We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities

    Fatemeh Farjadian

    Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran

    ,
    Amir Ghasemi

    Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran

    Advances Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14496-4535, Iran

    ,
    Omid Gohari

    Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran

    ,
    Amir Roointan

    Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Science, Shiraz 71348-14336, Iran

    ,
    Mahdi Karimi

    *Author for correspondence:

    E-mail Address: m_karimy2006@yahoo.com

    Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran

    Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran

    Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA

    &
    Michael R Hamblin

    **Author for correspondence:

    E-mail Address: Hamblin@helix.mgh.harvard.edu

    Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA

    Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA

    Harvard – MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA

    Published Online:https://doi.org/10.2217/nnm-2018-0120

    There has been a revolution in nanotechnology and nanomedicine. Since 1980, there has been a remarkable increase in approved nano-based pharmaceutical products. These novel nano-based systems can either be therapeutic agents themselves, or else act as vehicles to carry different active pharmaceutical agents into specific parts of the body. Currently marketed nanostructures include nanocrystals, liposomes and lipid nanoparticles, PEGylated polymeric nanodrugs, other polymers, protein-based nanoparticles and metal-based nanoparticles. A range of issues must be addressed in the development of these nanostructures. Ethics, market size, possibility of market failure, costs and commercial development, are some topics which are on the table to be discussed. After passing all the ethical and biological assessments, and satisfying the investors as to future profitability, only a handful of these nanoformulations, successfully obtained marketing approval. We survey the range of nanomedicines that have received regulatory approval and are marketed. We discuss ethics, costs, commercial development and possible market failure. We estimate the global nanomedicine market size and future growth. Our goal is to summarize the different approved nanoformulations on the market, and briefly cover the challenges and future outlook.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Eric DK. Engines of Creation. The Coming Era of Nanotechnology. Doubleday, NY, USA (1986).
    • 2 Feynman RP. There's plenty of room at the bottom. Eng. Sci. 23(5), 22–36 (1960). •• The very first inkling of what would become the nanotechology revolution.
    • 3 Devreese JT. Importance of nanosensors: Feynman's vision and the birth of nanotechnology. MRS Bull. 32(09), 718–725 (2007).
    • 4 Qu X, Alvarez PJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013).
    • 5 Sawhney A, Condon B, Singh K, Pang S, Li G, Hui D. Modern applications of nanotechnology in textiles. Textile Res. J. 78(8), 731–739 (2008).
    • 6 Chan CK, Peng H, Liu G et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008).
    • 7 Briggs BD, Knecht MR. Nanotechnology meets biology: peptide-based methods for the fabrication of functional materials. J. Phys. Chem. Lett 3(3), 405–418 (2012).
    • 8 Langer R, Weissleder R. Scientific discovery and the future of medicine. JAMA 313, 135–136 (2015).
    • 9 Coccia M, Wang L. Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy. Technol. Forecast. Soc. Change 94, 155–169 (2015).
    • 10 Karimi M, Zare H, Bakhshian NA et al. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine 11(5), 513–530 (2016).
    • 11 Parpura V. Tissue engineering: nanoelectronics for the heart. Nat. Nanotechnol. 11(9), 738–739 (2016).
    • 12 Karimi M, Mirshekari H, Aliakbari M, Sahandi-Zangabad P, Hamblin MR. Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnol. Rev. 5(2), 195–207 (2016).
    • 13 Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Del. Rev. 58(14), 1456–1459 (2006). •• Important perspective concerning the emerging field of nanomedicine.
    • 14 Sayes CM, Aquino GV, Hickey AJ. Nanomaterial drug products: manufacturing and analytical perspectives. AAPS J. 19(1), 18–25 (2017).
    • 15 Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed. Nanotechnol. Biol. Med. 9(1), 1–14 (2013).
    • 16 Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics. Int. J. Pharm. 538(1–2), 263–278 (2018).
    • 17 Ragelle H, Danhier F, Préat V, Langer R, Anderson DG. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv. 14(7), 851–864 (2017).
    • 18 Iyer R, Hsia CC, Nguyen KT. Nano-therapeutics for the lung: state-of-the-art and future perspectives. Curr. Pharm. Des. 21(36), 5233–5244 (2015).
    • 19 Desai PP, Rustomjee MT. Business potential of advanced drug delivery systems. Confocal Microscopy 23, 29 (2018).
    • 20 Karimi M, Zangabad PS, Ghasemi A, Hamblin MR. Future perspectives and the global drug delivery systems market. In: Smart Internal Stimulus-Responsive Nanocarriers for Drug and Gene Delivery (Eds). Morgan & Claypool Publishers, CA, USA (2015).
    • 21 Bhowmik D, Gopinath H, Kumar BP, Duraivel S, Kumar KS. Controlled release drug delivery systems. Pharma Innov. 1(10), (2012).
    • 22 Nikalje AP. Nanotechnology and its applications in medicine. Med. Chem. 5, 81–89 (2015).
    • 23 Yih T, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 97(6), 1184–1190 (2006).
    • 24 Liu L, Ye Q, Lu M et al. A new approach to reduce toxicities and to improve bioavailabilities of platinum-containing anti-cancer nanodrugs. Sci. Rep. 5, 10881 (2015).
    • 25 Balakumar K, Raghavan CV, Abdu S. Self nanoemulsifying drug-delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf. B. Biointerfaces 112, 337–343 (2013).
    • 26 Karimi M, Sahandi Zangabad P, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Smart nanostructures for cargo delivery: uncaging and activating by light. J. Am. Chem. Soc. 139(13), 4584–4610 (2017). • Review about light activated drug-delivery using nanomaterials
    • 27 Bosetti R, Marneffe W, Vereeck L. Assessing the need for quality-adjusted cost–effectiveness studies of nanotechnological cancer therapies. Nanomedicine 8(3), 487–497 (2013).
    • 28 Karimi M, Eslami M, Sahandi-Zangabad P et al. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(5), 696–716 (2016).
    • 29 Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Del. Rev. 66, 2–25 (2014). •• Good review about nanomedicines and cancer concentrating on targeting strategies.
