We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Anti-inflammatory therapy for diabetic retinopathy

    ,
    Hua Liu

    Vascular Biology Center, Georgia Health Sciences University, Augusta, GA, 30912-2500, USA

    Vision Discovery Institute, Health Sciences University, Augusta, Georgia, USA

    ,
    Modesto Rojas

    Vascular Biology Center, Georgia Health Sciences University, Augusta, GA, 30912-2500, USA

    Vision Discovery Institute, Health Sciences University, Augusta, Georgia, USA

    ,
    Robert W Caldwell

    Department of Pharmacology & Toxicology, Georgia Health Sciences University, Augusta, Georgia, USA

    &
    Ruth B Caldwell

    Vascular Biology Center, Georgia Health Sciences University, Augusta, GA, 30912-2500, USA

    Vision Discovery Institute, Health Sciences University, Augusta, Georgia, USA

    Cellular Biology & Anatomy, Georgia Health Sciences University, Augusta, Georgia, USA

    Ophthalmology, Georgia Health Sciences University, Augusta, GA, USA

    VA Medical Center, Augusta, GA, USA

    Published Online:https://doi.org/10.2217/imt.11.24

    Diabetic retinopathy (DR) is one of the most common complications of diabetes. This devastating disease is a leading cause of blindness in people of working age in industrialized countries and affects the daily lives of millions of people. Despite tight glycemic control, blood pressure control and lipid-lowering therapy, the number of DR patients keeps growing and therapeutic approaches are limited. Moreover, there are significant limitations and side effects associated with the current therapies. Thus, there is a great need for development of new strategies for prevention and treatment of DR. Studies have shown that DR has prominent features of chronic, subclinical inflammation. This article focuses on the role of inflammation in DR and summarizes the progress of studies of anti-inflammatory strategies for DR.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Fong DS, Aiello L, Gardner TW et al.: Retinopathy in diabetes. Diabetes Care27(Suppl. 1),S84–S87 (2004).
    • Aiello LP, Gardner TW, King GL et al.: Diabetic retinopathy. Diabetes Care21(1),143–156 (1998).
    • Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE: The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with Type 1 diabetes. Ophthalmology115(11),1859–1868 (2008).
    • Williams R, Airey M, Baxter H, Forrester J, Kennedy-Martin T, Girach A: Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye (Lond.)18(10),963–983 (2004).
    • Varma R: From a population to patients: the Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology115(11),1857–1858 (2008).
    • Cheung N, Mitchell P, Wong TY: Diabetic retinopathy. Lancet376(9735),124–136 (2010).
    • Yam JC, Kwok AK: Update on the treatment of diabetic retinopathy. Hong Kong Med. J.13(1),46–60 (2007).
    • Arevalo JF, Sanchez JG, Lasave AF et al.: Intravitreal bevacizumab (avastin) for diabetic retinopathy at 24-months: the 2008 Juan Verdaguer-Planas lecture®). Curr. Diabetes Rev.6(5),313–322 (2010).
    • Kowluru RA, Zhong Q, Kanwar M: Metabolic memory and diabetic retinopathy: role of inflammatory mediators in retinal pericytes. Exp. Eye Res.90(5),617–623 (2010).
    • 10  Villeneuve LM, Natarajan R: The role of epigenetics in the pathology of diabetic complications. Am. J. Physiol. Renal Physiol.299(1),F14–F25 (2010).
    • 11  Nishijima K, Ng YS, Zhong L et al.: Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am. J. Pathol.171(1),53–67 (2007).
    • 12  Klein R, Klein BE: Diabetic eye disease. Lancet350(9072),197–204 (1997).
    • 13  Sheetz MJ, King GL: Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA288(20),2579–2588 (2002).
    • 14  Stitt AW, Curtis TM: Advanced glycation and retinal pathology during diabetes. Pharmacol. Rep.57(Suppl.),156–168 (2005).
