We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Application of fullerenes in nanomedicine: an update

    Anthony Dellinger

    Joint School of Nanoscience & Nanoengineering, 2907 East Lee Street, Greensboro, NC 27401, USA

    ,
    Zhiguo Zhou

    Luna Innovations Incorporated, nanoWorks Division, 521 Bridge Street, Danville, VA 24541, USA

    ,
    James Connor

    Penn State University, Department of Neurosurgery, Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA

    ,
    AB Madhankumar

    Penn State University, Department of Neurosurgery, Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA

    ,
    Sarala Pamujula

    Joint School of Nanoscience & Nanoengineering, 2907 East Lee Street, Greensboro, NC 27401, USA

    ,
    Christie M Sayes

    Joint School of Nanoscience & Nanoengineering, 2907 East Lee Street, Greensboro, NC 27401, USA

    Center for Aerosol & Nanomaterials Engineering, RTI International, Research Triangle Park, NC 27709, USA

    &
    Christopher L Kepley

    * Author for correspondence

    Joint School of Nanoscience & Nanoengineering, 2907 East Lee Street, Greensboro, NC 27401, USA.

    Published Online:https://doi.org/10.2217/nnm.13.99

    Fullerenes are carbon spheres presently being pursued globally for a wide range of applications in nanomedicine. These molecules have unique electronic properties that make them attractive candidates for diagnostic, therapeutic and theranostic applications. Herein, the latest research is discussed on developing fullerene-based therapeutics as antioxidants for inflammatory diseases, their potential as antiviral/bacterial agents, utility as a drug delivery device and the promise of endohedral fullerenes as new MRI contrast agents. The recent discovery that certain fullerene derivatives can stabilize immune effector cells to prevent or inhibit the release of proinflammatory mediators makes them potential candidates for several diseases such as asthma, arthritis and multiple sclerosis. Gadolinium-containing endohedral fullerenes are being pursued as diagnostic MRI contrast agents for several diseases. Finally, a new class of fullerene-based theranostics has been developed, which combine therapeutic and diagnostic capabilities to specifically detect and kill cancer cells.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Rao CNR, Cheetham AK. Science and technology of nanomaterials: current status and future prospects. J. Mater. Chem.11(12),2887–2894 (2001).
    • Liu Z, Robinson JT, Tabakman SM, Yang K, Dai HJ. Carbon materials for drug delivery and cancer therapy. Mater. Today14(7–8),316–323 (2011).
    • Lu FS, Gu LR, Meziani MJ et al. Advances in bioapplications of carbon nanotubes. Adv. Mater.21(2),139–152 (2009).
    • Sun Z, Liu Z, Meng J et al. Carbon nanotubes enhance cytotoxicity mediated by human lymphocytes in vitro. PloS One6(6),e21073 (2011).
    • Shen H, Zhang LM, Liu M, Zhang ZJ. Biomedical applications of graphene. Theranostics2(3),283–294 (2012).
    • Feng LZ, Zhang SA, Liu ZA. Graphene based gene transfection. Nanoscale3(3),1252–1257 (2011).
    • Basso AS, Frenkel D, Quintana FJ et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J. Clin. Invest.118(4),1532–1543 (2008).
    • Dugan LL, Turetsky DM, Du C et al. Carboxyfullerenes as neuroprotective agents. Proc. Natl Acad. Sci. USA94(17),9434–9439 (1997).
    • Bosi S, Da RT, Spalluto G, Balzarini J, Prato M. Synthesis and anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorg. Med. Chem. Lett.13(24),4437–4440 (2003).
    • 10  Marchesan S, Da RT, Spalluto G, Balzarini J, Prato M. Anti-HIV properties of cationic fullerene derivatives. Bioorg. Med. Chem. Lett.15(15),3615–3618 (2005).
    • 11  Berger CS, Marks JW, Bolskar RD, Rosenblum MG, Wilson LJ. Cell internalization studies of gadofullerene-(ZME-018) immunoconjugates into A375m melanoma cells. Transl. Oncol.4(6),350–354 (2011).