    • 30 Karimi M, Moosavi Basri SM, Vossoughi M, Pakchin PS, Mirshekari H, Hamblin MR. Redox-sensitive smart nanosystems for drug and gene delivery. Curr. Org. Chem. 20(28), 2949–2959 (2016).
    • 31 Sargent JF Jr. Nanotechnology: a policy primer (2016).
    • 32 Hosseini M, Farjadian F, Makhlouf ASH. Smart stimuli-responsive nano-sized hosts for drug-delivery. In: Industrial Applications for Intelligent Polymers and Coatings. Hosseini M, Makhlouf ASH (Eds). Springer, Basel, Switzerland, 1–26 (2016).
    • 33 Zhang M-Q, Wilkinson B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol. 18(6), 478–488 (2007).
    • 34 Ige PP, Baria RK, Gattani SG. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf. B. Biointerfaces 108, 366–373 (2013).
    • 35 Karimi M, Ghasemi A, Zangabad PS et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 45(5), 1457–1501 (2016).
    • 36 Zangabad PS, Karimi M, Mehdizadeh F et al. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale 9(4), 1356–1392 (2017).
    • 37 Farjadian F, Moghoofei M, Mirkiani S et al. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? Biotechnol. Adv. (2018). • Interesting review about using nanomaterial derived from bacterial structures as drug-targeting vehicles.
    • 38 Junghanns J-UA, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 3(3), 295 (2008).
    • 39 Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J. Control. Release 172(1), 12–21 (2013).
    • 40 Wu Z, Wu Z-K, Tang H, Tang L-J, Jiang J-H. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay. Anal. Chem. 85(9), 4376–4383 (2013).
    • 41 Crucho CIC, Barros MT. Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater. Sci. Eng. C 80(Suppl. C), 771–784 (2017).
    • 42 Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C 60(Suppl. C), 569–578 (2016).
    • 43 Lin G, Zhang H, Huang L. Smart polymeric nanoparticles for cancer gene delivery. Mol. Pharm. 12(2), 314–321 (2015).
    • 44 Guo B, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Science China Chemistry 57(4), 490–500 (2014).
    • 45 Smith IO, Liu XH, Smith LA, Ma PX. Nano-structured polymer scaffolds for tissue engineering and regenerative medicine. Wiiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(2), 226–236 (2009).
    • 46 Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8(1), 102 (2013).
    • 47 Bang SH, Sekhon SS, Kim Y-H, Min J. Preparation of liposomes containing lysosomal enzymes for therapeutic use. Biotechnol. Bioprocess Eng. 19(5), 766–770 (2014).
    • 48 Dubey V, Mishra D, Asthana A, Jain NK. Transdermal delivery of a pineal hormone: melatonin via elastic liposomes. Biomaterials 27(18), 3491–3496 (2006).
    • 49 Parmentier J, Hofhaus G, Thomas S et al. Improved oral bioavailability of human growth hormone by a combination of liposomes containing bio-enhancers and tetraether lipids and omeprazole. J. Pharm. Sci. 103(12), 3985–3993 (2014).
    • 50 Wyrozumska P, Meissner J, Toporkiewicz M et al. Liposome-coated lipoplex-based carrier for antisense oligonucleotides. Cancer Biol. Ther. 16(1), 66–76 (2015).
    • 51 Mcintosh DP, Heath TD. Liposome-mediated delivery of ribosome inactivating proteins to cells in vitro. Biochim. Biophys. Acta 690(2), 224–230 (1982).
    • 52 Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery – liposomes versus lipid nanoparticles. Int. J. Nanomed. 2(4), 595–607 (2007).
    • 53 Rasoulianboroujeni M, Kupgan G, Moghadam F et al. Development of a DNA-liposome complex for gene delivery applications. Mater. Sci. Eng. C 75, 191–197 (2017).
    • 54 Seleci M, Ag Seleci D, Scheper T, Stahl F. Theranostic liposome-nanoparticle hybrids for drug delivery and bioimaging. Int. J. Mol. Sci. 18(7), (2017). • Introduces the concept of hybrid nanomaterials for theranostics, simultaneous imaging and therapy.
    • 55 Frey NA, Peng S, Cheng K, Sun S. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38(9), 2532–2542 (2009).
    • 56 Reiner AT, Ferrer N-G, Venugopalan P, Lai RC, Lim SK, Dostálek J. Magnetic nanoparticle-enhanced surface plasmon resonance biosensor for extracellular vesicle analysis. Analyst 142(20), 3913–3921 (2017).
    • 57 Kolesnichenko V, Goloverda G, Kucheryavy P, Spinu L. Iron oxide nanoparticles with a variable size and an iron oxidation state for imaging applications. In: Nanotechnology in Medicine: From Molecules to Humans. Eniola-Adefeso L, Decuzzi P (Eds). ECI Symposium Series, LA, USA (2016). http://dc.engconfintl.org/nanotech_med/26.
    • 58 Wang Y, Cui H, Li K et al. A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS ONE 9(7), e102886 (2014).
    • 59 Lee RW, Shenoy DB, Sheel R. Chapter 2 – Micellar nanoparticles: applications for topical and passive transdermal drug delivery A2. In: Handbook of Non-Invasive Drug Delivery Systems. Kulkarni VS (Ed.). William Andrew Publishing, MA, USA, 37–58 (2010).
    • 60 Wang J, Mongayt D, Torchilin VP. Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J. Drug Target. 13(1), 73–80 (2005).
    • 61 Zhang R, Saito R, Mano Y et al. Convection-enhanced delivery of SN-38-loaded polymeric micelles (NK012) enables consistent distribution of SN-38 and is effective against rodent intracranial brain tumor models. Drug Deliv. 23(8), 2780–2786 (2016).
    • 62 Sun L, Deng X, Yang X et al. Co-delivery of doxorubicin and curcumin by polymeric micelles for improving antitumor efficacy on breast carcinoma. RSC Adv. 4(87), 46737–46750 (2014).
    • 63 Wang Y, Ding Y, Liu Z, Liu X, Chen L, Yan W. Bioactive lipids-based pH-sensitive micelles for co-delivery of doxorubicin and ceramide to overcome multidrug resistance in leukemia. Pharm. Res. 30(11), 2902–2916 (2013).
    • 64 Scott RW, Wilson OM, Crooks RM. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B 109(2), 692–704 (2005).
    • 65 Prajapati RN, Tekade RK, Gupta U, Gajbhiye V, Jain NK. Dendimer-mediated solubilization, formulation development and in vitro-in-vivo assessment of piroxicam. Mol. Pharm. 6(3), 940–950 (2009).
    • 66 Zhou Z, D'Emanuele A, Attwood D. Solubility enhancement of paclitaxel using a linear-dendritic block copolymer. Int. J. Pharm. 452(1–2), 173–179 (2013).
    • 67 Manikkath J, Hegde AR, Kalthur G, Parekh HS, Mutalik S. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int. J. Pharm. 521(1–2), 110–119 (2017).
    • 68 Majoros IJ, Williams CR, Becker A, Baker JR Jr. Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(5), 502–510 (2009).
    • 69 Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug-delivery system: a review. Int. J. Pharm. Investig. 5(3), 124–133 (2015).
    • 70 Lin J-T, Liu Z-K, Zhu Q-L et al. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles. Colloids Surf. B. Biointerfaces 155, 41–50 (2017).
