We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology

    Wei Li,‡

    *Authors for correspondence:

    E-mail Address: yjguo@smmu.edu.cn

    ;

    E-mail Address: liwei@smmu.edu.cn

    International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China

    State Key Laboratory of Antibody Medicine & Targeting Therapy & Shanghai Key Laboratory of Cell Engineering, 399 Libing Road, Shanghai 201203, PR China

    Authors contributed equally.

    Search for more papers by this author

    ,
    Huafeng Wei

    International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China

    ,
    Huafei Li

    International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China

    ,
    Jie Gao

    International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China

    ,
    Si-Shen Feng

    Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02–11, Engineering Drive 4, 117576, Singapore

    &
    Yajun Guo,‡

    *Authors for correspondence:

    E-mail Address: yjguo@smmu.edu.cn

    ;

    E-mail Address: liwei@smmu.edu.cn

    International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China

    State Key Laboratory of Antibody Medicine & Targeting Therapy & Shanghai Key Laboratory of Cell Engineering, 399 Libing Road, Shanghai 201203, PR China

    PLA General Hospital Cancer Center, PLA Graduate School of Medicine, Beijing 100853, PR China

    Authors contributed equally.

    Search for more papers by this author

    Published Online:https://doi.org/10.2217/nnm.14.127

    Immunotherapy is a promising option for cancer treatment that might cure cancer with fewer side effects by primarily activating the host's immune system. However, the effect of traditional immunotherapy is modest, frequently due to tumor escape and resistance of multiple mechanisms. Pharmaceutical nanotechnology, which is also called cancer nanotechnology or nanomedicine, has provided a practical solution to solve the limitations of traditional immunotherapy. This article reviews the latest developments in immunotherapy and nanomedicine, and illustrates how nanocarriers (including micelles, liposomes, polymer–drug conjugates, solid lipid nanoparticles and biodegradable nanoparticles) could be used for the cellular transfer of immune effectors for active and passive nanoimmunotherapy. The fine engineering of nanocarriers based on the unique features of the tumor microenvironment and extra-/intra-cellular conditions of tumor cells can greatly tip the triangle immunobalance among host, tumor and nanoparticulates in favor of antitumor responses, which shows a promising prospect for nanoimmunotherapy.