    • 12  Daroczi B, Kari G, McAleer MF, Wolf JC, Rodeck U, Dicker AP. In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model. Clin. Cancer Res.12(23),7086–7091 (2006).
    • 13  Lai YL, Murugan P, Hwang KC. Fullerene derivative attenuates ischemia-reperfusion-induced lung injury. Life Sci.72(11),1271–1278 (2003).
    • 14  Gonzalez KA, Wilson LJ, Wu W, Nancollas GH. Synthesis and in vitro characterization of a tissue-selective fullerene: vectoring C(60)(OH)(16)AMBP to mineralized bone. Bioorg. Med. Chem.10(6),1991–1997 (2002).
    • 15  Dellinger A, Zhou Z, Lenk R, Macfarland D, Kepley CL. Fullerene nanomaterials inhibit phorbol myristate acetate-induced inflammation. Exp. Dermatol.18(12),1079–1081 (2009).
    • 16  Tsao N, Luh TY, Chou CK et al.In vitro action of carboxyfullerene. J. Antimicrob. Chemother.49(4),641–649 (2002).
    • 17  Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL. A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol. Aging29(1),117–128 (2008).▪▪ Fullerenes used as the first demonstration of administered antioxidants with mitochondrial activity and nervous system penetration not only increased lifespan, but also rescued age-related cognitive impairment in mammals.
    • 18  Baati T, Bourasset F, Gharbi N et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials33(19),4936–4946 (2012).▪ Revealed that aqueous fullerene suspensions not only failed to produce acute or subacute toxicity in rodents, but could also protect their livers in a dose-dependent manner against free radical damage and prolong the lifespan of rats by nearly 100% without showing toxic effects.
    • 19  Yamago S, Tokuyama H, Nakamura E et al.In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem. Biol.2(6),385–389 (1995).
    • 20  Ryan JJ, Bateman HR, Stover A et al. Fullerene nanomaterials inhibit the allergic response. J. Immunol.179(1),665–672 (2007).▪▪ Identifies a new biological function for fullerenes and may represent a novel way to control mast cell-dependent diseases, including asthma, inflammatory arthritis, heart disease and multiple sclerosis.
    • 21  Dellinger A, Zhou Z, Norton SK, Lenk R, Conrad D, Kepley CL. Uptake and distribution of fullerenes in human mast cells. Nanomedicine6(4),575–582 (2010).
    • 22  Norton SK, Dellinger A, Zhou Z et al. A new class of human mast cell and peripheral blood basophil stabilizers that differentially control allergic mediator release. Clin. Transl. Sci.3(4),158–169 (2010).
    • 23  Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature454(7203),445–454 (2008).
    • 24  Kobayashi T, Miura T, Haba T et al. An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model. J. Immunol.164(7),3855–3861 (2000).
    • 25  Williams CM, Galli SJ. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med.192(3),455–462 (2000).
    • 26  Gordon JR, Galli SJ. Mast cells as a source of both preformed and immunologically inducible TNF-alpha/cachectin. Nature346,274–276 (1990).
    • 27  Brightling C, Berry M, Amrani Y. Targeting TNF-alpha: a novel therapeutic approach for asthma. J. Allergy Clin. Immunol.121(1),5–10 (2008).
    • 28  Kepley CL, Mcfeeley PJ, Oliver JM, Lipscomb MF. Immunohistochemical detection of human basophils in postmortem cases of fatal asthma. Am. J. Respir. Crit. Care Med.164(6),1053–1058 (2001).
    • 29  Kepley CL, Craig SS, Schwartz LB. Identification and partial characterization of a unique marker for human basophils. J. Immunol.154(12),6548–6555 (1995).
    • 30  Schroeder JT. Basophils beyond effector cells of allergic inflammation. Adv. Immunol.101,123–161 (2009).
    • 31  Jackson DJ, Sykes A, Mallia P, Johnston SL. Asthma exacerbations: origin, effect, and prevention. J. Allergy Clin. Immunol.128(6),1165–1174 (2011).
