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Purpose: We constructed biomimetic nanoparticles with biocompatible, tumor-targeting, laser-responsive
properties for ferroptosis-induced colorectal cancer chemo-photothermal therapy, with the aim to realize
double-hit ferroptosis treatment for colorectal cancer. Methods: The nanoparticles were prepared by first
loading the chemotherapy drug bufotalin (CS-5) with Prussian blue (PB), then combining a hybridized
erythrocyte–tumor membrane (M) with PB@CS-5 to produce PB@CS-5@M. The chemo-photothermal
therapy efficiency of PB@CS-5@M was tested by in vitro and in vivo experiments. Results and conclusion:
The combined PB and CS-5 act as promising ferroptosis inducers to enhance ferroptosis efficacy. The
hyperthermia induced by laser stimulation can trigger PB to release CS-5 and iron and ferrous ions, which
further promotes ferroptosis.
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Colorectal cancer is the world’s third leading cancer and the second leading cause of cancer-related deaths world-
wide [1–3]. The treatment of colorectal cancer includes surgery, radiotherapy, chemotherapy, targeted therapy and
ablation. Although chemotherapy has made progress, the cure rate is far behind those of breast cancer and lung
cancer, considering the liver and lung metastasis of colorectal cancer [3–6]. In addition, chemotherapy may result
in serious adverse effects such as hematotoxicity and drug resistance, leading to a poor prognosis for patients [7–9].
Given this, there is an urgent need to develop a new treatment strategy for colorectal cancer.

Bufotalin (CS-5) is a natural compound derived from Chansu [10], a traditional Chinese medicine, which can
effectively treat melanoma [11], lung cancer [12] and liver cancer [13]. Zhao et al. demonstrated that the mechanism
of bufotalin killing tumor cells is to induce G2/M phase cell-cycle arrest and apoptosis, thereby inhibiting A375
cell proliferation [11]. Zhang et al. also proved that bufotalin inhibits the expression of GPX4 and promotes the
production of reactive oxygen species (ROS) and the level of intracellular iron (Fe2+ form), thereby inducing
ferroptosis and inhibiting the proliferation of A549 cells, which suggested the prospect of developing CS-5 as a
novel ferroptosis inducer for antitumor therapy [12].

Ferroptosis is an iron-dependent mode of cell death triggered by the inactivation of glutathione-dependent
antioxidant defenses, leading to the accumulation of toxic lipid ROS, which differs from other forms of cell
death [14]. Its characteristics include increased ROS level, decreased GPX4 and damaged mitochondria [15,16]. In
the latest study, the combination of siramesine and lapatinib was used to solve lapatinib resistance to breast cancer
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therapy by inducing ferroptosis [17]. However, due to the high renal clearance and difficulty in accurately reaching the
tumor sites, the clinical application prospects of many ferroptosis-inducing drugs have been limited [18]. It deserves
mentioning that many nanomaterials were prepared to overcome these limitations. Due to their incomparable
advantages, including non-toxicity, longer blood circulation time, tumor-homing ability, high drug-loading rate
and controlled drug release, they provide a promise for specific ferroptosis cancer therapy [19–21]. Iron-based
nanomaterials have gained advantages in inducing ferroptosis of cancer cells, due to their superiority of releasing
iron and ferrous ions to induce ROS generation [18,22].

Prussian blue (PB), as an iron-based nanomaterial, possesses the advantages of a high drug-loading rate and
excellent photothermal properties; more importantly, the US FDA has approved PB for the treatment of radiation
diseases and MRI, because of its good biological safety [23,24]. Chen et al. constructed a triple therapy based on
curcumin and 5-fluorouracil loaded with PB for colorectal cancer treatment [25]. Moreover, PB with laser irradiation
can release iron and ferrous ions to promote ROS production, which is expected to further improve tumor cell
ferroptosis in tumor therapy [26]. Until now, no studies have demonstrated the potential of CS-5 for colorectal
cancer treatment by inducing tumor cell ferroptosis. PB for photothermal therapy (PTT) has the potential to induce
ferroptosis. Therefore, a biomimetic nanosystem with near-infrared laser response was constructed to combine CS-5
with PB for chemo-photothermal therapy against colorectal cancer by inducing ferroptosis. PB@CS-5 (PC) was
prepared by loading the chemotherapy drug CS-5 with the PB, and then PB@CS-5@M (PCM) was further prepared
by combining a hybridized erythrocyte–tumor membrane (M) with PC. The hybridized membrane endows PCM
with tumor-targeting properties and long circulation time. CD47 molecules on the erythrocyte membrane surface
avoid immunogenic clearance, the half-life of the nanodrug in blood circulation is prolonged, and the tumor
cell membrane is targeted in the same type. Much research has demonstrated the ideal therapeutic effect of
nanomedicine by using mixed membranes [27,28]. Xiao et al. successfully constructed a nanodrug system for the
treatment of cervical cancer, which used a hybrid membrane to wrap with PB nanoparticles of gamabufotalin (CS-
6) and indometacin (IND) [29].