    • 15  Caldwell RB, Bartoli M, Behzadian MA et al.: Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr. Drug Targets6(4),511–524 (2005).
    • 16  Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes54(6),1615–1625 (2005).
    • 17  Rahman I: Oxidative stress, transcription factors and chromatin remodelling in lung inflammation. Biochem. Pharmacol.64(5–6),935–942 (2002).
    • 18  Aveleira CA, Lin CM, Abcouwer SF, Ambrosio AF, Antonetti DA: TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes59(11),2872–2882 (2010).
    • 19  Barreiro O, Martin P, Gonzalez-Amaro R, Sanchez-Madrid F: Molecular cues guiding inflammatory responses. Cardiovasc. Res.86(2),174–182 (2010).
    • 20  Joussen AM, Poulaki V, Mitsiades N et al.: Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-α suppression. FASEB J.16(3),438–440 (2002).
    • 21  Demircan N, Safran BG, Soylu M, Ozcan AA, Sizmaz S: Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (Lond.)20(12),1366–1369 (2006).
    • 22  Limb GA, Chignell AH, Green W, LeRoy F, Dumonde DC: Distribution of TNF α and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br. J. Ophthalmol.80(2),168–173 (1996).
    • 23  Hawrami K, Hitman GA, Rema M et al.: An association in non-insulin-dependent diabetes mellitus subjects between susceptibility to retinopathy and tumor necrosis factor polymorphism. Hum. Immunol.46(1),49–54 (1996).
    • 24  Vincent JA, Mohr S: Inhibition of caspase-1/interleukin-1β signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes56(1),224–230 (2007).
    • 25  Kowluru RA, Odenbach S: Role of interleukin-1β in the development of retinopathy in rats: effect of antioxidants. Invest. Ophthalmol. Vis. Sci.45(11),4161–4166 (2004).
    • 26  Mocan MC, Kadayifcilar S, Eldem B: Elevated intravitreal interleukin-6 levels in patients with proliferative diabetic retinopathy. Can. J. Ophthalmol.41(6),747–752 (2006).
    • 27  Funatsu H, Yamashita H, Ikeda T, Mimura T, Eguchi S, Hori S: Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology110(9),1690–1696 (2003).
    • 28  Murugeswari P, Shukla D, Rajendran A, Kim R, Namperumalsamy P, Muthukkaruppan V: Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and Eales’ disease. Retina28(6),817–824 (2008).
    • 29  Maier R, Weger M, Haller-Schober EM et al.: Multiplex bead analysis of vitreous and serum concentrations of inflammatory and proangiogenic factors in diabetic patients. Mol. Vis.14,637–643 (2008).
    • 30  Meleth AD, Agron E, Chan CC et al.: Serum inflammatory markers in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.46(11),4295–4301 (2005).
    • 31  Adamiec-Mroczek J, Oficjalska-Mlynczak J: Assessment of selected adhesion molecule and proinflammatory cytokine levels in the vitreous body of patients with Type 2 diabetes – role of the inflammatory-immune process in the pathogenesis of proliferative diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol.246(12),1665–1670 (2008).
    • 32  Petrovic MG, Osredkar J, Saraga-Babic M, Petrovic D: K469E polymorphism of the intracellular adhesion molecule 1 gene is associated with proliferative diabetic retinopathy in Caucasians with Type 2 diabetes. Clin. Experiment. Ophthalmol.36(5),468–472 (2008).
    • 33  McLeod DS, Lefer DJ, Merges C, Lutty GA: Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am. J. Pathol.147(3),642–653 (1995).▪ Provides the first evidence that neutrophil numbers per square millimeter are increased in retina sections from diabetic retinopathy (DR) patients, which is associated with the increase of ICAM-1 expression in the vessels.
    • 34  Al-Shabrawey M, Bartoli M, El-Remessy AB et al.: Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.49(7),3231–3238 (2008).
    • 35  Chaplin DD: Overview of the immune response. J. Allergy Clin. Immunol.125(2 Suppl. 2),S3–S23 (2010).