    References

    • 1 Cancer Facts & Figures 2012. www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2012.
    • 2 Lesterhuis WJ, Haanen JB, Punt CJ. Cancer immunotherapy – revisited. Nat. Rev. Drug Discov. 10(8), 591–600 (2011).
    • 3 Dillman RO. Cancer immunotherapy. Cancer Biother. Radiopharm. 26(1), 1–64 (2011).
    • 4 Kasturi SP, Skountzou I, Albrecht RA et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470(7335), 543–547 (2011).
    • 5 Hemmi H, Kaisho T, Takeuchi O et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3(2), 196–200 (2002).
    • 6 Smith KA. T-cell growth factor. Immunol. Rev. 51, 337–357 (1980).
    • 7 Abbas AK, Janeway CJ. Immunology: improving on nature in the twenty-first century. Cell 100(1), 129–138 (2000).
    • 8 Frankenberger B, Schendel DJ. Third generation dendritic cell vaccines for tumor immunotherapy. Eur. J. Cell Biol. 91(1), 53–58 (2012).
    • 9 Rosenberg SA. Cell transfer immunotherapy for metastatic solid cancer – what clinicians need to know. Nat. Rev. Clin. Oncol. 8(10), 577–585 (2011).
    • 10 Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3(11), 991–998 (2002).
    • 11 Wheelock EF, Weinhold KJ, Levich J. The tumor dormant state. Adv. Cancer Res. 34, 107–140 (1981).
    • 12 Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).
    • 13 Seliger B, Maeurer MJ, Ferrone S. Antigen-processing machinery breakdown and tumor growth. Immunol. Today 21(9), 455–464 (2000).
    • 14 Li W, Zhao MX, Ke C et al. Nano polymeric carrier fabrication technologies for advanced antitumor therapy. Biomed. Res. Int. 2013, 305089 (2013).
    • 15 Carstens MG. Opportunities and challenges in vaccine delivery. Eur. J. Pharm. Sci. 36(4–5), 605–608 (2009).
    • 16 Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M. Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin. Dev. Immunol. 2011, 732413 (2011).
    • 17 Ellis LM, Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin. Cancer Res. 15(24), 7471–7478 (2009).
    • 18 Settleman J. Oncogene addiction. Curr. Biol. 22(2), R43–R44 (2012).
    • 19 Banck MS, Grothey A. Biomarkers of resistance to epidermal growth factor receptor monoclonal antibodies in patients with metastatic colorectal cancer. Clin. Cancer Res. 15(24), 7492–7501 (2009).
    • 20 Wolchok JD, Yang AS, Weber JS. Immune regulatory antibodies: are they the next advance? Cancer J. 16(4), 311–317 (2010).
    • 21 Brahmer JR, Drake CG, Wollner I et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28(19), 3167–3175 (2010).
    • 22 Sapra P, Shor B. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol. Ther. 138(3), 452–469 (2013).
    • 23 Mocellin S, Rossi CR, Nitti D. Cancer vaccine development: on the way to break immune tolerance to malignant cells. Exp. Cell Res. 299(2), 267–278 (2004).
    • 24 Li W, Li H, Li J et al. Self-assembled supramolecular nano vesicles for safe and highly efficient gene delivery to solid tumors. Int. J. Nanomedicine 7, 4661–4677 (2012).
    • 25 Singh M, Chakrapani A, O'Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev. Vaccines 6(5), 797–808 (2007).
    • 26 Chen W, Yan W, Huang L. A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunol. Immunother. 57(4), 517–530 (2008).
    • 27 Mesa C, Fernandez LE. Challenges facing adjuvants for cancer immunotherapy. Immunol. Cell Biol. 82(6), 644–650 (2004).
    • 28 Roldao A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev. Vaccines 9(10), 1149–1176 (2010).
    • 29 Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10(9), 909–915 (2004).
    • 30 Finn OJ. Cancer vaccines: between the idea and the reality. Nat. Rev. Immunol. 3(8), 630–641 (2003).
    • 31 Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 9(9), 1095–1107 (2010).
    • 32 Mellado MC, Mena JA, Lopes A et al. Impact of physicochemical parameters on in vitro assembly and disassembly kinetics of recombinant triple-layered rotavirus-like particles. Biotechnol. Bioeng. 104(4), 674–686 (2009).
    • 33 Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5(4), 263–274 (2005).
    • 34 Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 6(4), 295–307 (2006).
    • 35 Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8(3), 277–284 (2007).
    • 36 Ding B, Wu X, Fan W et al. Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity. Int. J. Nanomedicine 6, 1991–2005 (2011).
    • 37 Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M. Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin. Dev. Immunol. 732413 (2011).
