We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

An arsenal of magnetic nanoparticles; perspectives in the treatment of cancer

    Dimitrios Karponis

    School of Medicine, Imperial College London, London, UK

    ,
    May Azzawi

    School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK

    &
    Alexander Seifalian

    *Author for correspondence:

    E-mail Address: a.seifalian@gmail.com

    Center for Nanotechnology & Regenerative Medicine, University College London, London, UK

    NanoRegMed Ltd, The London BioScience Innovation Center, London, UK

    Published Online:https://doi.org/10.2217/nnm-2016-0113

    Nanomedicine is an emerging field, which constitutes a new direction in the treatment of cancer. Magnetic nanoparticles (MNPs) can circumvent vascular tissue to concentrate at the site of the tumor. Under the influence of an external, alternating magnetic field, MNPs generate high temperatures within the tumor and ablate malignant cells while inflicting minimal damage to healthy host tissue. Due to their theranostic properties, they constitute a promising candidate for the treatment of cancer. A critical review of the type, size and therapeutic effect of different MNPs is presented, following an appraisal of the literature in the last 5 years. This is a multibillion dollar industry, with a few studies moving to clinical trials within the next 5 years.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
    • 2 Roos WP, Thomas AD, Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer 16(1), 20–33 (2016).
    • 3 Prasad V, Fojo T, Brada M. Precision oncology: origins, optimism, and potential. Lancet Oncol. 17(2), e81–e86 (2016).
    • 4 Grass RN, Athanassiou EK, Stark WJ. Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew. Chem. Int. Ed. Engl. 46(26), 4909–4912 (2007).
    • 5 Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM. Stem cell tracking using iron oxide nanoparticles. Int. J. Nanomedicine 9, 1641–1653 (2014).
    • 6 Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7(1), 144–276X-7–144 (2012).
    • 7 Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P. Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J. Cell Physiol. 219(2), 449–458 (2009).
    • 8 Huang HS, Hainfeld JF. Intravenous magnetic nanoparticle cancer hyperthermia. Int. J. Nanomedicine 8, 2521–2532 (2013). •• Seminal paper on the mechanisms of magnetic nanoparticles (MNP)-induced hyperthermia.
    • 9 Goya GF, Grazú V, Ibarra MR. Magnetic nanoparticles for cancer therapy. Curr. Nanosci. 4, 1–16 (2008).
    • 10 Tietze R, Lyer S, Durr S, Alexiou C. Nanoparticles for cancer therapy using magnetic forces. Nanomedicine (Lond.) 7(3), 447–457 (2012).
    • 11 Nanoprobes.com. http://www.nanoprobes.com.
    • 12 Balasubramanian S, Girija AR, Nagaoka Y et al. Curcumin and 5-fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. Int. J. Nanomedicine 9, 437–459 (2014).
    • 13 Raoof M, Corr SJ, Kaluarachchi WD et al. Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy. Nanomedicine 8(7), 1096–1105 (2012).
    • 14 Sadhukha T, Wiedmann TS, Panyam J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34(21), 5163–5171 (2013).
    • 15 Swain AK, Pradhan L, Bahadur D. Polymer stabilized Fe3O4-graphene as an amphiphilic drug carrier for thermo-chemotherapy of cancer. ACS Appl. Mater. Interfaces 7(15), 8013–8022 (2015).
    • 16 Yan SY, Chen MM, Fan JG et al. Therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia using Fe2O3 nanoparticles. Braz J. Med Biol Res. 47(11), 947–959 (2014).
