We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

A novel personalized vaccine approach in combination with targeted therapy in advanced renal cell carcinoma

    Robert A Figlin

    Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Saperstein Critical Care Tower 1S28, Los Angeles, CA 90048, USA.

    Published Online:https://doi.org/10.2217/imt.13.168

    The historical treatment paradigm for metastatic renal cell carcinoma has focused on immunomodulatory agents, such as IFN-α and IL-2, which provide good clinical outcomes in only a subset of patients. The development of therapies that target the VEGF and mTOR pathways have significantly altered the treatment landscape for this disease, with novel inhibitors providing substantial improvements in progression-free and overall survival over previous standards of care. Despite these advances, toxicity from targeted therapy and the development of resistance results in disease progression. By contrast, vaccine-based immunotherapy represents a promising new approach for the treatment of patients with metastatic renal cell carcinoma; however, tumor-induced immunosuppression has limited the clinical efficacy of this modality until recently. Some evidence suggests that certain targeted therapies, such as sunitinib, may reduce this immunosuppression and enhance the tumor microenvironment to promote synergy with autologous dendritic cell vaccines.

    Papers of special note have been highlighted as: • of interest •• of considerable interest

    References

    • Cancer Facts & Figures 2013. American Cancer Society, GA, USA (2013).
    • Karumanchi SA, Merchan J, Sukhatme VP. Renal cancer: molecular mechanisms and newer therapeutic options. Curr. Opin. Nephrol. Hypertens.11(1),37–42 (2002).
    • National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Kidney Cancer. v1.2013. National Comprehensive Cancer Network, PA, USA, 1–24 (2013).
    • Rosenberg SA, Lotze MT, Muul LM et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med.316(15),889–897 (1987).
    • Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J. Clin. Oncol.20(1),289–296 (2002).
    • Belldegrun A, Muul LM, Rosenberg SA. Interleukin 2 expanded tumor-infiltrating lymphocytes in human renal cell cancer: isolation, characterization, and antitumor activity. Cancer Res.48(1),206–214 (1988).
    • Thurnher M, Radmayr C, Ramoner R et al. Human renal-cell carcinoma tissue contains dendritic cells. Int. J. Cancer68(1),1–7 (1996).
    • George S, Pili R, Carducci MA, Kim JJ. Role of immunotherapy for renal cell cancer in 2011. J. Natl Compr. Canc. Netw.9(9),1011–1018 (2011).
    • Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol.13(3),688–696 (1995).
    • 10  Atkins MB. Treatment selection for patients with metastatic renal cell carcinoma: identification of features favoring upfront IL-2-based immunotherapy. Med. Oncol.26(Suppl. 1),18–22 (2009).
    • 11  Hudes G, Carducci M, Tomczak P et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med.356(22),2271–2281 (2007).
    • 12  Motzer RJ, Hutson TE, Tomczak P et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med.356(2),115–124 (2007).
    • 13  McDermott DF. Immunotherapy of metastatic renal cell carcinoma. Cancer115(10 Suppl.),2298–2305 (2009).
    • 14  Hutson TE. Targeted therapies for the treatment of metastatic renal cell carcinoma: clinical evidence. Oncologist16(Suppl. 2),14–22 (2011).
    • 15  Sun M, Lughezzani G, Perrotte P, Karakiewicz PI. Treatment of metastatic renal cell carcinoma. Nat. Rev. Urol.7(6),327–338 (2010).
    • 16  Rini BI. Vascular endothelial growth factor-targeted therapy in metastatic renal cell carcinoma. Cancer115(10 Suppl.),2306–2312 (2009).
    • 17  Carmichael C, Lau C, Josephson DY, Pal SK. Comprehensive overview of axitinib development in solid malignancies: focus on metastatic renal cell carcinoma. Clin. Adv. Hematol. Oncol.10(5),307–314 (2012).
    • 18  Escudier B, Gore M. Axitinib for the management of metastatic renal cell carcinoma. Drugs R. D.11(2),113–126 (2011).
    • 19  Garcia JA, Hutson TE, Elson P et al. Sorafenib in patients with metastatic renal cell carcinoma refractory to either sunitinib or bevacizumab. Cancer116(23),5383–5390 (2010).
    • 20  Hutson TE, Gallardo J, Lesovoy V et al. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol.31(Suppl. 6),LBA348 (2013).
    • 21  Motzer RJ, Hutson TE, Tomczak P et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol.27(22),3584–3590 (2009).• First clinical validation of the superiority of VEGF-targeted therapy to historical standards of care for patients with metastatic renal cell carcinoma (mRCC).
    • 22  Sternberg CN, Davis ID, Mardiak J et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized Phase III trial. J. Clin. Oncol.28(6),1061–1068 (2010).