    • 71 Portin L. Layer by Layer Assembly of the Polyelectrolyte on Mesoporous Silicon. Biosciences, University of Eastern Finland, Joensuu, Finland, 1–59 (2012).
    • 72 Gary-Bobo M, Hocine O, Brevet D et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int. J. Pharm. 423(2), 509–515 (2012).
    • 73 Janib SM, Moses AS, Mackay JA. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Del. Rev. 62(11), 1052–1063 (2010).
    • 74 Farjadian F, Ghasemi S, Heidari R, Mohammadi-Samani S. In vitro and in vivo assessment of EDTA-modified silica nano-spheres with supreme capacity of iron capture as a novel antidote agent. Nanomed. Nanotechnol. Biol. Med. 13(2), 745–753 (2017).
    • 75 Farjadian F, Ahmadpour P, Samani SM, Hosseini M. Controlled size synthesis and application of nanosphere MCM-41 as potent adsorber of drugs: a novel approach to new antidote agent for intoxication. Microporous Mesoporous Mater. 213, 30–39 (2015).
    • 76 Karimi M, Ghasemi A, Mirkiani S, Basri SMM, Hamblin MR. Carbon Nanotubes: Properties and Classification. Morgan & Claypool Publishers, CA, USA (2017).
    • 77 Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett. 6(3), 562–567 (2006).
    • 78 Yunok O, Jun OJ, Junghwan O. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology 28(12), 125101 (2017).
    • 79 Scheinberg DA, Mcdevitt MR, Dao T, Mulvey JJ, Feinberg E, Alidori S. Carbon nanotubes as vaccine scaffolds. Adv. Drug Del. Rev. 65(15), 10.1016/j.addr.2013.1007.1013 (2013).
    • 80 Sanginario A, Miccoli B, Demarchi D. Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors (Basel) 7(1), (2017).
    • 81 Wang JTW, Rubio N, Kafa H et al. Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: spatial to ultra-structural analyses. J. Control. Release 224, 22–32 (2016).
    • 82 Roman JA, Niedzielko TL, Haddon RC, Parpura V, Floyd CL. Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury. J. Neurotrauma 28(11), 2349–2362 (2011).
    • 83 Jain S, Hirst D, O'Sullivan J. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol. 85(1010), 101–113 (2012).
    • 84 Gholipourmalekabadi M, Mobaraki M, Ghaffari M et al. Targeted drug delivery based on gold nanoparticle derivatives. Curr. Pharm. Des. 23(20), 2918–2929 (2017).
    • 85 Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-responsive gold nanoparticles for cancer diagnosis and therapy. J. Funct. Biomater. 7(3), 19 (2016).
    • 86 El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239(1), 129–135 (2006).
    • 87 Liao YH, Chang YJ, Yoshiike Y, Chang YC, Chen YR. Negatively charged gold nanoparticles inhibit Alzheimer's amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8(23), 3631–3639 (2012).
    • 88 Barathmanikanth S, Kalishwaralal K, Sriram M et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J. Nanobiotechnol. 8(1), 16 (2010).
    • 89 Leonavičienė L, Kirdaitė G, Bradūnaitė R et al. Effect of gold nanoparticles in the treatment of established collagen arthritis in rats. Medicina (Kaunas) 48(2), 91–101 (2012).
    • 90 Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. Epma J. 4(1), 20 (2013).
    • 91 Smith AM, Nie S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res 43(2), 190–200 (2010).
    • 92 Michalet X, Pinaud F, Bentolila L et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005).
    • 93 Hild W, Breunig M, Göpferich A. Quantum dots–nano-sized probes for the exploration of cellular and intracellular targeting. Eur. J. Pharm. Biopharm. 68(2), 153–168 (2008).
    • 94 Bawa R, Melethil S, Simmons WJ, Harris D. Nanopharmaceuticals: patenting issues and FDA regulatory challenges. SciTech Lawyer 5(2), 1–8 (2008).
    • 95 Eaton MA. Improving the translation in Europe of nanomedicines (a.k.a. drug delivery) from academia to industry. J. Control. Release 164(3), 370–371 (2012).
    • 96 Von Windheim J, Myers B. A lab-to-market roadmap for early-stage entrepreneurship. Transl. Mater. Res. 1(1), 16001–16001 (2014).
    • 97 Bosetti R, Vereeck L. The impact of effective patents on future innovations in nanomedicine. Pharm. Patent Analyst 1(1), 37–43 (2012).
    • 98 Borges BJ, Carminati LS, Fernandes PM, Fernandes AaR. Regulatory framework of nanopharmaceuticals in developing countries: an analysis of the current rules in Brazil. In: Inorganic Frameworks as Smart Nanomedicines. Grumezescu A (Ed.). William Andrew Publishing, MA, USA, 605–639 (2018).
    • 99 Conde J, Artzi N. Are RNAi and miRNA therapeutics truly dead? 33, 141–144 (2015).
    • 100 Shapira P, Wang J. From lab to market? Strategies and issues in the commercialization of nanotechnology in China. Asian Bus. Manag. 8(4), 461–489 (2009).
    • 101 Avorn J. The $2.6 billion pill – methodologic and policy considerations. N. Engl. J. Med. 372(20), 1877–1879 (2015).
    • 102 Dimasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016).
    • 103 Milman J. Does it really cost $2.6 billion to develop a new drug? The Washington Post (2014). www.washingtonpost.com/news/wonk/wp/2014/11/18/does-it-really-cost-2-6-billion-to-develop-a-new-drug/?utm_term=.42007dcc67d9.
    • 104 Bhattacharya I, Heatherington A, Barton J. Applying the best of oncology drug development paradigms to the non-malignant space. Drug Discov. Today 21(12), 1869–1872 (2016).
    • 105 Dimasi JA, Grabowski HG, Hansen RW. The cost of drug development. N. Engl. J. Med. 372(20), 1972–1972 (2015).
    • 106 Erkekoglu P, Kocer-Gumusel B. Toxicity assessment of nanopharmaceuticals. In: Inorganic Frameworks as Smart Nanomedicines. Mihai A (Eds). Elsevier, Oxford, UK, 565–603 (2018).
    • 107 Turanlı ET, Everest E. Nanomedicine. In: Low-Dimensional and Nanostructured Materials and Devices. Ünlü H, Horing NJM, Dabrowski J (Eds). Springer International Publishing, NY, USA, 579–587 (2016).
    • 108 Tinkle S, Mcneil SE, Mühlebach S et al. Nanomedicines: addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci. 1313(1), 35–56 (2014).
    • 109 Satalkar P, Elger BS, Hunziker P, Shaw D. Challenges of clinical translation in nanomedicine: a qualitative study. Nanomedicine 12(4), 893–900 (2016).
    • 110 Zamboni WC, Torchilin V, Patri AK et al. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin. Cancer Res. 18(12), 3229–3241 (2012).
    • 111 Satalkar P, Elger BS, Shaw D. Naming it ‘nano’: expert views on ‘nano’ terminology in informed consent forms of first-in-human nanomedicine trials. Nanomedicine 11(8), 933–940 (2016).
    • 112 Allon I, Ben-Yehudah A, Dekel R, Solbakk J-H, Weltring K-M, Siegal G. Ethical issues in nanomedicine: tempest in a teapot? Med. Health Care Philos. 20(1), 3–11 (2017).