In this work, PCM was designed to attenuate the cardiotoxicity of CS-5 and assist CS-5 in achieving efficient
accumulation and release at the tumor site. CS-5 downregulates the expression of GPX4, reduces mitochondrial
membrane potential (MMP) and increases ROS, thus inducing ferroptosis; PB directly killed tumor cells under
laser stimulation and released iron and ferrous ions to boost ROS generation and ferroptosis, which realized a
double-hit ferroptosis treatment for colorectal cancer. Moreover, the nanocomplexes downregulated the expression
of HSP70 under laser stimulation to enhance the chemotherapy sensitivity of colorectal cancer cells to CS-5.

Materials & methods
Materials
K3[Fe(CN)6]·3H2O was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd (Shanghai, China).
Poly(N-vinylpyrrolidone) was purchased from Zhanyun Chemical Co., Ltd (Shanghai, China). CS-5 was acquired
from Dalian Medical University (Dalian, China). Rhodamine was obtained from Sigma-Aldrich (MO, USA).
The JC-1 kit and Reactive Oxygen Species Assay Kit were purchased from Beyotime Biotechnology (Shanghai,
China). Methyl thiazolyl tetrazolium (MTT) and 4′,6-diamidino-2-phenylindole (DAPI) were purchased from
Solarbio Technology (Beijing, China). The Calcein/PI cell viability/cytotoxicity assay kit was obtained from
Yeasen Biotechnology (Shanghai, China). Hematoxylin and eosin (H&E) staining solution was purchased from
Biosharp Technology Co., Ltd (Hefei, China).

Cell lines & animals
HCT116, NIH-3T3 and SW480 cells were purchased from Dalian Meilun Biotechnology Co., Ltd (Dalian,
China). Human vascular smooth muscle cells and RAW 264.7 cells were obtained from Xiangya Central Laboratory
(Changsha, China). Female nude BALB/c mice (4–5 weeks old) were obtained from SJA Laboratory Animal Co.,
Ltd (Hunan, China).

Synthesis of PB nanoparticles
PB nanoparticles (PBNPs) were synthesized according to the previous method [30]. First, 7.5 g poly(N-
vinylpyrrolidone) and 330 mg K3[Fe(CN)6]·3H2O were weighed and dissolved in 0.1 M 100 ml HCl, and
stirred at 800 r.p.m. for 1 h, then placed in an oil bath at 80◦C for 20 h. PBNPs were collected after centrifugation,
washing and freeze-drying.
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Preparation of PCM
Preparation of red blood cell (RBC) membranes (RBCms) was performed as previously reported [31]. Briefly, fresh
blood collected from healthy mice was washed with phosphate-buffered saline (PBS; pH 7.4) five times. The RBC
layer was collected and mixed with 25% PBS (pH 7.4) and lysed on ice for 2 h. Subsequently, the cracked RBCs
were centrifuged at 12,000 × g and washed until the supernatant was colorless, then stored at -80◦C until use.

HCT116 cell membranes (HCTms) were prepared according to instructions of the membrane protein extraction
kit (Beyotime Biotechnology) [32]. HCT116 cells were scraped down and washed with PBS (pH 7.4), then the
cells were centrifuged at 800 × g and the precipitate was collected and resuspended in reagent A. Next, after five
repeated freeze–thaw cycles, the samples were centrifuged at 800 × g, the supernatant was collected and centrifuged
at 12,000 × g, and the precipitate of cell membranes was collected and stored at -80◦C until use.

The preparation of the RBC–HCT hybrid membrane (RBC-HCTm) was as follows. After ultrasonication of
RBCms and HCTms, they were filtered with a 0.22-μm filter membrane and then mixed at a ratio of 1:1.

For the preparation of PCM, 950 μl of PB (1 mg/ml) and 50 μl of CS-5 (1 mg/ml) were mixed and stirred at
800 r.p.m. for 12 h, then the mixture was centrifuged at 13,500 × g for 15 min and the precipitate of PC was
collected. Then 1 ml PC (1 mg/ml) and 1 ml RBC-HCTm (1 mg/ml) were mixed and stirred at 37◦C for 2.5 h,
then the mixture was centrifuged and PCM was acquired.

Characterization
Transmission electron microscopy was performed to capture the image of PB and PCM using a JEM-2100
microscope (JEOL, JPN, 200 kV). The size and ζ-potential of PB, PC and PCM were determined by Zetasizer
Nano ZS (Malvern Instruments, Malvern, UK). UV-Vis spectrophotometry (Beckman Coulter, Inc., CA, USA)
was conducted to detect the characteristic absorption peaks of PB, CS-5, PC and PCM. RBC–HCT116 membrane
fusion was characterized by a laser confocal microscope (FV1000, Olympus, Tokyo, Japan). Membrane proteins
including RBCm, HCTm, RBC-HCTm and PCM were determined by SDS-PAGE.

Photothermal performance characterization
Temperature change curve and infrared thermal images of PBS, PB, PC and PCM (0.2 mg/ml) after 808-nm
laser irradiation (1.2 W/cm2, 5 min) were recorded by the FLIR C2 infrared camera (Thermor Fisher Scientific
Inc., USA). The temperature change curve of PCM at different concentrations was also measured to evaluate the
temperature-rising capability. The photothermal curve of 0.5 ml PCM (0.2 mg/ml) was designed to calculate
photothermal conversion efficiency. The photostability of PCM was evaluated by laser on/off for six cycles, and
the characteristic peaks before and after laser irradiation were measured by UV-Vis spectrophotometry.

