles and cardiac tissue: a new paradigm for cardiac arrhythmia? Nanomedicine 8(5), 725–737 (2012).
    • 60 Montenegro L, Ottimo S, Puglisi G, Castelli F, Sarpietro MG. Idebenone loaded solid lipid nanoparticles interact with biomembrane models: calorimetric evidence. Mol. Pharm. 9(9), 2534–2541 (2012).• Investigates the interaction of idebenone-loaded solid lipid nanoparticles with multilamellar vesicles using the differential scanning calorimetry method.
    • 61 Wrobel D, Ionov M, Gardikis K et al. Interactions of phosphorus-containing dendrimers with liposomes. Biochim. Biophys. Acta 1811(3), 221–226 (2011).
    • 62 Gupta A, Mandal D, Ahmadibeni Y, Parang K, Bothun G. Hydrophobicity drives the cellular uptake of short cationic peptide ligands. Eur. Biophys. J. 40(6), 727–736 (2011).
    • 63 Alves ID, Goasdoue N, Correia I et al. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochim. Biophys. Acta 1780(7–8), 948–959 (2008).
    • 64 Walde P, Cosentino K, Engel H, Stano P. Giant vesicles: preparations and applications. ChemBioChem 11(7), 848–865 (2010).
    • 65 Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand, Marcotte I. Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim. Biophys. Acta 1808(8), 1957–1974 (2011).
    • 66 Brisebois P, Arnold A, Chabre Y, Roy R, Marcotte I. Comparative study of the interaction of fullerenol nanoparticles with eukaryotic and bacterial model membranes using solid-state NMR and FTIR spectroscopy. Eur. Biophys. J. 41(6), 535–544 (2012).
    • 67 Wrobel D, Kłys A, Ionov M et al. Cationic carbosilane dendrimers–lipid membrane interactions. Chem. Phys. Lipids 165(4), 401–407 (2012).
    • 68 Smith PES, Brender JR, Dürr UHN et al. Solid-state NMR reveals the hydrophobic-core location of poly(amidoamine) dendrimers in biomembranes. J. Am. Chem. Soc. 132(23), 8087–8097 (2010).
    • 69 Choi D, Moon JH, Kim H et al. Insertion mechanism of cell-penetrating peptides into supported phospholipid membranes revealed by x-ray and neutron reflection. Soft Matter 8(32), 8294–8297 (2012).
    • 70 Vandoolaeghe P, Rennie AR, Campbell RA, Nylander T. Neutron reflectivity studies of the interaction of cubic-phase nanoparticles with phospholipid bilayers of different coverage†. Langmuir 25(7), 4009–4020 (2008).
    • 71 Vandoolaeghe P, Rennie AR, Campbell RA et al. Adsorption of cubic liquid crystalline nanoparticles on model membranes. Soft Matter 4(11), 2267–2277 (2008).
    • 72 Tantra R, Knight A. Cellular uptake and intracellular fate of engineered nanoparticles: a review on the application of imaging techniques. Nanotoxicology 5(3), 381–392 (2011).
    • 73 Al-Jamal WT, Al-Jamal KT, Tian B et al. Lipid−quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano 2(3), 408–418 (2008).
    • 74 Fazlollahi F, Sipos A, Kim YH et al. Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers. Int. J. Nanomedicine 6, 2849–2857 (2011).
    • 75 Ghosh P, Yang X, Arvizo R et al. Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized gold nanoparticles. J. Am. Chem. Soc. 132(8), 2642–2645 (2010).
    • 76 Kelf TA, Sreenivasan VKA, Sun J, Kim EJ, Goldys EM, Zvyagin AV. Non-specific cellular uptake of surface-functionalized quantum dots. Nanotechnology 21(28), 285105 (2010).
    • 77 Xu AM, Aalipour A, Leal-Ortiz S et al. Quantification of nanowire penetration into living cells. Nat. Commun. 5, 3613 (2014).
    • 78 Jin H, Heller DA, Sharma R, Strano MS. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1), 149–158 (2009).
    • 79 Ciobanasu C, Harms E, TüNnemann G, Cardoso MC, Kubitscheck U. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers. Biochemistry 48(22), 4728–4737 (2009).
    • 80 Ciobanasu C, Siebrasse JP, Kubitscheck U. Cell-penetrating HIV1 TAT peptides can generate pores in model membranes. Biophys. J. 99(1), 153–162 (2010).
    • 81 Mascalchi P, Haanappel E, Carayon K, Mazeres S, Salome L. Probing the influence of the particle in single particle tracking measurements of lipid diffusion. Soft Matter 8(16), 4462–4470 (2012).
    • 82 Welsher K, Yang H. Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nat. Nanotechnol. 9(3), 198–203 (2014).• Presents a newly developed technology that is able to capture the landing process of nanoparticles in real time before cellular uptake in 3D manner.