    • 36  Kim SY, Johnson MA, McLeod DS, Alexander T, Hansen BC, Lutty GA: Neutrophils are associated with capillary closure in spontaneously diabetic monkey retinas. Diabetes54(5),1534–1542 (2005).
    • 37  Schroder S, Palinski W, Schmid-Schonbein GW: Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am. J. Pathol.139(1),81–100 (1991).
    • 38  Miyamoto K, Khosrof S, Bursell SE et al.: Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc. Natl Acad. Sci. USA96(19),10836–10841 (1999).▪▪ Very important study that links leukostasis to retinal vessel permeability and closure. It also provides the first evidence that blockade of the interaction between leukocytes and endothelial cells can prevent vascular injury in DR.
    • 39  Joussen AM, Poulaki V, Le ML et al.: A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J.18(12),1450–1452 (2004).
    • 40  Barouch FC, Miyamoto K, Allport JR et al.: Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest. Ophthalmol. Vis. Sci.41(5),1153–1158 (2000).
    • 41  Chen L, Yang P, Kijlstra A: Distribution, markers, and functions of retinal microglia. Ocul. Immunol. Inflamm.10(1),27–39 (2002).
    • 42  Yang LP, Sun HL, Wu LM et al.: Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.50(5),2319–2327 (2009).
    • 43  Ibrahim AS, El-shishtawy MM, Zhang W, Caldwell RB, Liou GI: A2A adenosine receptor (A2AAR) as a therapeutic target in diabetic retinopathy. Am. J. Pathol. (2011) (In Press).
    • 44  Ibrahim AS, El-Remessy AB, Matragoon S et al.: Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. Diabetes60(4),1122–1133 (2011).
    • 45  Davidson JA, Ciulla TA, McGill JB, Kles KA, Anderson PW: How the diabetic eye loses vision. Endocrine32(1),107–116 (2007).
    • 46  Yuan SY: Protein kinase signaling in the modulation of microvascular permeability. Vascul. Pharmacol.39(4–5),213–223 (2002).
    • 47  Matter K, Balda MS: Signalling to and from tight junctions. Nat. Rev. Mol. Cell Biol.4(3),225–236 (2003).
    • 48  Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV: Protein kinase Cα-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J. Biol. Chem.281(13),8379–8388 (2006).
    • 49  Gavard J, Hou X, Qu Y et al.: A role for a CXCR2/phosphatidylinositol 3-kinase γ signaling axis in acute and chronic vascular permeability. Mol. Cell Biol.29(9),2469–2480 (2009).
    • 50  Miyamoto K, Khosrof S, Bursell SE et al.: Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am. J. Pathol.156(5),1733–1739 (2000).
    • 51  Del Maschio A, Zanetti A, Corada M et al.: Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J. Cell Biol.135(2),497–510 (1996).
    • 52  Kowluru RA, Odenbach S: Role of interleukin-1β in the pathogenesis of diabetic retinopathy. Br. J. Ophthalmol.88(10),1343–1347 (2004).
    • 53  Joussen AM, Poulaki V, Mitsiades N et al.: Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood–retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J.17(1),76–78 (2003).▪ Identifies that leukocytes induce retinal vascular injury via Fas–FasL-mediated endothelial cell apoptosis.
    • 54  Costa C, Incio J, Soares R: Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis10(3),149–166 (2007).
    • 55  Ishikawa K, Yoshida S, Kadota K et al.: Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci.51(8),4307–4319 (2010).
    • 56  Sato T, Kusaka S, Hashida N, Saishin Y, Fujikado T, Tano Y: Comprehensive gene-expression profile in murine oxygen-induced retinopathy. Br. J. Ophthalmol.93(1),96–103 (2009).
    • 57  Connor KM, SanGiovanni JP, Lofqvist C et al.: Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med.13(7),868–873 (2007).
    • 58  Gardiner TA, Gibson DS, de Gooyer TE, de la Cruz VF, McDonald DM, Stitt AW: Inhibition of tumor necrosis factor-α improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am. J. Pathol.166(2),637–644 (2005).
    • 59  Ishida S, Usui T, Yamashiro K et al.: VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J. Exp. Med.198(3),483–489 (2003).