Evaluation of biocompatibility
The toxicity of PB and PBM (PB@M) to different cells (HCT116 cells, SW480 cells, NIH-3T3 cells and vascular
smooth muscle cells) was detected by MTT assay. Briefly, when the cell density reached 80% in 96-well plates,
different concentrations of PB and PBM (0, 12.5, 25, 50 and 100 μg/ml) were added to the Petri dish and treated
for 24 h, then the absorption peak at 490 nm was detected by MTT assay and the cell activity was calculated.

The hemolysis rates of RBCs in different samples were determined by spectrophotometry. PB, PC and PCM
were added into 4% suspended RBCs to the final concentrations of 0, 25, 50, 100 and 200 μg/ml. In addition,
the positive control was treated with ddH2O, and the negative control was treated with PBS. After incubation at
37◦C for 6 h and centrifugation at 3000 × g (5 min, 4◦C), the absorbance of the supernatant at 540 nm was
detected with a microplate reader. The hemolysis rate was calculated and RBC morphology was observed under
the microscope.

Platelets extracted from fresh whole blood were incubated with PB, PC and PCM (200 μg/ml) at 37◦C for 4 h.
A thrombin treatment group was used as the positive control, and a PBS treatment group was used as the negative
control. The absorbance of all samples at 650 nm was detected and the coagulation rate was calculated.

Cell uptake & immune escape assay
For the cell uptake assay, HCT116 cells were seeded into a 12-well plate and cultured. When the cell density
reached 60%, 40 μg/ml of rhodamine-labeled PB coated with the hybrid membrane (PB@MRho) was added at 0,
2, 4, 6 and 8 h. The nuclei were stained with DAPI, and the images were captured by laser confocal microscopy.
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For the immune escape assay, RAW 264.7 cells (5 × 104) were seeded into a 12-well plate and cultured overnight,
then PBRho and PB@MRho (0, 25, 50 and 100 μg/ml) were added and cultured for 6 h. The nuclei were stained
with DAPI, and the cells were imaged through the laser confocal microscope.

Antitumor effect & mechanism in vitro
For the cell viability assay, HCT116 cells were placed into a 96-well plate at a density of 8 × 103 per well and
cultured for 24 h, and then treated with PBS, CS-5, PB, PC, PCM, PB + laser (L), PC + L or PCM + L (PB:
30 μg/ml; CS-5: 0.0889 μg/ml; ), laser (L) represented that the group was treated with laser treatment. Laser
irradiation was performed after 6 h (808 nm, 1.2 W/cm2, 5 min), then cells were incubated for a further 18 h.
Cell viability was detected by MTT assay.

For live–dead staining, HCT116 cells were seeded and cultured in 24-well plates for 24 h, then treated with
PBS, CS-5, PB, PC or PCM, with or without laser (PB: 30 μg/ml; CS-5: 0.0889 μg/ml). The cells were stained
with a Calcein AM/PI kit and imaged with the laser confocal microscope.

For ROS detection, when the HCT116 cells’ confluence in 24-well plates reached 60%, they were treated with
PBS, CS-5, PB, PC or PCM, with or without laser (PB: 30 μg/ml; CS-5: 0.0889 μg/ml). After incubation with
the DCFH-DA probe for 30 min, the cells were imaged under a fluorescence microscope.

For detection of MMP, HCT116 cells were cultured in a 12-well plate, then treated with PBS, CS-5, PBM + L,
PCM or PCM + L (PB: 30 μg/ml; CS-5: 0.0889 μg/ml). Laser irradiation was performed about 6 h later and
then cells were incubated for 18 h, then stained with the JC-1 kit for 20 min and then imaged by laser confocal
microscopy.

For western blotting, when the HCT116 cells’ confluence in six-well plates reached 60%, they were treated with
PBS, PB, PB + L, CS-5, PCM or PCM + L (PB: 30 μg/ml; CS-5: 0.0889 μg/ml). Cells were washed with PBS
and cracked to extract proteins. The expression levels of C-caspase-3, p53, Bax and Bcl-2 were detected to evaluate
the level of apoptosis, and the level of ferroptosis was evaluated by measuring the expression levels of GPX4 and
HIF-1a. In addition, the cells were treated with PBS, PB, PB + L, PBM + L, PC + L, or PCM + L, and the
protein was extracted to evaluate the expression of HSP70.

Biodistribution & pharmacokinetics in vivo
When the tumor volume of female nude BALB/c mice reached 250 mm3, 100 μl of PBCe6 or PB@MCe6 (dose
of PB = 5 mg/kg) were injected into mice by tail vein injection. Fluorescence imaging of tumor-bearing BALB/c
mice was performed at 2, 4, 6, 8, 12, 24 and 48 h. The mice were dissected after 48 h and the heart, liver, spleen,
lung, kidney and tumor were collected for imaging.