    • 83 Han Y, Wang X, Dai H, Li S. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. ACS Appl. Mater. Interfaces 4(9), 4616–4622 (2012).
    • 84 Levin CS, Kundu J, Janesko BG, Scuseria GE, Raphael RM, Halas NJ. Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies. J. Phys. Chem. B 112(45), 14168–14175 (2008).
    • 85 Bard AJ, Li X, Zhan W. Chemically imaging living cells by scanning electrochemical microscopy. Biosens. Bioelectron. 22(4), 461–472 (2006).
    • 86 Chen Z, Xie S, Shen L et al. Investigation of the interactions between silver nanoparticles and HeLa cells by scanning electrochemical microscopy. Analyst 133(9), 1221–1228 (2008).
    • 87 Zhan D, Li X, Nepomnyashchii AB, Alpuche-Aviles MA, Fan F-RF, Bard AJ. Characterization of Ag+ toxicity on living fibroblast cells by the ferrocenemethanol and oxygen response with the scanning electrochemical microscope. J. Electroanal. Chem. 688, 61–68 (2013).
    • 88 Prasanth R, Gopinath D. Effect of ZnO nanoparticles on nasopharyngeal cancer cells viability and respiration. Appl. Phys. Lett. 102(11), 113702 (2013).
    • 89 Verma A, Uzun O, Hu Y et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 7(7), 588–595 (2008).
    • 90 Cebrián V, Martín-Saavedra F, Yagüe C, Arruebo M, Santamaría J, Vilaboa N. Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomater. 7(10), 3645–3655 (2011).
    • 91 Zhu Y, Li W, Li Q et al. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 47(5), 1351–1358 (2009).
    • 92 Luo R, Neu B, Venkatraman SS. Surface functionalization of nanoparticles to control cell interactions and drug release. Small 8(16), 2585–2594 (2012).
    • 93 Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103(13), 4930–4934 (2006).
    • 94 Gonzalez L, Lison D, Kirsch-Volders M. Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology 2(4), 252–273 (2008).
    • 95 Xia T, Korge P, Weiss JN et al. Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ. Health Perspect. 112(14), 1347–1358 (2004).
    • 96 Foster KA, Galeffi F, Gerich FJ, Turner DA, Muller M. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog. Neurobiol. 79(3), 136–171 (2006).
    • 97 Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300(2), 535–543 (1993).
    • 98 Pryor WA, Stanley JP. A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J. Org. Chem. 40(24), 3615–3617 (1975).
    • 99 Mahreen R, Mohsin M, Nasreen Z, Siraj M, Ishaq M. Significantly increased levels of serum malonaldehyde in Type 2 diabetics with myocardial infarction. Int. J. Diabetes Dev. Ctries 30(1), 49–51 (2010).
    • 100 Zhao X, Wang S, Wu Y, You H, Lv L. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo–larval zebrafish. Aquat. Toxicol. 136–137, 49–59 (2013).
    • 101 Xu J, Li Z, Xu P, Xiao L, Yang Z. Nanosized copper oxide induces apoptosis through oxidative stress in podocytes. Arch. Toxicol. 87(6), 1067–1073 (2013).
    • 102 Li JJ, Hartono D, Ong C-N, Bay B-H, Yung L-YL. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23), 5996–6003 (2010).
    • 103 Corsi K, Chellat F, Yahia L, Fernandes JC. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan–DNA nanoparticles. Biomaterials 24(7), 1255–1264 (2003).
    • 104 Vevers WF, Jha AN. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17(5), 410–420 (2008).
    • 105 Haslam G, Wyatt D, Kitos PA. Estimating the number of viable animal cells in multi-well cultures based on their lactate dehydrogenase activities. Cytotechnology 32(1), 63–75 (2000).
    • 106 Yao KA, Huang DQ, Xu BL, Wang N, Wang YJ, Bi SP. A sensitive electrochemical approach for monitoring the effects of nano-Al2O3 on LDH activity by differential pulse voltammetry. Analyst 135(1), 116–120 (2010).
    • 107 Yu KO, Grabinski CM, Schrand AM et al. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J. Nanopart. Res. 11(1), 15–24 (2009).
    • 108 Song M-M, Song W-J, Bi H et al. Cytotoxicity and cellular uptake of iron nanowires. Biomaterials 31(7), 1509–1517 (2010).
    • 109 Akagi T, Kim H, Akashi M. pH-dependent disruption of erythrocyte membrane by amphiphilic poly(amino acid) nanoparticles. J. Biomater. Sci. Polym. Ed. 21(3), 315–328 (2010).
    • 110 Kim K-J, Sung W, Suh B et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22(2), 235–242 (2009).