    • 17 Pala K, Serwotka A, Jelen F, Jakimowicz P, Otlewski J. Tumour-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int. J. Nanomedicine 9, 67–76 (2014).
    • 18 Alvarez-Berrios MP, Castillo A, Rinaldi C, Torres-Lugo M. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines. Int. J. Nanomedicine 9, 145–153 (2014).
    • 19 Rao W, Zhang W, Poventud-Fuentes I et al. Thermally responsive nanoparticle-encapsulated curcumin and its combination with mild hyperthermia for enhanced cancer cell destruction. Acta Biomater. 10(2), 831–842 (2014).
    • 20 Sato I, Umemura M, Mitsudo K et al. Hyperthermia generated with ferucarbotran (resovist(R)) in an alternating magnetic field enhances cisplatin-induced apoptosis of cultured human oral cancer cells. J. Physiol. Sci. 64(3), 177–183 (2014).
    • 21 Fantechi E, Innocenti C, Zanardelli M et al. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano 8(5), 4705–4719 (2014).
    • 22 Jaiswal MK, Pradhan A, Banerjee R, Bahadur D. Dual pH and temperature stimuli-responsive magnetic nanohydrogels for thermo-chemotherapy. J. Nanosci. Nanotechnol. 14(6), 4082–4089 (2014).
    • 23 Mohammad F, Yusof NA. Doxorubicin-loaded magnetic gold nanoshells for a combination therapy of hyperthermia and drug delivery. J. Colloid Interface Sci. 434, 89–97 (2014).
    • 24 Tao C, Zhu Y. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Dalton Trans. 43(41), 15482–15490 (2014).
    • 25 Wani KD, Kadu BS, Mansara P et al. Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF nps) for hyperthermia and drug delivery applications in breast cancer. PLoS ONE 9(9), e107315 (2014).
    • 26 Yuan G, Yuan Y, Xu K, Luo Q. Biocompatible PEGylated fe3O4 nanoparticles as photothermal agents for near-infrared light modulated cancer therapy. Int. J. Mol. Sci. 15(10), 18776–18788 (2014).
    • 27 Chen CL, Kuo LR, Lee SY et al. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials 34(4), 1128–1134 (2013).
    • 28 Hedayati M, Thomas O, Abubaker-Sharif B et al. The effect of cell cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumours? Nanomedicine (Lond). 8(1), 29–41 (2013).
    • 29 Clares B, Biedma-Ortiz RA, Saez-Fernandez E et al. Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer. Eur J. Pharm Biopharm. 85(3 Pt A), 329–338 (2013).
    • 30 Alvarez-Berrios MP, Castillo A, Mendez J, Soto O, Rinaldi C, Torres-Lugo M. Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity. Int. J. Nanomedicine 8, 1003–1013 (2013).
    • 31 Chiang WH, Ho VT, Chen HH et al. Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics. Langmuir 29(21), 6434–6443 (2013).
    • 32 Zhao L, Huo M, Liu J et al. In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment. J. Nanosci. Nanotechnol. 13(2), 741–745 (2013).
    • 33 Guo Y, Zhang Z, Kim DH et al. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles. Int. J. Nanomedicine 8, 3437–3446 (2013).
    • 34 Taratula O, Dani RK, Schumann C et al. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Int. J. Pharm. 458(1), 169–180 (2013).
    • 35 Baba D, Seiko Y, Nakanishi T et al. Effect of magnetite nanoparticles on living rate of MCF-7 human breast cancer cells. Colloids Surf. B Biointerfaces 95, 254–257 (2012).
    • 36 Huang C, Neoh KG, Xu L, Kang ET, Chiong E. Polymeric nanoparticles with encapsulated superparamagnetic iron oxide and conjugated cisplatin for potential bladder cancer therapy. Biomacromolecules 13(8), 2513–2520 (2012).
    • 37 Mi Y, Liu X, Zhao J, Ding J, Feng SS. Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials 33(30), 7519–7529 (2012).