For the pharmacokinetic study, 200 μl of Ce6, PBCe6 or PB@MCe6 (dose of PB = 5 mg/kg) were injected into
tumor-bearing BALB/c mice by tail vein injection. Blood samples were collected at 0, 1, 2, 4, 6, 8, 12 and 24 h
after injection. After centrifugation at 3600 × g for 5 min, the supernatant was collected for fluorescence imaging
and the half-life of different samples was calculated.

Antitumor effect in vivo
To measure the antitumor effect, 100 μl HCT116 cells were first subcutaneously implanted on the back of female
nude BALB/c mice at a density of 5 × 106. When the tumor volume reached 100 mm3, the mice were randomly
divided into five groups: PBS, PBM + L, CS-5, PCM and PCM + L (n = 5 per group). After the body weight
and tumor size were recorded, the mice were treated via the tail vein with 100 μl PBS, PBM, CS-5 or PCM (doses:
PB = 5 mg/kg; CS-5 = 1 mg/kg) and laser therapy was performed 12 h later. The dose of CS-5 was determined as
1 mg/kg to ensure its safety margin in chemotherapy and optimal efficacy for tumor ablation. Significant changes
in tumor volume were observed in tumor-bearing mice after eight treatment cycles. The mice were euthanized,
and the fresh blood of the mice was taken for the routine blood and biochemical tests. The heart, liver, spleen,
lung, kidney and tumor were taken for tissue sections and then stained using H&E, immunohistochemistry and
terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL).

Analysis of the 16S rRNA gene sequence
Normal female nude BALB/c mice (as the control group) and female tumor-bearing BALB/c mice were treated
with PBS and PCM + L as PBS and PCML groups, respectively (n = 5). The feces from three groups of mice
were collected for 16S rRNA analysis (lc-bio, Hangzhou, China). All data were analyzed through R software (v.
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Figure 1. The synthesis procedures of bufotalin–Prussian blue biomimetic nanoparticles and mechanism of
nanoparticle-induced ferroptosis for colorectal cancer chemo-photothermal therapy.
CS-5: Bufotalin; PB: Prussian blue; PCM: Bufotalin–Prussian blue biomimetic nanoparticle; PTT: Photothermal therapy;
RBC: Red blood cell.

3.6.3; R Foundation for Statistical Computing, Vienna, Austria) and the OmicStudio tools at www.omicstudio.cn.
Correlation calculation was conducted with Pearson and Spearman correlation coefficients.

Statistical analysis
All values are presented as mean ± standard deviation. The statistical difference between the two groups was
calculated by t-test, and statistical differences above the two groups were performed by one-way analysis of variance
using GraphPad Prism 8 software (v. 8.4.0; GraphPad, Inc., CA, USA). Statistical significance was set at *p < 0.05,
**p < 0.01 and ***p < 0.001.

Results
Characterization of the PCM
The synthesis procedures of PCM are illustrated in Figure 1. The transmission electron microscopy image of PB
shows its cube structure and 100-nm nanoparticle size with excellent dispersibility (Figure 2A). After loading with
CS-5 and wrapping with the hybrid membrane, the transparent film surrounding the cuboid PBNPs shows that
the hybrid membrane successfully wraps the PC inside, and the particle size of PCM is stable at about 100 nm
(Figure 2B). In addition, dynamic light scattering analysis (DLS) demonstrated the average hydration diameters
of PB, PC and PCM to be 98.49, 110.4 and 128.3 nm, respectively (Figure 2C). The ζ-potential measurement
showed the negative charge of PBNPs. Due to the positive charge on the surface of CS-5, after loading with CS-5,
the potential of PC increased significantly from -25.4 ± 1.14 mV to -10.1 ± 0.08 mV (Figure 2D); UV-Vis spectra
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Figure 2. Characterization of the bufotalin–Prussian blue biomimetic nanoparticles. (A) Transmission electron
microscopy image of PBNPs (scale bar = 100 nm). (B) Transmission electron microscopy image of PCM (scale bar = 100
nm). (C) Dynamic light scattering analysis of PB, PC and PCM. (D) ζ-potential analysis of PB, PC and PCM. (E) UV-Vis
spectra of PB, CS-5, PC and PCM. (F) The stability analysis of PCM in phosphate-buffered saline and 10% fetal bovine
serum for 6 consecutive days. (G) The fusion of RBCm and HCTm under laser scanning confocal microscope. (DiI
labeled membrane = RBCm; DIO labeled membrane = HCTm; scale bar = 5 μm). (H) SDS-PAGE analysis of RBCm (2),
HCT116 m (3), RBC-HCTm (4), PCM (5).
CS-5: Bufotalin; DiI: Red fluorescence probe for cell membrane; DiO: Green fluorescence probe for cell membrane;
HCTm: HCT116 cell membrane; PB: Prussian blue; PBNP: Prussian blue nanoparticle; PBS: 1× Phosphate-buffered
saline; PC: Bufotalin–Prussian blue nanoparticle; PCM: Bufotalin–Prussian blue biomimetic nanoparticle; RBCm: Red
blood cell membrane.

indicated the two absorption peaks of PC and PB at 700 (PB) and 372 nm (CS-5) (Figure 2E). This result showed
that CS-5 was successfully loaded into PB. The UV-Vis spectrum of PCM displayed the characteristic peak of
RBC-HCTm at 416 nm. Moreover, coating with RBC-HCTm directly resulted in the potential reduction of PCM
(Figure 2D & E).