    • 32  Norton SK, Wijesinghe DS, Dellinger A et al. Epoxyeicosatrienoic acids are involved in the C(70) fullerene derivative-induced control of allergic asthma. J. Allergy Clin. Immunol.130(3),761–769 (2012).▪▪ Fullerene-treated mice were found to have significantly reduced airway inflammation, eosinophilia and bronchoconstriction associated with allergic asthma.
    • 33  Sudhahar V, Shaw S, Imig JD. Epoxyeicosatrienoic acid analogs and vascular function. Curr. Med. Chem.17(12),1181–1190 (2010).
    • 34  Pfister SL, Gauthier KM, Campbell WB. Vascular pharmacology of epoxyeicosatrienoic acids. Adv. Pharmacol.60,27–59 (2010).
    • 35  Morin C, Rousseau E. Effects of 5-oxo-ETE and 14,15-EET on reactivity and Ca2+ sensitivity in guinea pig bronchi. Prostaglandins Other Lipid Mediat.82(1–4),30–41 (2007).
    • 36  Morin C, Sirois M, Echave V, Gomes MM, Rousseau E. EET displays anti-inflammatory effects in TNF-alpha stimulated human bronchi: putative role of CPI-17. Am. J. Respir. Cell Mol. Biol.38(2),192–201 (2008).
    • 37  Node K, Huo Y, Ruan X et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science285(5431),1276–1279 (1999).
    • 38  Nigrovic PA, Lee DM. Synovial mast cells: role in acute and chronic arthritis. Immunol. Rev.217,19–37 (2007).
    • 39  Woolley DE. The mast cell in inflammatory arthritis. N. Engl. J. Med.348(17),1709–1711 (2003).
    • 40  Irani AA, Golzar N, Deblois G, Gruber B, Schwartz LB. Distribution of mast cell subsets in rheumatoid arthritis and osteoarthritis synovia. Arthritis Rheum.30,66 (1987).
    • 41  Bridges AJ, Malone DG, Jicinsky J et al. Human synovial mast cell involvement in rheumatoid arthritis and osteoarthritis: relationship to disease type, clinical activity, and antirheumatic therapy. Arthritis Rheum.34,1116–1124 (1991).
    • 42  Gotis-Graham I, Smith MD, Parker A, Mcneil HP. Synovial mast cell responses during clinical improvement in early rheumatoid arthritis. Ann. Rheum. Dis.57(11),664–671 (1998).
    • 43  Lavery JP, Lisse JR. Preliminary study of the tryptase levels in the synovial fluid of patients with inflammatory arthritis. Ann. Allergy72,425–427 (1994).
    • 44  Lee DM, Friend DS, Gurish MF, Benoist C, Mathis D, Brenner MB. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science.297(5587),1689–1692 (2002).
    • 45  Dinser R. Animal models for arthritis. Best Pract. Res. Clin. Rheumatol.22(2),253–267 (2008).
    • 46  Nigrovic PA, Lee DM. Mast cells in autoantibody responses and arthritis. Novartis Found. Symp.271,200–209 (2005).
    • 47  Winyard PG, Ryan B, Eggleton P et al. Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease. Biochem. Soc. Trans.39,1226–1232 (2011).
    • 48  Zhou Z, Lenk RP, Dellinger A, Wilson SR, Sadler R, Kepley CL. Liposomal formulation of amphiphilic fullerene antioxidants. Bioconjug. Chem.21(9),1656–1661 (2010).
    • 49  Ehrich M, van Tassell R, Li Y, Zhou Z, Kepley CL. Fullerene antioxidants decrease organophosphate-induced acetylcholinesterase inhibition in vitro. Toxicol. In Vitro25(1),301–307 (2011).
    • 50  Zhao W, Gomez G, Macey M, Kepley CL, Schwartz LB. In vitro desensitization of human skin mast cells. J. Clin. Immunol.32(1),150–160 (2011).
    • 51  Chirico F, Fumelli C, Marconi A et al. Carboxyfullerenes localize within mitochondria and prevent the UVB-induced intrinsic apoptotic pathway. Exp. Dermatol.16(5),429–436 (2007).
    • 52  Fumelli C, Marconi A, Salvioli S et al. Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis. J. Invest. Dermatol.115(5),835–841 (2000).
    • 53  Pitman N, Asquith DL, Murphy G, Liew FY, Mcinnes IB. Collagen-induced arthritis is not impaired in mast cell-deficient mice. Ann. Rheum. Dis.70(6),1170–1171 (2011).
    • 54  Brown MA, Tanzola MB, Robbie-Ryan M. Mechanisms underlying mast cell influence on EAE disease course. Mol. Immunol.38(16–18),1373–1378 (2002).