    • 38 Li Z, Kawashita M, Kudo TA, Kanetaka H. Sol-gel synthesis, characterization, and in vitro compatibility of iron nanoparticle-encapsulating silica microspheres for hyperthermia in cancer therapy. J. Mater. Sci Mater. Med. 23(10), 2461–2469 (2012).
    • 39 Estevanato LL, Da Silva JR, Falqueiro AM et al. Co-nanoencapsulation of magnetic nanoparticles and selol for breast tumour treatment: In vitro evaluation of cytotoxicity and magnetohyperthermia efficacy. Int. J. Nanomedicine 7, 5287–5299 (2012).
    • 40 Jiang H, Wang C, Guo Z, Wang Z, Liu L. Silver nanocrystals mediated combination therapy of radiation with magnetic hyperthermia on glioma cells. J. Nanosci. Nanotechnol. 12(11), 8276–8281 (2012).
    • 41 Yoshida M, Sato M, Yamamoto Y et al. Tumour local chemohyperthermia using docetaxel-embedded magnetoliposomes: interaction of chemotherapy and hyperthermia. J. Gastroenterol Hepatol. 27(2), 406–411 (2012).
    • 42 Chang YS, Savitha S, Sadhasivam S, Hsu CK, Lin FH. Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. J. Colloid Interface Sci. 363(1), 314–319 (2011).
    • 43 Yuan CY, Tang QS, Zhang DS. Biocompatibility of Mn0.4Zn0.6Fe2O4 magnetic nanoparticles and their thermotherapy on VX2-carcinoma-induced liver tumors. J. Nanosci. Nanotechnol. 15(1), 74–84 (2015).
    • 44 Bai YY, Zheng S, Zhang L et al. Non-invasively evaluating therapeutic response of nanorod-mediated photothermal therapy on tumour angiogenesis. J. Biomed Nanotechnol. 10(11), 3351–3360 (2014).
    • 45 Wang P, Xie X, Wang J, Shi Y, Shen N, Huang X. Ultra-small superparamagnetic iron oxide mediated magnetic hyperthermia in treatment of neck lymph node metastasis in rabbit pyriform sinus VX2 carcinoma. Tumour Biol. 36(10), 8035–8040 (2015).
    • 46 Kossatz S, Grandke J, Couleaud P et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 17, 66–015–0576–1 (2015).
    • 47 Wang L, Zhang P, Shi J et al. Radiofrequency-triggered tumour-targeting delivery system for theranostics application. ACS Appl. Mater. Interfaces 7(10), 5736–5747 (2015).
    • 48 Yang K, Yang G, Chen L et al. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials 38, 1–9 (2015).
    • 49 Chen Y, Jiang L, Wang R et al. Injectable smart phase-transformation implants for highly efficient in vivo magnetic-hyperthermia regression of tumors. Adv. Mater. 26(44), 7468–7473 (2014).
    • 50 Jeon MJ, Ahn CH, Kim H et al. The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model. J. Exp. Clin. Cancer Res. 33, 57–014–0057-x (2014). • One among several papers highlighting the importance of topical/local administration of MNPs for a more specific, less systemic effect.
    • 51 Hayashi K, Nakamura M, Miki H et al. Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 4(8), 834–844 (2014).
    • 52 Kolosnjaj-Tabi J, Di Corato R, Lartigue L et al. Heat-generating iron oxide nanocubes: subtle “destructurators” of the tumoral microenvironment. ACS Nano 8(5), 4268–4283 (2014).
    • 53 Chen EY, Samkoe KS, Hodge S et al. Modulation of hypoxia by magnetic nanoparticle hyperthermia to augment therapeutic index. Adv. Exp. Med Biol. 812, 87–95 (2014).
    • 54 Zadnik PL, Molina CA, Sarabia-Estrada R et al. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease. J. Neurosurg. Spine 20(6), 740–750 (2014).
    • 55 Petryk AA, Giustini AJ, Gottesman RE, Trembly BS, Hoopes PJ. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model. Int. J. Hyperthermia 29(8), 819–827 (2013).
    • 56 Yi GQ, Gu B, Chen LK. The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma. Tumour Biol. 35(3), 2445–2449 (2014).
    • 57 Petryk AA, Giustini AJ, Gottesman RE, Kaufman PA, Hoopes PJ. Magnetic nanoparticle hyperthermia enhancement of cisplatin chemotherapy cancer treatment. Int. J. Hyperthermia 29(8), 845–851 (2013).