Monitoring the stability of PCM in 10% fetal bovine serum and PBS for 6 consecutive days, we found that
the average particle size of PCM was stable between 120 and 130 nm (Figure 2F), indicating its excellent stability.
When the mass ratio of PB to CS-5 was 1:1, the encapsulation efficiency and loading efficiency of PB to CS-5 were
approximately 60%, which indicates the high drug-loading efficiency of CS-5 in PB (Supplementary Figure 1A).
We further investigated the effects of laser and pH value on the release of CS-5 from PCM. The results indicated
that the cumulative release of CS-5 from PCM at pH 7.4 was only 46.19% after 72 h, while the cumulative release
of CS-5 reached 97.59% at pH 5.4 with laser irradiation (Supplementary Figure 1B). In addition, the release rate
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Figure 3. Photothermal performance characterization. (A) Temperature change and (B) infrared thermal images of
different samples after 808-nm laser irradiation (1.2W/cm2, 5 min) (PB/PC/PCM: 0.2 mg/ml). (C) Photothermal
performance of PCM with different concentrations (1.2W/cm2, 5 min). (D) The photothermal curve of PCM after
808-nm laser irradiation (0.8 W/cm2, 5 min) (PCM: 0.1 mg/ml). (E & F) Photostability and UV-Vis spectra of PCM before
and after six laser irradiation cycles (PCM: 0.2 mg/ml).
PB: Prussian blue; PBS: 1× Phosphate-buffered saline; PC: Bufotalin–Prussian blue nanoparticle; PCM:
Bufotalin–Prussian blue biomimetic nanoparticle.

of CS-5 under 808-nm laser irradiation was increased significantly (44.1 vs 7.56%) (Supplementary Figure 1C).
After RBCm and HCTm were labeled with red fluorescence probe for cell membranes (DiI) and green fluorescence
probe for cell membranes (DiO), respectively, we performed a fusion assay of RBCm and HCTm. As we expected,
yellow fluorescence (merged red and green fluorescence) under laser scanning confocal microscopy was observed
due to the successful fusion of RBCm and HCTm (Figure 2G). In addition, the SDS-PAGE results showed that
the integrity of membrane proteins in PCM was consistent with that of other groups (Figure 2H).

Photothermal performance characterization
The photothermal performance of PB is crucial for tumor PTT [26]. By monitoring the temperature-rising curves of
PBS, PB, PC and PCM under laser irradiation (808 nm, 1.2 W/cm2) for 5 min, it was found that the temperature
of PB, PC and PCM increased from 27 to 49.5◦C (Figure 3A & B), higher than the temperature required to kill
tumor cells (42◦C) [33]. In addition, the photothermal effect of PCM was concentration-dependent (Figure 3C). It
should be noted that CS-5 and hybrid membrane did not affect the photothermal properties of PB. Furthermore,
the photothermal conversion efficiency of the PCM was 31.33% (Figure 3D), which is higher than that of SQ1
nanoprobe (η = 25.6%) [34] and Au nanorods (η = 23.7%) [35]. As the long-term photothermal effect of PB
on tumor sites has great potential for its application in targeted tumor therapy [36], we then investigated the
photothermal stability. Figure 3E & F indicate that the maximum temperature peak and the UV-Vis spectrum of
PCM remain unchanged after six cycles of laser on/off irradiation. The above results demonstrate that PB is an
excellent photothermal agent for PTT due to its excellent photothermal properties and stability. It suggests that it
has a good prospect of application in tumor treatment.

Biocompatibility of PCM in vitro
Although the FDA has proven that PB has excellent safety as an antidote [37], biomembranes with excellent
biocompatibility also contribute to the clinical transformation of nanomaterials [38,39]. In this study, the cytotoxicity
analysis of PB and PBM on HCT116 cells, SW480 cells, vascular smooth muscle cells and NIH-3T3 cells indicated
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that even if the concentration of PB was as high as 100 μg/ml, the cell viabilities of the PBM group and PB group
were 85 and 80%, respectively (Supplementary Figure 2A & B). In addition, compared with the positive group, the
other groups did not affect the hemolysis rate, which with PCM was 2.97% and with PC was 4.12%; even at the
highest concentration of PB (200 μg/ml), there were no significant changes in RBC morphology (Supplementary
Figure 2C & D). There was also no difference in coagulation rate between different materials groups (Supplementary
Figure 2E). These results indicate that different materials have no significant effect on hemolysis and coagulation,
and also show that PCM has excellent biocompatibility with no toxic side effects, which is conducive to further
clinical trials in vivo.

Cell uptake & immune escape assay
Cell uptake efficiency and immune escape assay were used to evaluate the practical potential of PCM in vivo. PCM
was labeled with Ce6, a fluorophore that can emit red fluorescence. Red fluorescence intensity in the cytoplasm
represents the uptake of substances by cells. The results in Supplementary Figure 3A showed that the uptake of PBM
in macrophages was significantly lower than that of PB with the same concentration (p < 0.001 and p < 0.01).
As shown in Supplementary Figure 3B, the low uptake of PCM in macrophages revealed that the weak immune
response is caused by the immune-escaping ability of the hybrid membrane, which helps prolong blood circulation
time. In addition, by evaluating the uptake of PBM in HCT116 cells at different time points, it was found that the
red fluorescence gradually increased with time extension, but remained stable after 6 h (Supplementary Figure 3C
& D). Therefore, the optimal laser irradiation time was determined at 6 h to ensure the highest photothermal
efficiency.