    • 60  Davies MH, Stempel AJ, Powers MR: MCP-1 deficiency delays regression of pathologic retinal neovascularization in a model of ischemic retinopathy. Invest. Ophthalmol. Vis. Sci.49(9),4195–4202 (2008).
    • 61  Tezel G, Wax MB: Increased production of tumor necrosis factor-α by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J. Neurosci.20(23),8693–8700 (2000).
    • 62  Allan SM, Tyrrell PJ, Rothwell NJ: Interleukin-1 and neuronal injury. Nat. Rev. Immunol.5(8),629–640 (2005).
    • 63  Lam TT, Tso MO: Nitric oxide synthase (NOS) inhibitors ameliorate retinal damage induced by ischemia in rats. Res. Commun. Mol. Pathol. Pharmacol.92(3),329–340 (1996).
    • 64  Fuchs C, Forster V, Balse E, Sahel JA, Picaud S, Tessier LH: Retinal-cell-conditioned medium prevents TNF-α-induced apoptosis of purified ganglion cells. Invest. Ophthalmol. Vis. Sci.46(8),2983–2991 (2005).
    • 65  Fatma N, Kubo E, Sen M et al.: Peroxiredoxin 6 delivery attenuates TNF-α-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca2+ homeostasis. Brain Res.1233,63–78 (2008).
    • 66  Neufeld AH, Kawai S, Das S et al.: Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp. Eye Res.75(5),521–528 (2002).
    • 67  Nakazawa T, Takahashi H, Nishijima K et al.: Pitavastatin prevents NMDA-induced retinal ganglion cell death by suppressing leukocyte recruitment. J. Neurochem.100(4),1018–1031 (2007).
    • 68  Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW: Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J. Clin. Invest.102(4),783–791 (1998).
    • 69  Zheng L, Howell SJ, Hatala DA, Huang K, Kern TS: Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy. Diabetes56(2),337–345 (2007).
    • 70  Jezek P, Hlavata L: Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell. Biol.37(12),2478–2503 (2005).
    • 71  Giacco F, Brownlee M: Oxidative stress and diabetic complications. Circ. Res.107(9),1058–1070 (2010).
    • 72  Nishikawa T, Edelstein D, Du XL et al.: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature404(6779),787–790 (2000).
    • 73  Merzouk S, Hichami A, Madani S et al.: Antioxidant status and levels of different vitamins determined by high performance liquid chromatography in diabetic subjects with multiple complications. Gen. Physiol. Biophys.22(1),15–27 (2003).
    • 74  Bhatia S, Shukla R, Venkata Madhu S, Kaur Gambhir J, Madhava Prabhu K: Antioxidant status, lipid peroxidation and nitric oxide end products in patients of Type 2 diabetes mellitus with nephropathy. Clin. Biochem.36(7),557–562 (2003).
    • 75  Thornalley PJ: Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int. Rev. Neurobiol.50,37–57 (2002).
    • 76  Vlassara H, Palace MR: Diabetes and advanced glycation endproducts. J. Intern. Med.251(2),87–101 (2002).
    • 77  Curtis TM, Scholfield CN: The role of lipids and protein kinase Cs in the pathogenesis of diabetic retinopathy. Diabetes Metab. Res. Rev.20(1),28–43 (2004).
    • 78  Inoguchi T, Sonta T, Tsubouchi H et al.: Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J. Am. Soc. Nephrol.14(8 Suppl. 3),S227–S232 (2003).
    • 79  Geraldes P, King GL: Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res.106(8),1319–1331 (2010).
    • 80  Ellis EA, Guberski DL, Somogyi-Mann M, Grant MB: Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/Wor diabetic rat. Free Radic. Biol. Med.28(1),91–101 (2000).
    • 81  Inoguchi T, Tsubouchi H, Etoh T et al.: A possible target of antioxidative therapy for diabetic vascular complications-vascular NAD(P)H oxidase. Curr. Med. Chem.10(17),1759–1764 (2003).
    • 82  Sonta T, Inoguchi T, Tsubouchi H et al.: Evidence for contribution of vascular NAD(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity. Free Radic. Biol. Med.37(1),115–123 (2004).