    • 38 Li W, Feng SS, Guo Y. Polymeric nanoparticulates for cancer immunotherapy. Nanomedicine (Lond.) 8(5), 679–682 (2013).
    • 39 Li W, Zhang L, Zhang G et al. The finely regulating well-defined functional polymeric nanocarriers for anti-tumor immunotherapy. Mini Rev. Med. Chem. 13(5), 643–652 (2013).
    • 40 Li W, Zhao H, Qian W et al. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles. Biomaterials 33(21), 5349–5362 (2012).
    • 41 Zaric M, Lyubomska O, Touzelet O et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano 7(3), 2042–2055 (2013).
    • 42 Blank F, Gerber P, Rothen-Rutishauser B et al. Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology 5(4), 606–621 (2011).
    • 43 Kasturi SP, Skountzou I, Albrecht RA et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470(7335), 543–547 (2011).
    • 44 Uto T, Wang X, Sato K et al. Targeting of antigen to dendritic cells with poly(gamma-glutamic acid) nanoparticles induces antigen-specific humoral and cellular immunity. J. Immunol. 178(5), 2979–2986 (2007).
    • 45 Wang X, Uto T, Akagi T, Akashi M, Baba M. Poly(gamma-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: potential for an AIDS vaccine. J. Med. Virol. 80(1), 11–19 (2008).
    • 46 Yoshikawa T, Okada N, Oda A et al. Nanoparticles built by self-assembly of amphiphilic gamma-PGA can deliver antigens to antigen-presenting cells with high efficiency: a new tumor-vaccine carrier for eliciting effector T cells. Vaccine 26(10), 1303–1313 (2008).
    • 47 Akagi T, Wang X, Uto T, Baba M, Akashi M. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials 28(23), 3427–3436 (2007).
    • 48 Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D, L-lactic-co-glycolic acid) nanoparticles. J. Biomed. Mater. Res. A 81(3), 652–662 (2007).
    • 49 Greenland JR, Letvin NL. Chemical adjuvants for plasmid DNA vaccines. Vaccine 25(19), 3731–3741 (2007).
    • 50 Hobo W, Novobrantseva TI, Fredrix H et al. Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunol. Immunother. 62(2), 285–297 (2013).
    • 51 Park IY, Kim IY, Yoo MK, Choi YJ, Cho MH, Cho CS. Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int. J. Pharm. 359(1–2), 280–287 (2008).
    • 52 Mishra D, Mishra PK, Dabadghao S, Dubey V, Nahar M, Jain NK. Comparative evaluation of hepatitis B surface antigen-loaded elastic liposomes and ethosomes for human dendritic cell uptake and immune response. Nanomedicine 6(1), 110–118 (2010).
    • 53 Minigo G, Scholzen A, Tang CK et al. Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25(7), 1316–1327 (2007).
    • 54 Cubillos-Ruiz JR, Engle X, Scarlett UK et al. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J. Clin. Invest. 119(8), 2231–2244 (2009).
    • 55 Flanary S, Hoffman AS, Stayton PS. Antigen delivery with poly(propylacrylic acid) conjugation enhances MHC-1 presentation and T-cell activation. Bioconjug. Chem. 20(2), 241–248 (2009).
    • 56 Tang R, Palumbo RN, Nagarajan L, Krogstad E, Wang C. Well-defined block copolymers for gene delivery to dendritic cells: probing the effect of polycation chain-length. J. Control. Release 142(2), 229–237 (2010).
    • 57 Eby JK, Dane KY, O'Neil CP, Hirosue S, Swartz MA, Hubbell JA. Polymer micelles with pyridyl disulfide-coupled antigen travel through lymphatics and show enhanced cellular responses following immunization. Acta Biomater. 8(9), 3210–3217 (2012).
    • 58 Boudier A, Aubert-Pouessel A, Mebarek N et al. Development of tripartite polyion micelles for efficient peptide delivery into dendritic cells without altering their plasticity. J. Control. Release 154(2), 156–163 (2011).
    • 59 Cheng C, Convertine AJ, Stayton PS, Bryers JD. Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials 33(28), 6868–6876 (2012).
    • 60 Demento SL, Eisenbarth SC, Foellmer HG et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27(23), 3013–3021 (2009).
    • 61 Hamdy S, Molavi O, Ma Z et al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26(39), 5046–5057 (2008).
    • 62 Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin. Drug Deliv. 5(6), 703–724 (2008).
    • 63 Moon JJ, Suh H, Bershteyn A et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 10(3), 243–251 (2011).
    • 64 Sneh-Edri H, Likhtenshtein D, Stepensky D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol. Pharm. 8(4), 1266–1275 (2011).