Antitumor effect & mechanism in vitro
Next, we investigated the photothermal killing effect of PB on HCT116 cells when the concentration of PB was 30,
40 and 50 μg/ml. The kill effects of PB at these different concentrations were 16.6, 59.6 and 83.3%, respectively,
indicating that 30μg/ml of PB was the optimal concentration for combinational therapy (Supplementary Figure 4).
Then the cell killing rates of PB + L, PC and PC + L (PB = 30 μg/ml; PB:CS-5 = 15:1) on HCT116 cells were
measured. The results indicated that the combined efficacy of PC + L (85.3%) was better than that of the stacking
effect of PC (63.9%) or PB plus the laser (16.6%) (Figure 4A). In addition, compared with PC + L, the cell
killing rate of PCM + L was slightly reduced, which may help the slow release of CS-5 from PC after coating
with hybrid membrane (Figure 4B). In addition, the effect of chemo-photothermal therapy of PCM in vitro was
verified by living/dead staining, in which green fluorescence and red fluorescence represent living cells and dead
cells, respectively. Compared with other groups, strong red fluorescence reflected the significant killing effect of
PC or PCM plus laser on tumor cells, which was supported by the MTT results (Figure 4C). The main anticancer
mechanism of CS-5 is to induce tumor cell apoptosis [11,40]. P53 can mediate cell apoptosis by regulating BCL-2 and
Bax proteins [41]. The low expression of the proapoptotic protein Bcl-2 releases the restricted antiapoptotic protein
of Bax to initiate apoptosis, and BAX induces the release of apoptotic factors such as caspase-3 to mediate the
final cell death [42]. Western blot assay indicated that CS-5 significantly induced the expression of the proapoptotic
proteins C-CASPASE-3, P53 and BAX, and inhibited the level of the antiapoptotic protein BCL-2 (Figure 4D).
These results suggest that CS-5 played its role mainly by inducing the apoptosis of HCT116 cancer cells.

Ferroptosis mechanism in vitro
Recent studies have shown that CS-5 can induce ferroptosis [12], which is characterized by inducing ROS through
the Fenton reaction and inhibiting the expression of MMP and GPX4 protein [15,43]. Therefore we used the JC-1
assay to detect the change in the MMP level. Red fluorescence and green fluorescence represented the normal MMP
and the decreased MMP, respectively. The decrease in red fluorescence and increase in green fluorescence in the
PCM + L group proved that CS-5 and PB plus laser could promote cell ferroptosis by inducing mitochondrial
damage (Figure 5A). Meanwhile, fluorescence imaging indicated that CS-5 and PB plus laser could induce ROS
generation. As we expected, PCM showed the most significant tumor cell-killing effect under laser induction
(Figure 5B). It has been reported that inhibiting the expression of HSP70 protein can improve the sensitivity of
cancer cells to PTT, thus improving the efficacy of tumor-cell ablation [44]. Therefore we detected the effect of PB
on the expression of HSP70 protein. Consistent with previous reports [45,46], laser irradiation of PB significantly
reduced the expression level of HSP70 protein in HCT116 cells (p < 0.05) (Figure 5C). In addition, HIF-1a
can reduce iron and ROS levels, which implies its universal role in antiferroptosis of other cancers [47,48]. PCM
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with laser can effectively reduce the expression of the ferroptosis-related proteins GPX4 and HIF-1a (p < 0.01)
(Figure 5D). These results indicated that PCM plus laser had a remarkable effect on ferroptosis by downregulating
the levels of GPX4 and HIF-1a proteins, inducing ROS production and reducing MMP.

Biodistribution & pharmacokinetics in vivo
To comprehensively evaluate the targeting ability of the hybrid membrane and metabolism of PB in vivo, 100 μl of
PBCe6 and PB@MCe6 (5 mg/kg PB) were injected into tumor-bearing mice via the tail vein, and the fluorescence
signal distribution of Ce6 in tumor-bearing mice was monitored at different time points. As shown in Figure 6A,
the fluorescence signal of Ce6 was found at the tumor site of mice administered PBCe6 after 4 h but remained
unchanged after 48 h in the PB@MCe6 group (p < 0.05). After 48 h, the tumors and main organs were collected
for fluorescence imaging. As shown in Figure 6B, the fluorescence signals were enriched in the tumor site of the
mice, and the fluorescence intensity of PB@MCe6 was significantly stronger than that of PBCe6 (p < 0.05). This
result demonstrated the excellent tumor-targeting ability of HCTm and the long half-life of RBCm. In addition, we
found a strong fluorescence signal of PBCe6 and PB@MCe6 in the liver and kidney, as they are mainly metabolized
through the liver and kidney (Figure 6C & D). Figure 6E & F show that the average serum half-lives of Ce6, PBCe6

and PB@MCe6 were 0.64, 1.43 and 1.63 h, respectively, indicating that RBCm could assist nanodrugs to escape
the clearance of macrophages and prolong the half-life in vivo.