    • 113 Beaudry C, Allaoui S. Impact of public and private research funding on scientific production: the case of nanotechnology. Res. Policy 41(9), 1589–1606 (2012).
    • 114 Fatehi L, Wolf SM, Mccullough J et al. Recommendations for nanomedicine human subjects research oversight: an evolutionary approach for an emerging field. J. Law Med. Ethics 40(4), 716–750 (2012).
    • 115 Graur F, Elisei R, Szasz A et al. Ethical issues in nanomedicine. In: International Conference on Advancements of Medicine and Health Care through Technology. Vlad S, Ciupa RV (Eds). Springer, Berlin, Heidelberg, 36, 9–12 (2011).
    • 116 Wolf SM. Introduction: the challenge of nanomedicine human subjects research: protecting participants, workers, bystanders, and the environment. J. Law Med. Ethics 40(4), 712–715 (2012).
    • 117 Hamburg MA. FDA's approach to regulation of products of nanotechnology. Science 336(6079), 299–300 (2012).
    • 118 Bawa R. FDA and Nanotech: baby steps lead to regulatory uncertainty. In: Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences. Bagchi D, Bagchi M, Moriyama H, Shahidi F (Eds). John Wiley & Sons, Ltd, Chichester, UK, 720–732 (2013).
    • 119 Zolnik B, Potter TM, Stern ST. Detecting reactive oxygen species in primary hepatocytes treated with nanoparticles. Methods Mol. Biol. (Clifton, N.J.) 697(3), 173–179 (2011).
    • 120 Nowack B, Ranville JF, Diamond S et al. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 31(1), 50–59 (2012).
    • 121 Louie SM, Ma R, Lowry GV, Gregory KB, Apte SC, Lead JR. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 46(13), 6893–6899 (2012).
    • 122 Bawa R. Regulating nanomedicine–can the FDA handle it? Curr. Drug Del. 8(3), 227–234 (2011). • Highlights the ongoing question of regulatiory authorities and nanomedicine.
    • 123 Gaspar R, Aksu B, Cuine A et al. Towards a European strategy for medicines research (2014–2020): the EUFEPS position paper on Horizon 2020. Eur. J. Pharm. Sci. 47(5), 979–987 (2012).
    • 124 European Medicines A. Questions and answers on biosimilar medicines (similar biological medicinal products). 44, 1–1 (2012). www.medicinesforeurope.com/2012/09/27/ema-questions-and-answers-on-biosimilar-medicines-similar-biological-medicinal-products/.
    • 125 Schellekens H, Stegemann S, Weinstein V et al. How to regulate nonbiological complex drugs (NBCD) and their follow-on versions: points to consider. AAPS J. 16(1), 15–21 (2014).
    • 126 Andrews PLR, Kovacs M, Watson JW. The anti-emetic action of the neurokinin1 receptor antagonist CP-99,994 does not require the presence of the area postrema in the dog. Neurosci. Lett. 314(1–2), 102–104 (2001).
    • 127 Emend® (aprepitant) capsules, for oral use and oral suspension [Prescribing Information]. Merck & Co., Inc., NJ, USA (2015) .
    • 128 Maggi CA. The mammalian tachykinin receptors. Gen. Pharmacol. 26(5), 911–944 (1995).
    • 129 Junghanns JUaH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 3(3), 295–309 (2008).
    • 130 Roila F, Herrstedt J, Aapro M et al. Guideline update for MASCC and ESMO in the prevention of chemotherapy-and radiotherapy-induced nausea and vomiting: Results of the Perugia consensus conference. Ann. Oncol. 21(Suppl. 5), (2010).
    • 131 Brandt J, Henning S, Michler G, Hein W, Bernstein A, Schulz M. Nanocrystalline hydroxyapatite for bone repair: an animal study. J. Mater. Sci. Mater. Med. 21(1), 283–294 (2010).
    • 132 Huber FX, Belyaev O, Hillmeier J et al. First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM® in human cancellous bone. BMC Musculoskelet. Disord. 7(50), doi:10.1186/1471-2474-7-50 (2006).
    • 133 Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25(6), 987–994 (2004).
    • 134 Narayan R, Pednekar A, Bhuyan D, Gowda C, Koteshwara K, Nayak UY. A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies. Int. J. Nanomed. 12, 4921 (2017).
    • 135 Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373–2387 (2016).
    • 136 Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm. 399(1–2), 129–139 (2010).
    • 137 Kesisoglou F, Panmai S, Wu Y. Nanosizing – oral formulation development and biopharmaceutical evaluation. Adv. Drug Del. Rev. 59(7), 631–644 (2007).
    • 138 Sehgal SN. Rapamune® (RAPA, rapamycin, sirolimus): Mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin. Biochem. 31(5), 335–340 (1998).
    • 139 Marya S, Ariyanayagam T, Chatterjee B, Toms AP, Crawford R. A prospective study of the efficacy of vitoss (beta tricalcium phosphate) as a bone graft substitute for instrumented posterolateral lumbar fusions. Spine J. 17(3), S23 (2017).
    • 140 Campion CR, Ball SL, Clarke DL, Hing KA. Microstructure and chemistry affects apatite nucleation on calcium phosphate bone graft substitutes. J. Mater. Sci. Mater. Med. 24(3), 597–610 (2013).
    • 141 Bajwa S, Munawar A, Khan W. Nanotechnology in medicine: innovation to market. Pharm. Bioprocess. 5(2), 11–15 (2017).
    • 142 Behabtu N, Young CC, Tsentalovich DE et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182–186 (2013).
    • 143 Swanson JM, Wigal SB, Wigal T et al. A comparison of once-daily extended-release methylphenidate formulations in children with attention-deficit/hyperactivity disorder in the laboratory school (the Comacs Study). Pediatrics 113(3), e206–e216 (2004).
    • 144 Harris G. Warning urged on stimulants like Ritalin. New York Times 10 (2006).
    • 145 Diller LH. The run on Ritalin: attention deficit disorder and stimulant treatment in the 1990s. Hastings Cent. Rep. 26(2), 12–18 (1996).
    • 146 Lange KW, Reichl S, Lange KM, Tucha L, Tucha O. The history of attention deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. 2(4), 241–255 (2010).
    • 147 Doward J, Craig E. Ritalin use for ADHD children soars fourfold. Observer 6 (2012).
    • 148 Hunt RD. Functional roles of norepinephrine and dopamine in ADHD. Medscape Psychiatr. 11(1), 2006 (2006).
    • 149 Arnsten AF, Li B-M. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol. Psychiatry 57(11), 1377–1384 (2005).
    • 150 Markowitz J, Devane C, Ramamoorthy S, Zhu H-J. The psychostimulant d-threo-(R,R)-methylphenidate binds as an agonist to the 5HT1A receptor. Die Pharmazie 64(2), 123–125 (2009).
    • 151 Volkow ND, Wang G, Fowler JS et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J. Neurosci. 21(2), RC121 (2001).
    • 152 Steele M, Weiss M, Swanson J, Wang J, Prinzo RS, Binder CE. A randomized, controlled effectiveness trial of OROS-methylphenidate compared to usual care with immediate-release methylphenidate in attention deficit-hyperactivity disorder. Can. J. Clin. Pharmacol. 13(1), e50–e62 (2006).
    • 153 Mott TF, Leach L. Is methylphenidate useful for treating adolescents with ADHD? J. Fam. Pract. 53(9), 650–663 (2004).