    • 111 Nawaz S, Redhead M, Mantovani G, Alexander C, Bosquillon C, Carbone P. Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure. Soft Matter 8(25), 6744–6754 (2012).
    • 112 Monticelli L, Salonen E. Biomolecular Simulations – Methods and Protocols. Springer, Germany (2013).
    • 113 Porasso RD, Bennett WF, Oliveira-Costa SD, Lopez Cascales JJ. Study of the benzocaine transfer from aqueous solution to the interior of a biological membrane. J. Phys. Chem. B 113(29), 9988–9994 (2009).
    • 114 Chang R-W, Lee J-M. Dynamics of C60 molecules in biological membranes. Computer simulation studies. Bull. Korean Chem. Soc. 31(11), 3195–3200 (2010).
    • 115 Li L, Davande H, Bedrov D, Smith GD. A molecular dynamics simulation study of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer. J. Phys. Chem. B 111(16), 4067–4072 (2007).
    • 116 Ingólfsson HI, Lopez CA, Uusitalo JJ et al. The power of coarse graining in biomolecular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4(3), 225–248 (2013).
    • 117 Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L. Computer simulation study of fullerene translocation through lipid membranes. Nat. Nanotechnol. 3(6), 363–368 (2008).
    • 118 Lunov O, Zablotskii V, Syrovets T et al. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials 32(2), 547–555 (2011).
    • 119 Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 102(27), 9469–9474 (2005).
    • 120 Yi X, Shi X, Gao H. A universal law for cell uptake of one-dimensional nanomaterials. Nano Lett. 14(2), 1049–1055 (2014).
    • 121 Andreasson-Ochsner M, Romano G, Hakanson M et al. Single cell 3-D platform to study ligand mobility in cell–cell contact. Lab Chip 11(17), 2876–2883 (2011).
    • 122 Frost R, Jönsson GE, Chakarov D, Svedhem S, Kasemo B. Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett. 12(7), 3356–3362 (2012).
    • 123 Frost R, Grandfils C, Cerda B, Kasemo B, Svedhem S. Structural rearrangements of polymeric insulin-loaded nanoparticles interacting with surface-supported model lipid membranes. J. Biomater. Nanobiotechnol. 2 (2), 181–193 (2011).
    • 124 Akesson A, Lundgaard CV, Ehrlich N, Pomorski TG, Stamou D, Cardenas M. Induced dye leakage by PAMAM G6 does not imply dendrimer entry into vesicle lumen. Soft Matter 8(34), 8972–8980 (2012).
    • 125 Ojea-Jiménez I, García-Fernández L, Lorenzo J, Puntes VF. Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. ACS Nano 6(9), 7692–7702 (2012).
    • 126 Hou W-C, Moghadam BY, Corredor C, Westerhoff P, Posner JD. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes. Environ. Sci. Technol. 46(3), 1869–1876 (2012).
    • 127 Hou W-C, Moghadam BY, Westerhoff P, Posner JD. Distribution of fullerene nanomaterials between water and model biological membranes. Langmuir 27(19), 11899–11905 (2011).
    • 128 Carney RP, Astier Y, Carney TM, Voïtchovsky K, Jacob Silva PH, Stellacci F. Electrical method to quantify nanoparticle interaction with lipid bilayers. ACS Nano 7(2), 932–942 (2012).
    • 129 Zupanc J, Drobne D, Drasler B et al. Experimental evidence for the interaction of C-60 fullerene with lipid vesicle membranes. Carbon 50(3), 1170–1178 (2012).
    • 130 Parimi S, Barnes TJ, Callen DF, Prestidge CA. Mechanistic insight into cell growth, internalization, and cytotoxicity of PAMAM dendrimers. Biomacromolecules 11(2), 382–389 (2009).
    • 131 Zhang S, Nelson A, Beales PA. Freezing or wrapping: the role of particle size in the mechanism of nanoparticle–biomembrane interaction. Langmuir 28(35), 12831–12837 (2012).
    • 132 Cho EC, Liu Y, Xia Y. A simple spectroscopic method for differentiating cellular uptakes of gold nanospheres and nanorods from their mixtures. Angew. Chem. Int. Ed. 49(11), 1976–1980 (2010).
    • 133 Ke PC, Lamm MH. A biophysical perspective of understanding nanoparticles at large. Phys. Chem. Chem. Phys. 13(16), 7273–7283 (2011).
    • 134 Barauskas J, Cervin C, Jankunec M et al. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes. Int. J. Pharm. 391(1–2), 284–291 (2010).
    • 135 kesson A, Lind TK, Barker R, Hughes A, Cárdenas M. Unraveling dendrimer translocation across cell membrane mimics. Langmuir 28(36), 13025–13033 (2012).