    • 58 Sun H, Xu L, Fan T et al. Targeted hyperthermia after selective embolization with ferromagnetic nanoparticles in a VX2 rabbit liver tumour model. Int. J. Nanomedicine 8, 3795–3804 (2013).
    • 59 Oliveira TR, Stauffer PR, Lee CT et al. Magnetic fluid hyperthermia for bladder cancer: a preclinical dosimetry study. Int. J. Hyperthermia 29(8), 835–844 (2013).
    • 60 Hayashi K, Nakamura M, Sakamoto W et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 3(6), 366–376 (2013).
    • 61 Shenoi MM, Iltis I, Choi J et al. Nanoparticle delivered vascular disrupting agents (VDAs), use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy. Mol. Pharm. 10(5), 1683–1694 (2013).
    • 62 Bubnovskaya L, Belous A, Solopan A et al. Nanohyperthermia of malignant tumors. II. in vivo tumour heating with manganese perovskite nanoparticles. Exp. Oncol. 34(4), 336–339 (2012). • The pioneering use of manganese perovskite for malignant tumors.
    • 63 Jiang PS, Drake P, Cho HJ et al. Tailored nanoparticles for tumour therapy. J. Nanosci. Nanotechnol. 12(6), 5076–5081 (2012).
    • 64 Bae KH, Park M, Do MJ et al. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6(6), 5266–5273 (2012).
    • 65 Zhang Q, Tong J, Chen H et al. A novel magnetic nanoparticle hyperthermia combined with ACMF-dependant drug release by DAMMs injection in VX-2 liver tumors. J. Nanosci. Nanotechnol. 12(1), 127–131 (2012).
    • 66 Basel MT, Balivada S, Wang H et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int. J. Nanomedicine 7, 297–306 (2012).
    • 67 Solopan S, Belous A, Yelenich A et al. Nanohyperthermia of malignant tumors. I. lanthanum-strontium manganite magnetic fluid as potential inducer of tumour hyperthermia. Exp. Oncol. 33(3), 130–135 (2011).
    • 68 Li J, Hu Y, Yang J et al. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 38, 10–21 (2015).
    • 69 Mannucci S, Ghin L, Conti G et al. Magnetic nanoparticles from magnetospirillum gryphiswaldense increase the efficacy of thermotherapy in a model of colon carcinoma. PLoS ONE 9(10), e108959 (2014).
    • 70 Xie J, Zhang Y, Yan C et al. High-performance PEGylated mn-zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials 35(33), 9126–9136 (2014).
    • 71 Yin PT, Shah BP, Lee KB. Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small 10(20), 4106–4112 (2014).
    • 72 Zhou Z, Sun Y, Shen J et al. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35(26), 7470–7478 (2014).
    • 73 Toraya-Brown S, Sheen MR, Zhang P et al. Local hyperthermia treatment of tumors induces CD8(+) T cell-mediated resistance against distal and secondary tumors. Nanomedicine 10(6), 1273–1285 (2014).
    • 74 Tian Q, Wang Q, Yao KX et al. Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 10(6), 1063–1068 (2014).
    • 75 Yoo D, Jeong H, Noh SH, Lee JH, Cheon J. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew. Chem. Int. Ed. Engl. 52(49), 13047–13051 (2013).
    • 76 Tang QS, Chen DZ, Xue WQ et al. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo. Int. J. Nanomedicine 6, 3077–3085 (2011).
    • 77 Rodrigues HF, Mello FM, Branquinho LC, Zufelato N, Silveira-Lacerda EP, Bakuzis AF. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Int. J. Hyperthermia 29(8), 752–767 (2013).
    • 78 Coughlin AJ, Ananta JS, Deng N, Larina IV, Decuzzi P, West JL. Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy. Small 10(3), 556–565 (2014).
    • 79 Chen W, Ayala-Orozco C, Biswal NC et al. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine (Lond.) 9(8), 1209–1222 (2014).