    • 154 Handen BL, Feldman H, Gosling A, Breaux AM, Mcauliffe S. Adverse side effects of methylphenidate among mentally retarded children with ADHD. J. Am. Acad. Child Adolesc. Psychiatry 30(2), 241–245 (1991).
    • 155 Alagona P Jr. Fenofibric acid: a new fibrate approved for use in combination with statin for the treatment of mixed dyslipidemia. Vasc. Health Risk Manag. 6(1), 351–362 (2010).
    • 156 Tricor® fenofibrate tablet [Prescribing Information], Abbott Laboratories, IL, USA (2010).
    • 157 ‘Nanoparticle technology now allows TriCor(R) to be taken with or without food’. Abbott Laboratories Press Release (2004). www.abbottinvestor.com/news-releases/news-release-details/abbott-receives-fda-approval-new-formulation-tricorr-fenofibrate.
    • 158 Lasic DD. Doxorubicin in sterically stabilized liposomes. Nature 380(6574), 561 (1996).
    • 159 Gill PS, Wernz J, Scadden DT et al. Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi's sarcoma. J. Clin. Oncol. 14(8), 2353–2364 (1996).
    • 160 Andreopoulou E, Gaiotti D, Kim E et al. Pegylated liposomal doxorubicin HCL (PLD; Caelyx/Doxil®): experience with long-term maintenance in responding patients with recurrent epithelial ovarian cancer. Ann. Oncol. 18(4), 716–721 (2007).
    • 161 Pillai G, Ceballos-Coronel ML. Science and technology of the emerging nanomedicines in cancer therapy: a primer for physicians and pharmacists. SAGE Open Med. 1, doi: 10.1177/2050312113513759 (2013).
    • 162 Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 4(3), 95 (2002).
    • 163 Gordon AN, Granai C, Rose PG et al. Phase II study of liposomal doxorubicin in platinum-and paclitaxel-refractory epithelial ovarian cancer. J. Clin. Oncol. 18(17), 3093–3100 (2000).
    • 164 Gabizon AA, Shmeeda H, Zalipsky S. Pros and cons of the liposome platform in cancer drug targeting. J. Liposome Res. 16(3), 175–183 (2006).
    • 165 Murphy T, Yee KW. Cytarabine and daunorubicin for the treatment of acute myeloid leukemia. Expert Opin. Pharmacother. 18(16), 1765–1780 (2017).
    • 166 [No authors listed]. FDA approves DaunoXome as first-line therapy for Kaposi's sarcoma. Food and Drug Administration. J. Int. Assoc. Phys. AIDS Care 2(5), 50–51 (1996).
    • 167 Fassas A, Anagnostopoulos A. The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leuk. Lymphoma 46(6), 795–802 (2005).
    • 168 Yarmolenko PS, Zhao Y, Landon C et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int. J. Hyperthermia 26(5), 485–498 (2010).
    • 169 Fosså S, Aass N, Parö G. A Phase II study of DaunoXome® in advanced urothelial transitional cell carcinoma. Eur. J. Cancer 34(7), 1131–1132 (1998).
    • 170 Passero FC Jr, Grapsa D, Syrigos KN, Saif MW. The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev. Anticancer Ther. 16(7), 697–703 (2016).
    • 171 Digiulio S. FDA Approves onivyde combo regimen for advanced pancreatic cancer. Oncology Times (2015).
    • 172 Conroy T, Desseigne F, Ychou M et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364(19), 1817–1825 (2011).
    • 173 Zhang H. Onivyde for the therapy of multiple solid tumors. Onco Targets Ther. 9, 3001 (2016).
    • 174 Mantripragada S. A lipid based depot (DepoFoam® technology) for sustained release drug delivery. Prog. Lipid Res. 41(5), 392–406 (2002).
    • 175 Jaeckle KA, Batchelor T, O'day SJ et al. An open label trial of sustained-release cytarabine (DepoCyt) for the intrathecal treatment of solid tumor neoplastic meningitis. J. Neurooncol. 57(3), 231–239 (2002).
    • 176 Pearce H, Winter M, Beck WT. Structural characteristics of compounds that modulate P-glycoprotein-associated multidrug resistance. Adv. Enzyme Regul. 30, 357–373 (1990).
    • 177 Kim S, Chatelut E, Kim JC et al. Extended CSF cytarabine exposure following intrathecal administration of DTC 101. J. Clin. Oncol. 11(11), 2186–2193 (1993).
    • 178 Takayama N, Sato N, O'Brien SG, Ikeda Y, Okamoto SI. Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukaemia due to poor penetration into cerebrospinal fluid. Br. J. Haematol. 119(1), 106–108 (2002).
    • 179 Galmarini CM, Thomas X, Calvo F et al. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br. J. Haematol. 117(4), 860–868 (2002).
    • 180 Dawidczyk CM, Kim C, Park JH et al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J. Control. Rel. 187, 133–144 (2014).
    • 181 Harrison TS, Lyseng-Williamson KA. Vincristine sulfate liposome injection. Biodrugs 27(1), 69–74 (2013).
    • 182 Yang S-H, Lin C-C, Lin Z-Z, Tseng Y-L, Hong R-L. A Phase I and pharmacokinetic study of liposomal vinorelbine in patients with advanced solid tumor. Invest. New Drugs 30(1), 282–289 (2012).
    • 183 Boman NL, Masin D, Mayer LD, Cullis PR, Bally MB. Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors. Cancer Res. 54(11), 2830–2833 (1994).
    • 184 Thomas DA, Sarris AH, Cortes J et al. Phase II study of sphingosomal vincristine in patients with recurrent or refractory adult acute lymphocytic leukemia. Cancer 106(1), 120–127 (2006).
    • 185 Takemoto K, Kanazawa K. AmBisome: relationship between the pharmacokinetic characteristics acquired by liposomal formulation and safety/efficacy. J. Liposome Res. 27(3), 1–9 (2016).
    • 186 Clemons KV, Stevens DA. Comparative efficacies of four amphotericin B formulations – Fungizone, Amphotec (Amphocil), AmBisome, and Abelcet – against systemic murine aspergillosis. Antimicrob. Agents Chemother. 48(3), 1047–1050 (2004).
    • 187 Stone NRH, Bicanic T, Salim R, Hope W. Liposomal Amphotericin B (AmBisome®): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 76(4), 485–500 (2016).
    • 188 Crain ML. Daunorubicin & CYTARABINE LIPOSome (Vyxeos). Oncology Times 40(10), 30 (2018).
    • 189 Allen C. Why I'm holding onto hope for nano in oncology. Mol. Pharm. 13(8), 2603–2604 (2016).
    • 190 Waknine Y. Medscape. FDA approves new drug for hereditary angioedema (2011). www.medscape.com/viewarticle/748570.
    • 191 Mayer L, Liboiron B, Xie S, Tardi P, Paulsen K, Chiarella M. VYXEOS(CPX-351) Significantly improves overall survival in Phase 3 high-risk AML trial, validating the CombiPlex technology and opening opportunities for novel combinations Lawrence Mayer, Barry Liboiron, Sherwin Xie and Paul Tardi, Kim Paulsen, Michael Chiarella and Arthur Louie. www.controlledreleasesociety.org/meetings/Documents/2016%20Abstracts/33.pdf.
    • 192 Wu TC. On the development of antifungal agents: perspective of the US Food and Drug Administration. Clin. Infect. Dis. 19(Suppl. 1), S54–S58 (1994).
    • 193 Camarata PJ, Dunn DL, Farney AC, Parker RG, Seljeskog EL. Continual intracavitary administration of amphotericin B as an adjunct in the treatment of aspergillus brain abscess: case report and review of the literature. Neurosurgery 31(3), 575–579 (1992).