Antitumor effect in vivo
The chemotherapy/hyperthermia scheme of PCM on the mouse model of colorectal cancer is shown in Figure 7A.
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When the tumor volume grew to 100 mm3, the mice were randomly divided into five groups: PBS, CS-5, PBM + L,
PCM and PCM + L. First, we evaluated the photothermal conversion performance of different nanomaterials
in vivo. After the tumor was irradiated by laser (808 nm, 1.2 w/cm2) for 5 min, the temperature of the tumor
region with PBM and PCM administration reached 49.5◦C (Figure 7B), indicating the excellent photothermal
conversion performance and tumor targeting of PCM in vivo. On the contrary, mice treated with PBS did not show
temperature change. After eight cycles of treatment, the tumor size of the PBS group gradually increased, and the
maximal volume of the tumor was about 1800 cm3. Compared with the PBS group, the tumor growth in the CS-5,
PBM + L and PCM groups was slightly inhibited, with inhibition rates of 41.16, 31.27 and 66.04%, respectively.
The tumor growth in the PCM + L group was effectively controlled (p < 0.0001), with the highest inhibition rate
of 87.97% (Figure 7C). The changing trend of relative tumor volume and tumor weight in vivo (Figure 7D–F &
Supplementary Figure 5) is consistent with the therapeutic effect (p < 0.0001), and the body weight of mice had
no significant changes (Figure 7G). These results proved the combined effects of PCM with laser on tumor growth
inhibition.

To intuitively observe the antitumor mechanism in vivo of PCM + L, we performed H&E, TUNEL and
immunohistochemical staining on tumor sections. H&E staining showed that a large number of necrotic tumor
regions were observed in the PCM + L group. In TUNEL staining, compared with other groups, the PCM + L
group showed the strongest green fluorescence, representing numerous apoptotic cells (Figure 7H). Compared
with the PBS group, the protein levels of KI67, GPX4 and SLC7A11 in tumor tissues of the PCM + L group
were significantly decreased. This result also confirmed that laser PCM can effectively inhibit tumor growth by
inhibiting the expression of KI67 protein. In addition, the experimental results in Figure 7I indicated that CS-5 could
downregulate the expression of GPX4 and SLC7A11 protein to induce ferroptosis in HCT116 cells, which also
contributes to tumor growth inhibition. To sum up, PCM can achieve a satisfactory effect in chemo-photothermal
therapy of colorectal cancer by inducing ferroptosis and apoptosis of HCT116 cells.
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Biosafety assessment in vivo
To highlight the clinical application of PCM, H&E staining and routine blood and biochemical analysis were used
to evaluate the biological safety of PCM in major organs (heart, liver, spleen, lung and kidney). H&E staining
showed that different drug samples had no obvious toxic or side effects on main organs except that the cardiotoxicity
of CS-5 might slightly increase the myocardial clearance compared with the PBS group (Supplementary Figure 6A).
There were no differences in routine blood and biochemical tests among these groups, except for a slight increase
of RBCs and platelets in the CS-5 group compared with the PBS group, which may relate to the poor prognosis
of drug chemotherapy (Supplementary Figure 6B–F). In short, the PCM for chemo/thermotherapy demonstrated
high biological safety, which is hopeful for developing clinical nanomedicine.

The comprehensive landscape of gut microbiota
Changes in the intestinal microbiota may relate to the curative effect of colon cancer therapy [49,50]. To investigate the
role of microbiota on colon cancer therapy, 16S rRNA sequencing analysis was performed to investigate the intestinal
microbiota change in mice after PCM + L treatment. Figure 8A indicates that the control group, PBS and PCM
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Figure 7. Bufotalin–Prussian blue biomimetic nanoparticles for dual-drug chemo-photothermal therapy in vivo. (A) The treatment
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+ L group shared 353 of the total 2727 operational taxonomy units (OTUs), the PBS and PCM + L group shared
885 OTUs, and 485 OTUs were unique to the PCML group. The α-diversity of intestinal microbiota was evaluated
using Chao1 and OTU indexes, and the results showed that species diversity in the PBS and PCM + L groups
was significantly higher than that of the control group (Figure 8B & C). The abundance distribution of intestinal
microbiota was demonstrated with a Circos plot and heat map (Figure 8D & E). Compared with the control group
and PBS group, the abundance of Helicobacter pylori, Ricardia and Streptococcus in the PCM + L group increased,
while the abundance of Candidatus saccharimonas, Anaerotruncus, HT002 and Enterorhabdus decreased. Moreover,
the indicator analysis was conducted to screen indicative microbiota biomarkers. Compared with the control group,
Chloroflexi, Myxococcota, Gemmatimonadota, WPS-2, Campylobacterota and Proteobacteria were significantly
enriched in PBS and PCM + L groups, which may serve as biomarkers for colon cancer detection. Nitrospirota
and NB1-j were significantly enriched in the PCM + L group, which may serve as a biomarker for evaluating the
efficacy of tumor therapy (Supplementary Figure 7A), and a branch map was drawn to identify specific intestinal
microflora (Supplementary Figure 7B). In addition, the PICRUSt2 method was used to predict the microbial
population function in the PCM + L treatment group across the pathway database (Supplementary Figure 7C).
The results indicated that the pentose phosphate pathway and superpathway of pyrimidine deoxyribonucleotides
de novo biosynthesis are significantly related to the PCM + L with the potential of anticancer drug targeting.