    • 83  Griendling KK, Sorescu D, Ushio-Fukai M: NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res.86(5),494–501 (2000).
    • 84  Cave AC, Brewer AC, Narayanapanicker A et al.: NADPH oxidases in cardiovascular health and disease. Antioxid. Redox Signal8(5–6),691–728 (2006).
    • 85  Heyworth PG, Curnutte JT, Nauseef WM et al.: Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J. Clin. Invest.87(1),352–356 (1991).
    • 86  Hoyal CR, Gutierrez A, Young BM et al.: Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase. Proc. Natl Acad. Sci. USA100(9),5130–5135 (2003).
    • 87  Dang PM, Fontayne A, Hakim J, El Benna J, Perianin A: Protein kinase C ζ phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and participates in formyl peptide-mediated neutrophil respiratory burst. J. Immunol.166(2),1206–1213 (2001).
    • 88  Korchak HM, Kilpatrick LE: Roles for β II-protein kinase C and RACK1 in positive and negative signaling for superoxide anion generation in differentiated HL60 cells. J. Biol. Chem.276(12),8910–8917 (2001).
    • 89  El Benna J, Han J, Park JW, Schmid E, Ulevitch RJ, Babior BM: Activation of p38 in stimulated human neutrophils: phosphorylation of the oxidase component p47phox by p38 and ERK but not by JNK. Arch. Biochem. Biophys.334(2),395–400 (1996).
    • 90  Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H: Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J. Biol. Chem.274(35),25051–25060 (1999).
    • 91  Doughan AK, Harrison DG, Dikalov SI: Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ. Res.102(4),488–496 (2008).
    • 92  Dikalova AE, Bikineyeva AT, Budzyn K et al.: Therapeutic targeting of mitochondrial superoxide in hypertension. Circ. Res.107(1),106–116 (2010).
    • 93  Turpaev KT: Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc.)67(3),281–292 (2002).
    • 94  Sanz AB, Sanchez-Nino MD, Ramos AM et al.: NF-κB in renal inflammation. J. Am. Soc. Nephrol.21(8),1254–1262 (2010).
    • 95  Hoffmann A, Baltimore D: Circuitry of nuclear factor κB signaling. Immunol. Rev.210,171–186 (2006).
    • 96  Hayden MS, Ghosh S: Shared principles in NF-κB signaling. Cell132(3),344–362 (2008).
    • 97  Pantano C, Reynaert NL, van der Vliet A, Janssen-Heininger YM: Redox-sensitive kinases of the nuclear factor-κB signaling pathway. Antioxid. Redox Signal8(9–10),1791–1806 (2006).
    • 98  Nagai N, Izumi-Nagai K, Oike Y et al.: Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-κB pathway. Invest. Ophthalmol. Vis. Sci.48(9),4342–4350 (2007).▪ This preclinical study demonstrates that RAS is upregulated in DR mouse model and plays critical role in retinal inflammation via NF-κB pathway.
    • 99  Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M: Activation of nuclear factor-κB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes51(7),2241–2248 (2002).
    • 100  Harada C, Okumura A, Namekata K et al.: Role of monocyte chemotactic protein-1 and nuclear factor κB in the pathogenesis of proliferative diabetic retinopathy. Diabetes Res. Clin. Pract.74(3),249–256 (2006).
    • 101  Zheng L, Szabo C, Kern TS: Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-κB. Diabetes53(11),2960–2967 (2004).
    • 102  Kowluru RA, Koppolu P, Chakrabarti S, Chen S: Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic. Res.37(11),1169–1180 (2003).
    • 103  Tawfik A, Sanders T, Kahook K, Akeel S, Elmarakby A, Al-Shabrawey M: Suppression of retinal peroxisome proliferator-activated receptor γ in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Invest. Ophthalmol. Vis. Sci.50(2),878–884 (2009).
    • 104  Al-Shabrawey M, Rojas M, Sanders T et al.: Role of NADPH oxidase in retinal vascular inflammation. Invest. Ophthalmol. Vis. Sci.49(7),3239–3244 (2008).▪ Demonstrates that NOX2/NADPH plays a critical role in retinal inflammatory reactions and retinal vascular leakages.