    • 65 Kwon YJ, Standley SM, Goh SL, Frechet JM. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J. Control. Release 105(3), 199–212 (2005).
    • 66 Dutta T, Jain NK. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim. Biophys. Acta 1770(4), 681–686 (2007).
    • 67 Nochi T, Yuki Y, Takahashi H et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater. 9(7), 572–578 (2010).
    • 68 Pitaksuteepong T, Davies NM, Baird M, Rades T. Uptake of antigen encapsulated in polyethylcyanoacrylate nanoparticles by D1-dendritic cells. Pharmazie 59(2), 134–142 (2004).
    • 69 Elamanchili P, Lutsiak CM, Hamdy S, Diwan M, Samuel J. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J. Immunother. 30(4), 378–395 (2007).
    • 70 Slutter B, Plapied L, Fievez V et al. Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination. J. Control. Release 138(2), 113–121 (2009).
    • 71 Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 28(35), 5344–5357 (2007).
    • 72 Mohanan D, Slutter B, Henriksen-Lacey M et al. Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J. Control. Release 147(3), 342–349 (2010).
    • 73 Combadiere B, Mahe B. Particle-based vaccines for transcutaneous vaccination. Comp. Immunol. Microbiol. Infect. Dis. 31(2–3), 293–315 (2008).
    • 74 Fuchs S, Klier J, May A, Winter G, Coester C, Gehlen H. Towards an inhalative in vivo application of immunomodulating gelatin nanoparticles in horse-related preformulation studies. J. Microencapsul. 29(7), 615–625 (2012).
    • 75 Sherwood JK, Dause RB, Saltzman WM. Controlled antibody delivery systems. Biotechnology (NY) 10(11), 1446–1449 (1992).
    • 76 Marroquin BO, Cordero MI, Setola V et al. Chronic delivery of antibody fragments using immunoisolated cell implants as a passive vaccination tool. PLoS ONE 6(4), e18268 (2011).
    • 77 Lim JS, Lee K, Choi JN et al. Intracellular protein delivery by hollow mesoporous silica capsules with a large surface hole. Nanotechnology 23(8), 085101 (2012).
    • 78 Lei C, Liu P, Chen B et al. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J. Am. Chem. Soc. 132(20), 6906–6907 (2010).
    • 79 Hubbell JA, Thomas SN, Swartz MA. Materials engineering for immunomodulation. Nature 462(7272), 449–460 (2009).
    • 80 Lee Y, Ishii T, Kim HJ et al. Efficient delivery of bioactive antibodies into the cytoplasm of living cells by charge-conversional polyion complex micelles. Angew. Chem. Int. Ed. Engl. 49(14), 2552–2555 (2010).
    • 81 Canton I, Massignani M, Patikarnmonthon N et al. Fully synthetic polymer vesicles for intracellular delivery of antibodies in live cells. FASEB J. 27(1), 98–108 (2013).
    • 82 Tyagi P, Barros M, Stansbury JW, Kompella UB. Light activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol. Pharm. 10(8), 2858–2867 (2013).
    • 83 Duncan R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6(Pt 1), 688–701 (2006).
    • 84 Berguig GY, Convertine AJ, Shi J et al. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody–polymer conjugate. Mol. Pharm. 9(12), 3506–3514 (2012).
    • 85 Lackey CA, Press OW, Hoffman AS, Stayton PS. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug. Chem. 13(5), 996–1001 (2002).
    • 86 Li W, Guo Q, Zhao H et al. Novel dual-control poly(N-isopropylacrylamide-co-chlorophyllin) nanogels for improving drug release. Nanomedicine (Lond.) 7(3), 383–392 (2012).
    • 87 Hubbell JA, Thomas SN, Swartz MA. Materials engineering for immunomodulation. Nature 462(7272), 449–460 (2009).
    • 88 Global medical discovery. The finely regulating well-defined functional polymeric nanocarriers for anti-tumor immunotherapy. http://globalmedicaldiscovery.com/key-scientific-articles/the-finely-regulating-well-defined-functional-polymeric-nanocarriers-for-anti-tumor-immunotherapy.
    • 89 Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58(7), 1408–1416 (1998).
    • 90 Tredan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99(19), 1441–1454 (2007).
    • 91 Yahara T, Koga T, Yoshida S, Nakagawa S, Deguchi H, Shirouzu K. Relationship between microvessel density and thermographic hot areas in breast cancer. Surg. Today 33(4), 243–248 (2003).
    • 92 Li W, Feng S, Guo Y. Tailoring polymeric micelles to optimize delivery to solid tumors. Nanomedicine (Lond.) 7(8), 1235–1252 (2012).
    • 93 Lu Y, Sega E, Leamon CP, Low PS. Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv. Drug Deliv. Rev. 56(8), 1161–1176 (2004).
    • 94 Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319(5863), 627–630 (2008).