    • 194 Veerareddy PR, Vobalaboina V. Lipid-based formulations of amphotericin B. Drugs of Today 40(2), 133–146 (2004).
    • 195 Bressler NM, Treatment of age-related macular degeneration with photodynamic therapy study G. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch. Ophthalmol. 119(2), 198–207 (2001).
    • 196 Liu R. Methods of making liposomes containing hydro-monobenzoporphyrin photosensitizer. US Patent 5707608 (1998).
    • 197 Rogers AH, Duker JS, Nichols N, Baker BJ. Photodynamic therapy of idiopathic and inflammatory choroidal neovascularization in young adults. Ophthalmology 110(7), 1315–1320 (2003).
    • 198 Parodi MB, Iacono P, Spasse S, Ravalico G. Photodynamic therapy for juxtafoveal choroidal neovascularization associated with multifocal choroiditis. Am. J. Ophthalmol. 141(1), 123–128 (2006).
    • 199 Wachtlin J, Heimann H, Behme T, Foerster MH. Long-term results after photodynamic therapy with verteporfin for choroidal neovascularizations secondary to inflammatory chorioretinal diseases. Graefes Arch. Clin. Exp. Ophthalmol. 241(11), 899–906 (2003).
    • 200 Hogan A, Behan U, Kilmartin DJ. Outcomes after combination photodynamic therapy and immunosuppression for inflammatory subfoveal choroidal neovascularisation. Br. J. Ophthalmol. 89(9), 1109–1111 (2005).
    • 201 Turecek PL, Bossard MJ, Schoetens F, Ivens IA. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 105(2), 460–475 (2016).
    • 202 Nesbitt A, Fossati G, Bergin M et al. Mechanism of action of certolizumab pegol (CDP870): In vitro comparison with other anti-tumor necrosis factor α agents. Inflamm. Bowel Dis. 13(11), 1323–1332 (2007).
    • 203 Connock M, Tubeuf S, Malottki K et al. Certolizumab pegol (CIMZIA®) for the treatment of rheumatoid arthritis. Health Technol. Assess. 14(Suppl 2), 1–10 (2010).
    • 204 Sandborn WJ, Feagan BG, Stoinov S et al. Certolizumab pegol for the treatment of Crohn's disease. N. Engl. J. Med. 357(3), 228–238 (2007).
    • 205 Mease P, Fleischmann R, Deodhar AA et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24 week results of a Phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann. Rheum. Dis. 73(1), 48–55 (2013).
    • 206 Landewé R, Braun J, Deodhar A et al. Efficacy of certolizumab pegol on signs and symptoms of axial spondyloarthritis including ankylosing spondylitis: 24-week results of a double-blind randomised placebo-controlled Phase 3 study. Ann. Rheum. Dis. 73(1), 39–47 (2013).
    • 207 Casanova JL, Abel L. Revisiting Crohn's disease as a primary immunodeficiency of macrophages. J. Exp. Med. 206(9), 1839–1843 (2009).
    • 208 Stephan J, Vlekova V, Le Deist F et al. Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients. J. Pediatrics 123(4), 564–572 (1993).
    • 209 Adagen® (pegademase bovine) injection [Prescribing Information], Sigma-Tau Pharmaceuticals, Inc., MD, USA (2014).
    • 210 Torres C. Rare opportunities appear on the horizon to treat rare diseases. Nat. Med. 16(3), 241–241 (2010).
    • 211 Joralemon MJ, Mcrae S, Emrick T. PEGylated polymers for medicine: from conjugation to self-assembled systems. Chem. Commun. 46(9), 1377–1393 (2010).
    • 212 Davis S, Abuchowski A, Park YK, Davis FF. Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin. Exp. Immunol. 46(3), 649–652 (1981).
    • 213 Greenwald RB, Choe YH, Mcguire J, Conover CD. Effective drug-delivery by PEGylated drug conjugates. Adv. Drug Del. Rev. 55(2), 217–250 (2003).
    • 214 Sheridan WP, Fox RM, Begley CG et al. Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339(8794), 640–644 (1992).
    • 215 Curran MP, Goa KL. Pegfilgrastim. Drugs 62(8), 1207–1213 (2002).
    • 216 Alconcel SNS, Baas AS, Maynard HD. FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polym. Chem. 2(7), 1442–1448 (2011).
    • 217 Piedmonte DM, Treuheit MJ. Formulation of Neulasta®(pegfilgrastim). Adv. Drug Del. Rev. 60(1), 50–58 (2008).
    • 218 Milton HJ, Chess RB. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2(3), 214–221 (2003).
    • 219 Oncaspar® (pegaspargase) Intravenous or Intramuscular Injection [Prescribing Information], Enzon Pharmaceuticals Inc. (2006).
    • 220 Graham ML. Pegaspargase: a review of clinical studies. Adv. Drug Del. Rev. 55(10), 1293–1302 (2003).
    • 221 Duncan R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2(5), 347–360 (2003).
    • 222 Peters BG, Goeckner BJ, Ponzillo JJ, Velasquez WS, Wilson AL. Pegaspargase versus asparaginase in adult ALL: a pharmacoeconomic assessment. Formulary 30(7), 388–393 (1995).
    • 223 Duncan R. Polymer therapeutics: top 10 selling pharmaceuticals–what next? J. Control. Release 190, 371–380 (2014).
    • 224 Fried MW, Shiffman ML, Rajender Reddy K et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347(13), 975–982 (2002).
    • 225 Lau GKK, Piratvisuth T, Kang XL et al. Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N. Engl. J. Med. 352(26), 2682–2695 (2005).
    • 226 Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7(9), 771–782 (2008).
    • 227 Roelfsema F, Biermasz NR, Pereira AM, Romijn J. Nanomedicines in the treatment of acromegaly: Focus on pegvisomant. Int. J. Nanomed. 1(4), 385–398 (2006).
    • 228 Van der Lely AJ, Hutson RK, Trainer PJ et al. Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist. Lancet 358(9295), 1754–1759 (2001).
    • 229 Leonart LP, Tonin FS, Ferreira VL et al. Effectiveness and safety of pegvisomant: a systematic review and meta-analysis of observational longitudinal studies. Endocrine (2018).
    • 230 Gragoudas ES, Adamis AP, Cunningham ETJ, Feinsod M, Guyer DR. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351(27), 2805–2816 (2004).
    • 231 Shukla D, Namperumalsamy P, Goldbaum M, Cunningham E Jr. Pegaptanib sodium for ocular vascular disease. Indian J. Ophthalmol. 55(6), 427–430 (2007).
    • 232 Bunka DHJ, Platonova O, Stockley PG. Development of aptamer therapeutics. Curr. Opin. Pharmacol. 10(5), 557–562 (2010).
    • 233 Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 5(2), 123–132 (2006).
    • 234 Mcgahan L. Continuous erythropoietin receptor activator (Mircera) for renal anemia. Issues Emerg. Health Technol. (113), 1–6 (2008).
    • 235 Association EM. Scientific discussion: summary of product characteristics: MIRCERA (methoxy polyethyl-ene glycol-epoetin beta) (2008).
    • 236 Frimat L, Mariat C, Landais P, Koné S, Commenges B, Choukroun G. Anaemia management with CERA in routine clinical practice: OCEANE (Cohorte Mircera patients non-dialyses), a national, multicenter, longitudinal, observational prospective study, in patients with chronic kidney disease not on dialysis. BMJ open 3(3), e001888 (2013).