    • 55  Gregory GD, Bickford A, Robbie-Ryan M, Tanzola M, Brown MA. MASTering the immune response: mast cells in autoimmunity. Novartis Found. Symp.271,215–225; discussion 225–231 (2005).
    • 56  Secor VH, Secor WE, Gutekunst CA, Brown MA. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med.191(5),813–822 (2000).
    • 57  Li LB, Reith ME. Modeling of the interaction of Na+ and K+ with the binding of dopamine and [3H]WIN 35,428 to the human dopamine transporter. J. Neurochem.72(3),1095–1109 (1999).
    • 58  Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis.3(2),129–135 (1996).
    • 59  Ali SS, Hardt JI, Quick KL et al. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med.37(8),1191–1202 (2004).
    • 60  Borland MK, Trimmer PA, Rubinstein JD et al. Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol. Neurodegener.3,21 (2008).
    • 61  Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J. Neurol.251(3),261–268 (2004).
    • 62  Bakry R, Vallant RM, Najam-Ul-Haq M et al. Medicinal applications of fullerenes. Int. J. Nanomedicine2(4),639–649 (2007).
    • 63  Mody VV, Nounou MI, Bikram M. Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv. Drug Deliv. Rev.61(10),795–807 (2009).
    • 64  Nitta N, Seko A, Sonoda A et al. Is the use of fullerene in photodynamic therapy effective for atherosclerosis? Cardiovasc. Intervent. Radiol.31(2),359–366 (2008).
    • 65  Bolskar RD. Gadofullerene MRI contrast agents. Nanomedicine (Lond.)3(2),201–213 (2008).
    • 66  Chewning RH, Murphy KJ. Gadolinium-based contrast media and the development of nephrogenic systemic fibrosis in patients with renal insufficiency. J. Vasc. Interv. Radiol.18(3),331–333 (2007).
    • 67  Runge VM. Gadolinium and nephrogenic systemic fibrosis. AJR Am. J. Roentgenol.192(4),W195–W196 (2009).
    • 68  Ledneva E, Karie S, Launay-Vacher V, Janus N, Deray G. Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology250(3),618–628 (2009).
    • 69  Cowper SE. Nephrogenic systemic fibrosis: a review and exploration of the role of gadolinium. Adv. Dermatol.23,131–154 (2007).
    • 70  Macfarland DK, Walker KL, Lenk RP et al. Hydrochalarones: a novel endohedral metallofullerene platform for enhancing magnetic resonance imaging contrast. J. Med. Chem.51(13),3681–3683 (2008).
    • 71  Ouimet T, Lancelot E, Hyafil F et al. Molecular and cellular targets of the MRI contrast agent p947 for atherosclerosis imaging. Mol. Pharm.9(4),850–861 (2012).
    • 72  Uno K, Nicholls SJ. Biomarkers of inflammation and oxidative stress in atherosclerosis. Biomark. Med.4(3),361–373 (2010).
    • 73  Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL. Imaging atherosclerosis and vulnerable plaque. J. Nucl. Med.51(Suppl. 1),51S–65S (2010).
    • 74  Nergiz-Unal R, Rademakers T, Cosemans JM, Heemskerk JW. CD36 as a multiple-ligand signaling receptor in atherothrombosis. Cardiovasc. Hematol. Agents Med. Chem.9(1),42–55 (2011).
    • 75  Collot-Teixeira S, Martin J, Rmott-Roe C, Poston R, Mcgregor JL. CD36 and macrophages in atherosclerosis. Cardiovasc. Res.75(3),468–477 (2007).
    • 76  Ge Y, Elghetany MT. CD36: a multiligand molecule. Lab. Hematol.11(1),31–37 (2005).
    • 77  Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal.2(72),re3 (2009).
    • 78  Podrez EA, Poliakov E, Shen Z et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J. Biol. Chem.277(41),38503–38516 (2002).
    • 79  Kolovou G, Anagnostopoulou K, Mikhailidis DP, Cokkinos DV. Apolipoprotein E knockout models. Curr. Pharm. Des.14(4),338–351 (2008).
    • 80  Patra CR, Jing Y, Xu YH et al. A core–shell nanomaterial with endogenous therapeutic and diagnostic functions. Cancer Nanotechnol.1(1),13–18 (2010).
    • 81  Yigit MV, Zhu L, Ifediba MA et al. Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial. ACS Nano5(2),1056–1066 (2011).
    • 82  Park JH, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew. Chem. Int. Ed. Engl.47(38),7284–7288 (2008).