    • 105  Al-Shabrawey M, Bartoli M, El-Remessy AB et al.: Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy. Am. J. Pathol.167(2),599–607 (2005).
    • 106  Zhang W, Baban B, Rojas M et al.: Arginase activity mediates retinal inflammation in endotoxin-induced uveitis. Am. J. Pathol.175(2),891–902 (2009).
    • 107  Caldwell RB, Zhang W, Romero MJ, Caldwell RW: Vascular dysfunction in retinopathy-an emerging role for arginase. Brain Res. Bull.81(2–3),303–309 (2010).
    • 108  Kubes P, Suzuki M, Granger DN: Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl Acad. Sci. USA88(11),4651–4655 (1991).
    • 109  Li Q, Verma A, Han PY et al.: Diabetic eNOS knockout mice develop accelerated retinopathy. Invest. Ophthalmol. Vis. Sci.51(10),5240–5246 (2010).▪ Endothelial NO synthase (eNOS) upregulation has been thought to be a cause of DR. However, this article shows that eNOS is protective for DR in that eNOS-deficient diabetic mice develop earlier and display more severe signs of DR than that of wild-type mice.
    • 110  Leal EC, Manivannan A, Hosoya K et al.: Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood–retinal barrier breakdown in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.48(11),5257–5265 (2007).
    • 111  Pacher P, Beckman JS, Liaudet L: Nitric oxide and peroxynitrite in health and disease. Physiol. Rev.87(1),315–424 (2007).
    • 112  Wu G, Morris SM Jr: Arginine metabolism: nitric oxide and beyond. Biochem. J.336(Pt 1),1–17 (1998).
    • 113  Nagaoka T, Kuo L, Ren Y, Yoshida A, Hein TW: C-reactive protein inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production. Invest. Ophthalmol. Vis. Sci.49(5),2053–2060 (2008).
    • 114  Kelleher ZT, Matsumoto A, Stamler JS, Marshall HE: NOS2 regulation of NF-κB by S-nitrosylation of p65. J. Biol. Chem.282(42),30667–30672 (2007).
    • 115  Marshall HE, Stamler JS: Inhibition of NF-κB by S-nitrosylation. Biochemistry40(6),1688–1693 (2001).
    • 116  Barile GR, Schmidt AM: RAGE and its ligands in retinal disease. Curr. Mol. Med.7(8),758–765 (2007).
    • 117  Bierhaus A, Humpert PM, Morcos M et al.: Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med.83(11),876–886 (2005).
    • 118  Moore TC, Moore JE, Kaji Y et al.: The role of advanced glycation end products in retinal microvascular leukostasis. Invest. Ophthalmol. Vis. Sci.44(10),4457–4464 (2003).
    • 119  Kaji Y, Usui T, Ishida S et al.: Inhibition of diabetic leukostasis and blood–retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Invest. Ophthalmol. Vis. Sci.48(2),858–865 (2007).
    • 120  Silva KC, Pinto CC, Biswas SK, de Faria JB, de Faria JM: Hypertension increases retinal inflammation in experimental diabetes:a possible mechanism for aggravation of diabetic retinopathy by hypertension. Curr. Eye Res.32(6),533–541 (2007).
    • 121  Marchesi C, Paradis P, Schiffrin EL: Role of the renin–angiotensin system in vascular inflammation. Trends Pharmacol. Sci.29(7),367–374 (2008).
    • 122  Garrido AM, Griendling KK: NADPH oxidases and angiotensin II receptor signaling. Mol. Cell Endocrinol.302(2),148–158 (2009).
    • 123  Miller AG, Tan G, Binger KJ et al.: Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes59(12),3208–3215 (2010).
    • 124  Wagner J, Jan Danser AH, Derkx FH et al.: Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system. Br. J. Ophthalmol.80(2),159–163 (1996).
    • 125  Wheeler-Schilling TH, Kohler K, Sautter M, Guenther E: Angiotensin II receptor subtype gene expression and cellular localization in the retina and non-neuronal ocular tissues of the rat. Eur. J. Neurosci.11(10),3387–3394 (1999).
    • 126  Silva KC, Pinto CC, Biswas SK, Souza DS, de Faria JB, de Faria JM: Prevention of hypertension abrogates early inflammatory events in the retina of diabetic hypertensive rats. Exp. Eye Res.85(1),123–129 (2007).