    • 237 Glue P, Fang JW, Rouzier-Panis R et al. Pegylated interferon-α2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Clin. Pharmacol. Ther. 68(5), 556–567 (2000).
    • 238 Jacobson IM, Brown RS, Freilich B et al. Peginterferon alfa-2b and weight-based or flat-dose ribavirin in chronic hepatitis C patients: a randomized trial. Hepatology 46(4), 971–981 (2007).
    • 239 Manns M, Pockros P, Norkrans G et al. Long-term clearance of hepatitis C virus following interferon α-2b or peginterferon α-2b, alone or in combination with ribavirin. J. Viral Hepat. 20(8), 524–529 (2013).
    • 240 Savient to Present Multiple Abstracts At the European League Against Rheumatism (EULAR). Annual Congress (2009).
    • 241 US Food and Drug Administration. Prescribing Information for KRYSTEXXA (TM): Savient Pharmaceuticals (2009). www.accessdata.fda.gov/drugsatfda_docs/label/2010/125293s0000lbl.pdf.
    • 242 Food F. Drug Administration. Label and Approval History KRYSTEXXA BLA 125293 Savient Pharm (2010).
    • 243 Alconcel SN, Baas AS, Maynard HD. FDA-approved poly (ethylene glycol)–protein conjugate drugs. Polym. Chem. 2(7), 1442–1448 (2011).
    • 244 Biggers K, Scheinfeld N. Pegloticase, a polyethylene glycol conjugate of uricase for the potential intravenous treatment of gout. Curr. Opin. Investig. Drugs 9(4), 422–429 (2008).
    • 245 Centonze D, Puma E, Saleri C et al. Pegylation and interferons in multiple sclerosis. Farmeconomia 17(Suppl. 2), 5–11 (2016).
    • 246 Chaplin S, Gnanapavan S. Plegridy for the treatment of RRMS in adults. Prescriber 26(9), 29–31 (2015).
    • 247 Idec B. Plegridy prescribing information (2015).
    • 248 Turecek P, Romeder-Finger S, Apostol C et al. A world-wide survey and field study in clinical haemostasis laboratories to evaluate FVIII: C activity assay variability of ADYNOVATE and OBIZUR in comparison with ADVATE. Haemophilia 22(6), 957–965 (2016).
    • 249 Konkle BA, Stasyshyn O, Chowdary P et al. Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood 126(9), 1078–1085 (2015).
    • 250 Grewal IS. Emerging Protein Biotherapeutics. CRC Press, FL, USA (2009).
    • 251 Wolinsky JS, Narayana PA, O'Connor P et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann. Neurol. 61(1), 14–24 (2007).
    • 252 Johnson KP. Glatiramer acetate for treatment of relapsing-remitting multiple sclerosis. Expert Rev. Neurother. 12(4), 371–384 (2012).
    • 253 Mckeage K. Glatiramer acetate 40 mg/mL in relapsing-remitting multiple sclerosis: a review. CNS Drugs 29(5), 425–432 (2015).
    • 254 Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc. Natl Acad. Sci. USA 101(Suppl. 2), 14593–14598 (2004).
    • 255 Weber MS, Hohlfeld R, Zamvil SS. Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurotherapeutics 4(4), 647–653 (2007).
    • 256 Berges R. Eligard®: pharmacokinetics, effect on testosterone and psa levels and tolerability. Eur. Urol. Suppl. 4(5), 20–25 (2005).
    • 257 Sartor O. Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology 61(2), 25–31 (2003).
    • 258 Wex J, Sidhu M, Odeyemi I, Abou-Setta AM, Retsa P, Tombal B. Leuprolide acetate 1-, 3- and 6-monthly depot formulations in androgen deprivation therapy for prostate cancer in nine European countries: evidence review and economic evaluation. Clinicoecon. Outcomes Res. 5, 257–269 (2013).
    • 259 Slatopolsky EA, Burke SK, Dillon MA. RenaGel, a nonabsorbed calcium- and aluminum-free phosphate binder, lowers serum phosphorus and parathyroid hormone. The RenaGel Study Group. Kidney Int. 55(1), 299–307 (1999).
    • 260 Rosenbaum DP, Holmes-Farley SR, Mandeville WH, Pitruzzello M, Goldberg DI. Effect of RenaGel, a non-absorbable, cross-linked, polymeric phosphate binder, on urinary phosphorus excretion in rats. Nephrol. Dial. Transplant. 12(5), 961–964 (1997).
    • 261 Oka Y, Miyazaki M, Takatsu S et al. A review article: sevelamer hydrochloride and metabolic acidosis in dialysis patients. Cardiovasc. Hematol. Disord. Drug Targets 8(4), 283–286 (2008).
    • 262 Spaia S. Phosphate binders: sevelamer in the prevention and treatment of hyperphosphataemia in chronic renal failure. Hippokratia 15(Suppl. 1), 22–26 (2011).
    • 263 Buster JE. Transdermal menopausal hormone therapy: delivery through skin changes the rules. Expert Opin. Pharmacother. 11(9), 1489–1499 (2010).
    • 264 Simon JA, Group FTES. Estradiol in micellar nanoparticles: the efficacy and safety of a novel transdermal drug-delivery technology in the management of moderate to severe vasomotor symptoms. Menopause 13(2), 222–231 (2006).
    • 265 Prausnitz MR, Langer R. Transdermal drug delivery. Nat. Biotechnol. 26(11), 1261–1268 (2008).
    • 266 Yoo JW, Lee CH. Drug delivery systems for hormone therapy. J. Control. Rel. 112(1), 1–14 (2006).
    • 267 Rai MF, Pham CT. Intra-articular drug delivery systems for joint diseases. Curr. Opin. Pharmacol. 40, 67–73 (2018).
    • 268 Taylor N. Nonsurgical management of osteoarthritis knee pain in the older adult: an update. Rheum. Dis. Clin. North Am. 33(4), 41–51 (2018).
    • 269 Byers-Kraus V, Aazami H, Mehra P et al. Synovial and systemic pharmacokinetics of triamcinolone acetonide following intra-articular injection of an extended release formulation (FX006) or standard crystalline suspension in patients with knee osteoarthritis. Osteoarthr. Cartil. 25, S431 (2017).
    • 270 Adedoyin AA. Development of injectable, stimuli-responsive biomaterials as active scaffolds for applications in advanced drug delivery and osteochondral tissue regeneration (2018).
    • 271 Abraxane® for Injectable Suspension [Prescribing Information], Celgene Pharmaceutical Co. NJ, USA (2005).
    • 272 Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by Taxol [19]. Nature 277(5698), 665–667 (1979).
    • 273 Sparreboom A, Scripture CD, Trieu V et al. Comparative preclinical and clinical pharmacokinetics of a Cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in cremophor (Taxol). Clin. Cancer Res. 11(11), 4136–4143 (2005).
    • 274 Elsadek B, Kratz F. Impact of albumin on drug delivery – new applications on the horizon. J. Control. Release 157(1), 4–28 (2012).
    • 275 Jang K, Yoon S, Kim S-E et al. Novel nanocrystal formulation of megestrol acetate has improved bioavailability compared with the conventional micronized formulation in the fasting state. Drug Des. Devel. Ther. 8, 851 (2014).
    • 276 Gradishar WJ, Tjulandin S, Davidson N et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23(31), 7794–7803 (2005).
    • 277 Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12(10), 1247–1252 (2007).