    • 23  Motzer RJ, Hutson TE, Cella D et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med.369(8),722–731 (2013).
    • 24  Escudier B, Pluzanska A, Koralewski P et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind Phase III trial. Lancet370(9605),2103–2111 (2007).
    • 25  Rini BI, Halabi S, Rosenberg JE et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol.28(13),2137–2143 (2010).
    • 26  Hepgur M, Sadeghi S, Dorff TB, Quinn DI. Tivozanib in the treatment of renal cell carcinoma. Biologics7,139–148 (2013).
    • 27  Motzer RJ, Nosov D, Eisen T et al. Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a Phase III trial. J. Clin. Oncol. doi:10.1200/JCO.2012.47.4940 (2013) (Epub ahead of print).
    • 28  Voss MH, Molina AM, Motzer RJ. mTOR inhibitors in advanced renal cell carcinoma. Hematol. Oncol. Clin. North Am.25(4),835–852 (2011).
    • 29  Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol.24(2),207–212 (2012).
    • 30  Brahmer JR, Drake CG, Wollner I et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol.28(19),3167–3175 (2010).
    • 31  McDermott DF, Drake CG, Sznol M et al. A Phase I study to evaluate safety and antitumor activity of biweekly BMS-936558 (anti-PD-1, MDX-1106/ONO-4538) in patients with RCC and other advanced refractory malignancies. J. Clin. Oncol.29(Suppl. 7), Abstract 331 (2011).
    • 32  Eggermont AM. Can immuno-oncology offer a truly pan-tumour approach to therapy? Ann. Oncol.23(Suppl. 8),viii53–viii57 (2012).
    • 33  Cohen S, Kaufman HL. TG-4010 transgene. Curr. Opin. Investig. Drugs5(12),1319–1328 (2004).
    • 34  Aubert S, Fauquette V, Hemon B et al. MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Res.69(14),5707–5715 (2009).
    • 35  Rochlitz C, Figlin R, Squiban P et al. Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. J. Gene Med.5(8),690–699 (2003).
    • 36  Oudard S, Rixe O, Beuselinck B et al. A Phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: clinical and immunological findings. Cancer Immunol. Immunother.60(2),261–271 (2011).
    • 37  Southall PJ, Boxer GM, Bagshawe KD, Hole N, Bromley M, Stern PL. Immunohistological distribution of 5T4 antigen in normal and malignant tissues. Br. J. Cancer61(1),89–95 (1990).
    • 38  Amato RJ, Hawkins RE, Kaufman HL et al. Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled Phase III study. Clin. Cancer Res.16(22),5539–5547 (2010).
    • 39  Pilla L, Rivoltini L, Patuzzo R, Marrari A, Valdagni R, Parmiani G. Multipeptide vaccination in cancer patients. Expert Opin. Biol. Ther.9(8),1043–1055 (2009).
    • 40  Walter S, Weinschenk T, Stenzl A et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med.18(8),1254–1261 (2012).
    • 41  Walter S, Weinschenk T, Reinhardt C, Singh-Jasuja H. Single-dose cyclophosphamide synergizes with immune responses to the renal cell cancer vaccine IMA901. Oncoimmunology2(1),e22246 (2013).
    • 42  Kalinski P, Muthuswamy R, Urban J. Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies. Expert Rev. Vaccines12(3),285–295 (2013).
    • 43  Kantoff PW, Higano CS, Shore ND et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med.363(5),411–422 (2010).•• First clinical demonstration of significant survival benefit from an autologous dendritic cell vaccine for patients with cancer.
    • 44  Banchereau J, Paczesny S, Blanco P et al. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann. NY Acad. Sci.987,180–187 (2003).
    • 45  Tacken PJ, De Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol.7(10),790–802 (2007).
    • 46  Yanofsky VR, Mitsui H, Felsen D, Carucci JA. Understanding dendritic cells and their role in cutaneous carcinoma and cancer immunotherapy. Clin. Dev. Immunol.2013,624123 (2013).
    • 47  Draube A, Klein-Gonzalez N, Mattheus S et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE6(4),e18801 (2011).
    • 48  Figlin RA, Amin A, Dudek A et al. Phase II study combining personalized dendritic cell (DC)-based therapy, AGS-003, with sunitinib in metastatic renal cell carcinoma (mRCC). J. Clin. Oncol.30(Suppl. 5), Abstract 348 (2012).
    • 49  Amin A, Dudek A, Logan T et al. Prolonged survival with personalized immunotherapy (AGS-003) in combination with sunitinib in unfavorable risk metastatic RCC (mRCC). J. Clin. Oncol.31(Suppl. 6), Abstract 357 (2013).• Phase II clinical demonstration of significant survival benefit from the combination of targeted therapy with autologous dendritic cell vaccine for patients with mRCC.
    • 50  Slagter-Jager JG, Raney A, Lewis WE, Debenedette MA, Nicolette CA, Tcherepanova IY. Evaluation of RNA amplification methods to improve DC immunotherapy antigen presentation and immune response. Mol. Ther. Nucleic Acids2,e91 (2013).
    • 51  Tcherepanova I, Harris J, Starr A et al. Multiplex RT-PCR amplification of HIV genes to create a completely autologous DC-based immunotherapy for the treatment of HIV infection. PLoS ONE3(1),e1489 (2008).