    • 80 Shen S, Kong F, Guo X et al. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumour ablation. Nanoscale 5(17), 8056–8066 (2013).
    • 81 Lin M, Zhang D, Huang J et al. The anti-hepatoma effect of nanosized mn-zn ferrite magnetic fluid hyperthermia associated with radiation in vitro and in vivo. Nanotechnology 24(25), 255101 (2013).
    • 82 Lin M, Huang J, Zhang J et al. The therapeutic effect of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles/pEgr1-HSV-TK/GCV associated with radiation and magnet-induced heating on hepatoma. Nanoscale 5(3), 991–1000 (2013).
    • 83 Toraya-Brown S, Sheen MR, Baird JR et al. Phagocytes mediate targeting of iron oxide nanoparticles to tumors for cancer therapy. Integr. Biol. (Camb.) 5(1), 159–171 (2013).
    • 84 Hu SH, Liao BJ, Chiang CS, Chen PJ, Chen IW, Chen SY. Core-shell nanocapsules stabilized by single-component polymer and nanoparticles for magneto-chemotherapy/hyperthermia with multiple drugs. Adv. Mater. 24(27), 3627–3632 (2012).
    • 85 Ren Y, Zhang H, Chen B et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. Int. J. Nanomedicine 7, 2261–2269 (2012).
    • 86 Wang L, Zhang J, An Y et al. A study on the thermochemotherapy effect of nanosized As2O3/MZF thermosensitive magnetoliposomes on experimental hepatoma in vitro and in vivo. Nanotechnology 22(31), 315102 (2011).
    • 87 Liu L, Ni F, Zhang J et al. Silver nanocrystals sensitize magnetic-nanoparticle-mediated thermo-induced killing of cancer cells. Acta Biochim Biophys Sin (Shanghai) 43(4), 316–323 (2011).
    • 88 Wang L, Dong J, Ouyang W, Wang X, Tang J. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Oncol. Rep. 27(3), 719–726 (2012).
    • 89 Farooq A, Whitehead D, Azzawi M. Attenuation of endothelial dependent vasodilator responses, induced by dye encapsulated silica NPs, in-vitro. Nanomedicine 9(3), 413–425 (2014).
    • 90 Shukur A, Rizvi SB, Whitehead D, Seifalian A, Azzawi M. Altered sensitivity to nitric oxide donors, induced by intravascular infusion of quantum dots, in murine mesenteric arteries. Nanomedicine 9(4), 532–539 (2013).
    • 91 Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293(1), 483–496 (2005).
    • 92 Tadic M, Kralj S, Jagodic M, Hanzel D, Makovec D. Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Appl. Surf. Sci. 322, 255–264 (2014).
    • 93 Ahamed M, Alhadlaq HA, Alam J, Khan MA, Ali D, Alarafi S. Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr. Pharm. Des. 19(37), 6681–6690 (2013).
    • 94 Mahmoudi M, Hosseinkhani H, Hosseinkhani M et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem. Rev. 11(2), 253–280 (2011).
    • 95 Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol. 14, 198–206 (2004).
    • 96 Mok H, Park JW, Park TG. Enhanced intracellular delivery of quantum dot and adenovirus nanoparticles triggered by acidic pH via surface charge reversal. Bioconjugate Chem. 19, 797–801 (2008).
    • 97 Hanini A, Schmitt A, Kacem K, Chau F, Ammar S, Gavard J. Evaluation of iron oxide nanoparticle biocompatibility. Int. J. Nanomedicine 6, 787–794 (2011).
    • 98 Lim J, Yeap SP, Che HX, Low SC. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 8, 381 (2013). • Explains in detail the major imaging modalities available and how each one may yield different results in terms of nanoparticle size.
    • 99 Oberdöster G, Elder A, Rinderknecht A. Nanoparticles and the brain: cause for concern? J. Nanosci. Nanotechnol. 9(8), 4996–5007 (2009).
    • 100 Linse S, Cabaleiro-Lago C, Xue W-F et al. Nucleation of protein fibrillation by nanoparticles. Proc. Natl Acad. Sci. USA 104, 8691–8696 (2007).