    • 95 Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J. Control. Release 146(3), 264–275 (2010).
    • 96 Wu K, Liu J, Johnson RN, Yang J, Kopecek J. Drug-free macromolecular therapeutics: induction of apoptosis by coiled-coil-mediated cross-linking of antigens on the cell surface. Angew. Chem. Int. Ed. Engl. 49(8), 1451–1455 (2010).
    • 97 Li W, Feng SS, Guo Y. Block copolymer micelles for nanomedicine. Nanomedicine (Lond.) 7(2), 169–172 (2012).
    • 98 Li W, Nakayama M, Akimoto J, Okano T. Effect of block compositions of amphiphilic block copolymers on the physicochemical properties of polymeric micelles. Polymer 52(17), 3783–3790 (2011).
    • 99 Li W, Li J, Gao J et al. The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors. Biomaterials 32(15), 3832–3844 (2011).
    • 100 Li W, Hong L, Ngai T, Huang H, He T, Wu C. A comparative study of chain dynamics of di-and tri-block copolymers in semidilute solution in a non-selective solvent. Chinese J. Polym. Sci. 22(6), 589–598 (2004).
    • 101 Odian G. Principles of Polymerization (Chemistry) (4th Edition). Wiley-Blackwell Hobroke, NJ, USA (2004).
    • 102 Sharp JM, Dickinson RB. Direct evaluation of DLVO theory for predicting long-range forces between a yeast cell and a surface. Langmuir 21(18), 8198–8203 (2005).
    • 103 Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103(13), 4930–4934 (2006).
    • 104 Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 25(8), 1815–1821 (2008).
    • 105 Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9(2), E128–E147 (2007).
    • 106 Elamanchili P, Diwan M, Cao M, Samuel J. Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22(19), 2406–2412 (2004).
    • 107 Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007).
    • 108 Basarkar A, Singh J. Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm. Res. 26(1), 72–81 (2009).
    • 109 Boudier A, Aubert-Pouessel A, Louis-Plence P et al. The control of dendritic cell maturation by pH-sensitive polyion complex micelles. Biomaterials 30(2), 233–241 (2009).
    • 110 Roy P, Noad R. Virus-like particles as a vaccine delivery system: myths and facts. Hum. Vaccin. 491(1), 5–12 (2008).
    • 111 Liu Z, Winters M, Holodniy M, Dai H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. Engl. 46(12), 2023–2027 (2007).
    • 112 Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug. Chem. 16(1), 122–130 (2005).
    • 113 Nishiyama N, Bae Y, Miyata K, Fukushima S, Kataoka K. Smart polymeric micelles for gene and drug delivery. Drug Discov. Today Technol. 2(1), 21–26 (2005).
    • 114 Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J. Control. Release 132(3), 164–170 (2008).
    • 115 Lee ES, Na K, Bae YH. Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 5(2), 325–329 (2005).
    • 116 Takae S, Miyata K, Oba M et al. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc. 130(18), 6001–6009 (2008).
    • 117 Zhu J, Tang A, Law LP et al. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjug. Chem. 16(1), 139–146 (2005).
    • 118 Zhang Z, Tongchusak S, Mizukami Y et al. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32(14), 3666–3678 (2011).
    • 119 Krishnamachari Y, Salem AK. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv. Drug Deliv. Rev. 61(3), 205–217 (2009).
    • 120 Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7(9), 771–782 (2008).
    • 121 Nochi T, Yuki Y, Takahashi H et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater. 9(7), 572–578 (2010).
    • 122 Poland CA, Duffin R, Kinloch I et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3(7), 423–428 (2008).
    • 123 Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2(8), 469–478 (2007).
    • 124 Moghimi SM. Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers. Biochim. Biophys. Acta 1590(1–3), 131–139 (2002).
    • 125 Seliger B, Wollscheid U, Momburg F, Blankenstein T, Huber C. Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res. 61(3), 1095–1099 (2001).
    • 126 Tarhini AA, Cherian J, Moschos SJ et al. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J. Clin. Oncol. 30(3), 322–328 (2012).
    • 127 Webster WS, Thompson RH, Harris KJ et al. Targeting molecular and cellular inhibitory mechanisms for improvement of antitumor memory responses reactivated by tumor cell vaccine. J. Immunol. 179(5), 2860–2869 (2007).
    • 128 Vyas SP, Gupta PN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev. Vaccines 6(3), 401–418 (2007).