    • 278 Manoukian G, Hagemeister F. Denileukin diftitox: a novel immunotoxin. Expert Opin. Biol. Ther. 9(11), 1445–1451 (2009).
    • 279 Kaminetzky D, Hymes KB. Denileukin diftitox for the treatment of cutaneous T-cell lymphoma. Biologics 2(4), 717–724 (2008).
    • 280 Foss F. Clinical experience with denileukin diftitox (ONTAK). Semin. Oncol. 33(1 Suppl. 3), S11–S16 (2006).
    • 281 Duvic M. Bexarotene and DAB389IL-2 (Denileukin Diftitox, ONTAK) in treatment of cutaneous T-cell lymphomas: algorithms. Clin. Lymphoma 1, S51–S55 (2000).
    • 282 Schwab CL, English DP, Roque DM, Pasternak M, Santin AD. Past, present and future targets for immunotherapy in ovarian cancer. Immunotherapy 6(12), 1279–1293 (2014).
    • 283 FDA. Rebinyn: Coagulation Factor IX (Recombinant), GlycoPEGylated (2017).
    • 284 Woods GM, Dunn MW, Dunn AL. Emergencies in hemophilia. Clin. Pediatr. Emerg. Med. 19(2), 110–121 (2018).
    • 285 Peters R, Harris T. Advances and innovations in haemophilia treatment. Nat. Rev. Drug Discov. 17(7), 493–508 (2018).
    • 286 Croteau SE. Evolving complexity in hemophilia management. Pediatr. Clin. North Am. 65(3), 407–425 (2018).
    • 287 Farjadian F, Ghasemi S, Mohammadi-Samani S. Hydroxyl-modified magnetite nanoparticles as novel carrier for delivery of methotrexate. Int. J. Pharm. 504(1), 110–116 (2016).
    • 288 Majidi S, Zeinali Sehrig F, Samiei M et al. Magnetic nanoparticles: applications in gene delivery and gene therapy. Artif. Cells Nanomed. Biotechnol. 44(4), 1186–1193 (2016).
    • 289 Farjadian F, Moradi S, Hosseini M. Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging. J. Mater. Sci. Mater. Med. 28(3), 47 (2017).
    • 290 Coyne DW. Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease. Expert Opin. Pharmacother. 10(15), 2563–2568 (2009).
    • 291 Schwenk MH. Ferumoxytol: a new intravenous iron preparation for the treatment of iron deficiency anemia in patients with chronic kidney disease. Pharmacotherapy 30(1), 70–79 (2010).
    • 292 Curtis BM, Barrett BJ, Djurdjev O, Singer J, Levin A, Group C-CI. Evaluation and treatment of CKD patients before and at their first nephrologist encounter in Canada. Am. J. Kidney Dis. 50(5), 733–742 (2007).
    • 293 Landry R, Jacobs PM, Davis R, Shenouda M, Bolton WK. Pharmacokinetic study of ferumoxytol: a new iron replacement therapy in normal subjects and hemodialysis patients. Am. J. Nephrol. 25(4), 400–410 (2005).
    • 294 Spinowitz BS, Schwenk MH, Jacobs PM et al. The safety and efficacy of ferumoxytol therapy in anemic chronic kidney disease patients. Kidney Int. 68(4), 1801–1807 (2005).
    • 295 Mccormack PL. Ferumoxytol. Drugs 72(15), 2013–2022 (2012).
    • 296 ETPN – Nanomedicine European Technology Platform. Src, Ncpm, Ncrd. Strategic agenda for EuroNanoMed. https://etp-nanomedicine.eu/about-nanomedicine/strategic-research-and-innovation-agenda/.
    • 297 BCC Research. Global markets for nanoparticle size analysis instrumentation in the life sciences (2014). www.bccresearch.com/market-research/biotechnology/nanoparticle-size-analysis-instrumentation-life-sciences-report-bio114b.html.
    • 298 Moghimi SM, Peer D, Langer R. Reshaping the future of nanopharmaceuticals: adiudicium. ACS nano 5(11), 8454–8458 (2011).
    • 299 Bowman D, Marino AD, Sylvester DJ. The patent landscape of nanomedicines. Med. Res. Arch. 5(9), (2017).
    • 300 Business Wire. Global nanomedicine market analysis & trends report 2016 – market is poised to grow to reach approximately $1.3 trillion by 2025– research and markets (2016). www.businesswire.com/news/home/20160804005610/en/Global-Nanomedicine-Market-Analysis-Trends-Report-2016.
    • 301 Ridings JE. The thalidomide disaster, lessons from the past. In: Teratogenicity Testing. Barrow PC (Ed.). Springer, Basel, Switzerland, 575–586 (2013).
    • 302 Faunce T, Townsend R, Mcewan A. The Vioxx pharmaceutical scandal: Peterson v Merke Sharpe & Dohme (Aust) Pty Ltd (2010) 184 FCR 1. J. Law Med. 18(1), 38–49 (2010).
    • 303 Katz JA. COX-2 inhibition: what we learned–a controversial update on safety data. Pain Med. 14(Suppl. 1), S29–S34 (2013).
    • 304 Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomed. 9, 4357 (2014).
    • 305 Ledford H. Bankruptcy of nanomedicine firm worries drug developers. Nature 533(7603), 304–305 (2016).
    • 306 Adams DJ. The valley of death in anticancer drug development: a reassessment. Trends Pharmacol. Sci. 33(4), 173–180 (2012).
    • 307 Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano 7(9), 7442–7447 (2013).
    • 308 Prabhakar U, Maeda H, Jain RK et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73(8), 2412–2417 (2013).
    • 309 Rosenblum D, Peer D. Omics-based nanomedicine: the future of personalized oncology. Cancer Lett. 352(1), 126–136 (2014).
    • 310 Roointan A, Kianpour S, Memari F, Gandomani M, Gheibi Hayat SM, Mohammadi-Samani S. Poly(lactic-co-glycolic acid): the most ardent and flexible candidate in biomedicine! Int. J. Polym. Materi. Polym. Biomater. 67(17), 1028–1049 (2018).
    • 311 Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed. Nanotechnol. Biol. Med. 12(1), 81–103 (2016).
    • 312 Eetezadi S, Ekdawi SN, Allen C. The challenges facing block copolymer micelles for cancer therapy: in vivo barriers and clinical translation. Adv. Drug Del. Rev. 91, 7–22 (2015).
    • 313 Gabizon A, Bradbury M, Prabhakar U, Zamboni W, Libutti S, Grodzinski P. Cancer nanomedicines: closing the translational gap. Lancet 384(9961), 2175–2176 (2014).
    • 314 Lammers T. Smart drug delivery systems: back to the future vs. clinical reality. Int. J. Pharm. 454(1), 527–529 (2013).
    • 315 Satalkar P, Elger BS, Hunziker P, Shaw D. Challenges of clinical translation in nanomedicine: a qualitative study. Nanomedicine 12(4), 893–900 (2016).
    • 316 Kimmelman J. Beyond human subjects: risk, ethics, and clinical development of nanomedicines. J. Law Med. Ethics 40(4), 841–847 (2012).
    • 317 Van De Poel I. How should we do nanoethics? A network approach for discerning ethical issues in nanotechnology. Nanoethics 2(1), 25–38 (2008).
    • 318 Weissig V, Guzman-Villanueva D. Nanopharmaceuticals (part 2): products in the pipeline. Int. J. Nanomedicine 10, 1245–1257 (2015).
    • 319 Liang X-J. Nanopharmaceutics: The Potential Application of Nanomaterials. World Scientific Publishing Co., Pte Ltd, Toh Tuck Link, Singapore (2013).
    • 320 Shah RB, Khan MA. Nanopharmaceuticals: challenges and regulatory perspective. In: Nanotechnology in Drug Delivery. de Villiers MM, Aramwit P, Kwon GS (Eds). Springer, NY, USA (2009).
    • 321 Eaton MA. How do we develop nanopharmaceuticals under open innovation? Nanomedicine 7(4), 371–375 (2011).