Discussion
In this study, PBNPs with stable and uniform particle sizes were synthesized based on an economical and fast
hydrothermal method. The nanomaterial has an excellent near-infrared photothermal conversion effect and has
great potential as a new generation substitute for traditional photothermal agents. More importantly, its high
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drug-loading rate and biosafety have attracted more attention in cancer treatment. Therefore, we constructed
a biomimetic drug-delivery system, PCM, and comprehensively evaluated its thermo-chemotherapy efficacy in
colorectal cancer.

Firstly, the performance of the material was given prior consideration. The drug loading and biomimetic
membrane modification did not affect the photothermal properties of PB, and its photothermal conversion
efficiency is 31.33%, better than many photothermal agents. The modification with biomimetic membranes
endows PC with higher blood compatibility and biosafety. In addition, PCM can be triggered by the dual mode of
near-infrared and pH transition (tumor cell environment) to achieve on-demand release.

Secondly, the anticancer effect and mechanism of PCM were verified at the cellular level. The therapeutic efficacy
of PCM combined with laser is better than that of PC or PB with laser. The anticancer mechanism of PCM can
be summarized in two aspects. On one hand, CS-5 can regulate the expression of apoptosis-related proteins and
induce apoptosis of colorectal cancer cells; on the other hand, CS-5 can downregulate ferroptosis-related proteins
(GPX4 and HIF-1a) and induce the production of ROS to finally realize ferroptosis in the colorectal cancer cell.

Finally, the biosafety, anticancer efficacy and mechanism of PCM were also investigated in vitro. The combination
of PCM and laser can significantly inhibit tumor growth (tumor inhibition rate up to 87.97%) and ablate tumors.
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The results of immunohistochemistry and TUNEL staining also further verified the ability of PCM to induce
apoptosis and ferroptosis in HCT116 cells. Blood routine and biochemical indicators also indicated the biosafety
of PCM. 16S rRNA sequencing analysis screened the possible therapeutic indicators and related pathways for
colorectal cancer, which may provide new ideas for clinical prognosis and drug mechanism research. In general,
PCM is a ferroptosis-related thermochemotherapy biomimetic nanomedicine possessing high safety and low toxicity
and side effects, which implies its broad clinical application prospects.

Conclusion
In this study, we constructed a biomimetic nanomedicine, PCM, which has good biocompatibility, tumor-targeting
and laser-responsive properties, and can be used effectively for chemo/thermotherapy against colon cancer. The
nanomedicine has the following prominent advantages. First, the hybrid membrane of RBCm-HCTm could prolong
the blood circulation time of the nanomedicine, target the tumor site accurately and reduce the cardiotoxicity of CS-
5 in chemotherapy. Second, the nanomedicine can be used as a ferroptosis inducer to downregulate the expression
of GPX4 and HIF-1a proteins, upregulate ROS production and reducing MMP. Third, the high temperature
caused by laser irradiation can improve the therapeutic effect by accelerating the release of CS-5 and iron and
ferrous ions from PBNPs. To sum up, the chemotherapeutic effect of CS-5 combined with the photothermal effect
of PB can effectively treat colon cancer by inducing ferroptosis. However, the precise dosage of CS-5 needs further
optimization.

Based on the work results of PCM in the treatment of colorectal cancer, the current research is limited, and there
is still a wide range of research space worth exploring:

(1) Chemotherapy with CS-5 in colorectal cancer may induce cell resistance. In the future, PB-loaded dual medicine
combined with PTT for colorectal cancer may solve this issue.

(2) Studies have shown that CS-5 can inhibit tumor metastasis and invasion. In our future work, animal models of
tumor metastasis and invasion may be considered. Moreover, the specific pathways involved in CS-5-induced
ferroptosis in colorectal cancer cells may be further verified.

Summary points

• The precision control of the size of bufotalin–Prussian blue biomimetic nanoparticles (PB@CS-5@M;
PCM; 128.3 nm) contributes to its tumor targeting and rapid metabolism to the exterior.

• PCM has the potential for on-demand release under the trigger of near-infrared and pH transition (tumor cell
environment).

• The modification with hybrid red blood cell/HCT116 cell membranes could prolong the blood circulation time of
PCM, reduce the cardiotoxicity of CS-5 in chemotherapy and achieve precise targeting of tumors.

• Prussian blue (PB) can significantly inhibit the expression of HSP70 under laser irradiation to improve the
sensitivity of colorectal cancer cells to photothermal therapy, thus improving the efficacy of tumor ablation.

• CS-5 may serve as a new ferroptosis inducer for antitumor therapy with the assistance of thermotherapy in the
production of reactive oxygen species and the release of Fe2+ from PB.

• PCM had a remarkable effect on ferroptosis by downregulating the levels of GPX4 and HIF-1a proteins, inducing
reactive oxygen species production and reducing mitochondrial membrane potential.
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