    • 52  Calderhead DM, Debenedette MA, Ketteringham H et al. Cytokine maturation followed by CD40L mRNA electroporation results in a clinically relevant dendritic cell product capable of inducing a potent proinflammatory CTL response. J. Immunother.31(8),731–741 (2008).
    • 53  Feau S, Arens R, Togher S, Schoenberger SP. Autocrine IL-2 is required for secondary population expansion of CD8(+) memory T cells. Nat. Immunol.12(9),908–913 (2011).
    • 54  Porta C, Bonomi L, Lillaz B et al. Renal cell carcinoma-induced immunosuppression: an immunophenotypic study of lymphocyte subpopulations and circulating dendritic cells. Anticancer Res.27(1A),165–173 (2007).
    • 55  Coates PT, Colvin BL, Hackstein H, Thomson AW. Manipulation of dendritic cells as an approach to improved outcomes in transplantation. Expert Rev. Mol. Med.4(3),1–21 (2002).
    • 56  Debenedette MA, Calderhead DM, Tcherepanova IY, Nicolette CA, Healey DG. Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J. Immunother.34(1),45–57 (2011).
    • 57  Pages F, Kirilovsky A, Mlecnik B et al.In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol.27(35),5944–5951 (2009).
    • 58  Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res.69(6),2506–2513 (2009).• Demonstrates preclinical justification of the role of sunitinib as an anti-immunosuppressive agent in the context of renal cell carcinoma.
    • 59  Farsaci B, Higgins JP, Hodge JW. Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy. Int. J. Cancer130(8),1948–1959 (2012).
    • 60  Bose A, Taylor JL, Alber S et al. Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int. J. Cancer129(9),2158–2170 (2011).
    • 61  Dall’Oglio MF, Sousa-Canavez JM, Tanno FY et al. Early experience with targeted therapy and dendritic cell vaccine in metastatic renal cell carcinoma after nephrectomy. Int. Braz. J. Urol.37(2),180–185; discussion: 185–186 (2011).
    • 62  Finke JH, Rini B, Ireland J et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin. Cancer Res.14(20),6674–6682 (2008).
    • 63  Figlin RA, Nicolette CA, Amin A et al. Monitoring T-cell responses in a Phase II study of AGS-003, an autologous dendritic cell-based therapy in patients with newly diagnosed advanced stage renal cell carcinoma in combination with sunitinib. J. Clin. Oncol.29(Suppl.), Abstract 2532 (2011).
    • 64  Hipp MM, Hilf N, Walter S et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood111(12),5610–5620 (2008).
    • 65  Tran HT, Liu Y, Zurita AJ et al. Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of Phase 2 and Phase 3 trials. Lancet Oncol.13(8),827–837 (2012).
    • 66  Motzer RJ, Escudier B, Oudard S et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled Phase III trial. Lancet372(9637),449–456 (2008).
    • 67  Choueiri TK, Pal SK, McDermott DF et al. Efficacy of cabozantinib (XL184) in patients (pts) with metastatic, refractory renal cell carcinoma (RCC). J. Clin. Oncol.30(Suppl.), Abstract 4504 (2012).
    • 68  Angevin E, Grünwald V, Ravaud A et al. A Phase II study of dovitinib (TKI258), an FGFR- and VEGFR-inhibitor, in patients with advanced or metastatic renal cell cancer (mRCC). J. Clin. Oncol.29(Suppl.), Abstract 4551 (2011).
    • 69  Vogelzang NJ, Signorovitch JE, Lin PL et al. Sequential use of targeted therapies for metastatic renal cell carcinoma: a physician survey and chart review of community oncology practices in the United States. J. Clin. Oncol.31(Suppl. 6), Abstract 418 (2013).
    • 70  Vasani D, Josephson DY, Carmichael C, Sartor O, Pal SK. Recent advances in the therapy of castration-resistant prostate cancer: the price of progress. Maturitas70(2),194–196 (2011).
    • 71  A Phase 2 randomized, double-blind, crossover, controlled, multi-center subject preference study of tivozanib hydrochloride versus sunitinib in the treatment of subjects with metastatic renal cell carcinoma. http://clinicaltrials.gov/show/NCT01673386
    • 72  A Phase IIB/III randomized, double-blind, placebo controlled study comparing first line therapy with or without TG4010 immunotherapy product in patients with stage IV non-small cell lung cancer (NSCLC). http://clinicaltrials.gov/show/NCT01383148
    • 73  A randomized, controlled Phase III study investigating IMA901 multipeptide cancer vaccine in patients receiving sunitinib as first-line therapy for advanced/metastatic renal cell carcinoma. http://clinicaltrials.gov/show/NCT01265901
    • 74  An international Phase 3 randomized trial of autologous dendritic cell immunotherapy (AGS-003) plus standard treatment of advanced renal cell carcinoma (ADAPT). http://clinicaltrials.gov/show/NCT01582672•• Pivotal Phase III clinical trial evaluating the combination of targeted therapy with an autologous dendritic cell vaccine in patients with mRCC.