    • 83  Park JH, Von Maltzahn G, Zhang L et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater.20(9),1630–1635 (2008).
    • 84  Von Maltzahn G, Ren Y, Park JH et al.In vivo tumor cell targeting with “click” nanoparticles. Bioconjug. Chem.19(8),1570–1578 (2008).
    • 85  Jaffer FA, Libby P, Weissleder R. Molecular and cellular imaging of atherosclerosis: emerging applications. J. Am. Coll. Cardiol.47(7),1328–1338 (2006).
    • 86  Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol. Imaging5(2),85–92 (2006).
    • 87  Mccarthy JR, Jaffer FA, Weissleder R. A macrophage-targeted theranostic nanoparticle for biomedical applications. Small2(8–9),983–987 (2006).
    • 88  Li C, Hall WA, Jin N, Todhunter DA, Panoskaltsis-Mortari A, Vallera DA. Targeting glioblastoma multiforme with an IL-13/diphtheria toxin fusion protein in vitro and in vivo in nude mice. Protein Eng.15(5),419–427 (2002).
    • 89  Todhunter DA, Hall WA, Rustamzadeh E, Shu Y, Doumbia SO, Vallera DA. A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng. Des. Sel.17(2),157–164 (2004).
    • 90  Madhankumar AB, Slagle-Webb B, Mintz A, Sheehan JM, Connor JR. Interleukin13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol. Cancer Ther.5(12),3162–3169 (2006).
    • 91  Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect.112(10),1058–1062 (2004).
    • 92  Barnaby JF. Study raises concerns about carbon particles. New York Times, 29th March (2004).
    • 93  Zhu S, Oberdorster E, Haasch ML. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar. Environ. Res.62(Suppl.),S5–S9 (2006).
    • 94  Henry TB, Petersen EJ, Compton RN. Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports. Curr. Opin. Biotechnol.22(4),533–537 (2011).
    • 95  Chen HH, Yu C, Ueng TH et al. Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol. Pathol.26(1),143–151 (1998).
    • 96  Mori T, Takada H, Ito S, Matsubayashi K, Miwa N, Sawaguchi T. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology225(1),48–54 (2006).
    • 97  Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano. Lett.5(12),2578–2585 (2005).
    • 98  Ibrahim M, Saleh NA, Elshemey WM, Elsayed AA. Fullerene derivative as anti-HIV protease inhibitor: molecular modeling and QSAR approaches. Mini. Rev. Med. Chem.12(6),447–451 (2012).
    • 99  Luo Z, Xu X, Zhang X, Hu L. Development of calixarenes, cyclodextrins and fullerenes as new platforms for anti-HIV drug design: an overview. Mini Rev. Med. Chem.13(8),1160–1165 (2013).
    • 100  Kornev AB, Peregudov AS, Martynenko VM, Balzarini J, Hoorelbeke B, Troshin PA. Synthesis and antiviral activity of highly water-soluble polycarboxylic derivatives of [70]fullerene. Chem. Commun. (Camb.)47(29),8298–8300 (2011).
    • 101  Zhu ZW, Schuster DI, Tuckerman ME. Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Biochemistry42(5),1326–1333 (2003).
    • 102  Marcorin GL, Da Ros T, Castellano S et al. Design and synthesis of novel [60]fullerene derivatives as potential HIV aspartic protease inhibitors. Org. Lett.2(25),3955–3958 (2000).
    • 103  Rancan F, Rosan S, Boehm F et al. Cytotoxicity and photocytotoxicity of a dendritic C-60 mono-adduct and a malonic acid C-60 tris-adduct on Jurkat cells. J. Photoch. Photobio. B67(3),157–162 (2002).
    • 104  Liu Y, Wang H. Nanomedicine: nanotechnology tackles tumours. Nat. Nanotechnol.2(1),20–21 (2007).
    • 105  Saathoff JG, Inman AO, Xia XR, Riviere JE, Monteiro-Riviere NA. In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells. Toxicol. In Vitro25(8),2105–2112 (2011).
    • 201  ClinicalTrials.gov.http://clinicaltrials.gov/
    • 202  US FDA. Nanotechnology.http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/
    • 203  National Cancer Institute. Nanotechnology Characterization Laboratory Objectives.http://ncl.cancer.gov/objectives_ncl_obj1.asp