    • 127  Chen P, Guo AM, Edwards PA, Trick G, Scicli AG: Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol.293(4),R1619–R1629 (2007).
    • 128  Rojas M, Zhang W, Lee DL et al.: Role of IL-6 in angiotensin II-induced retinal vascular inflammation. Invest. Ophthalmol. Vis. Sci.51(3),1709–1718 (2010).
    • 129  Birukov KG: Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxid. Redox. Signal11(7),1651–1667 (2009).
    • 130  Masuzawa K, Goto K, Jesmin S et al.: An endothelin type A receptor antagonist reverses upregulated VEGF and ICAM-1 levels in streptozotocin-induced diabetic rat retina. Curr. Eye Res.31(1),79–89 (2006).
    • 131  Gustavsson C, Agardh CD, Zetterqvist AV, Nilsson J, Agardh E, Gomez MF: Vascular cellular adhesion molecule-1 (VCAM-1) expression in mice retinal vessels is affected by both hyperglycemia and hyperlipidemia. PLoS One5(9),E12699 (2010).
    • 132  Rosen ED, Spiegelman BM: PPAR-γ: a nuclear regulator of metabolism, differentiation, and cell growth. J. Biol. Chem.276(41),37731–37734 (2001).
    • 133  Sung B, Park S, Yu BP, Chung HY: Amelioration of age-related inflammation and oxidative stress by PPAR-γ activator: suppression of NF-κB by 2,4-thiazolidinedione. Exp. Gerontol.41(6),590–599 (2006).
    • 134  Muranaka K, Yanagi Y, Tamaki Y et al.: Effects of peroxisome proliferator-activated receptor γ and its ligand on blood-retinal barrier in a streptozotocin-induced diabetic model. Invest. Ophthalmol. Vis. Sci.47(10),4547–4552 (2006).
    • 135  Zhang W, Rojas M, Lilly B et al.: NAD(P)H oxidase-dependent regulation of CCL2 production during retinal inflammation. Invest. Ophthalmol. Vis. Sci.50(6),3033–3040 (2009).▪ Demonstrates that NADPH oxidase–reactive oxygen species pathway has a critical role in inflammation. This pathway can regulate the production of CCL2 via activation of NF-κB and Akt.
    • 136  Cunningham MA, Edelman JL, Kaushal S: Intravitreal steroids for macular edema: the past, the present, and the future. Surv. Ophthalmol.53(2),139–149 (2008).
    • 137  De Bosscher K, Haegeman G, Elewaut D: Targeting inflammation using selective glucocorticoid receptor modulators. Curr. Opin. Pharmacol.10(4),497–504 (2010).
    • 138  Tamura H, Miyamoto K, Kiryu J et al.: Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest. Ophthalmol. Vis. Sci.46(4),1440–1444 (2005).
    • 139  Beer PM, Bakri SJ, Singh RJ, Liu W, Peters GB 3rd, Miller M: Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology110(4),681–686 (2003).
    • 140  Jonas JB, Sofker A: Intraocular injection of crystalline cortisone as adjunctive treatment of diabetic macular edema. Am. J. Ophthalmol.132(3),425–427 (2001).
    • 141  El-Asrar AM, Al-Mezaine HS, Ola MS: Changing paradigms in the treatment of diabetic retinopathy. Curr. Opin. Ophthalmol.20(6),532–538 (2009).
    • 142  Kim SJ, Flach AJ, Jampol LM: Nonsteroidal anti-inflammatory drugs in ophthalmology. Surv. Ophthalmol.55(2),108–133 (2010).
    • 143  Wang D, DuBois RN: Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett.267(2),197–203 (2008).
    • 144  Surh YJ, Chun KS, Cha HH et al.: Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat. Res.480–481, 243–268 (2001).
    • 145  Du Y, Sarthy VP, Kern TS: Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am. J. Physiol. Regul. Integr. Comp. Physiol.287(4),R735–R741 (2004).
    • 146  Johnson EI, Dunlop ME, Larkins RG: Increased vasodilatory prostaglandin production in the diabetic rat retinal vasculature. Curr. Eye Res.18(2),79–82 (1999).
    • 147  Ayalasomayajula SP, Amrite AC, Kompella UB: Inhibition of cyclooxygenase-2, but not cyclooxygenase-1, reduces prostaglandin E2 secretion from diabetic rat retinas. Eur. J. Pharmacol.498(1–3),275–278 (2004).
    • 148  Ayalasomayajula SP, Kompella UB: Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. Eur. J. Pharmacol.458(3),283–289 (2003).
    • 149  Sun W, Gerhardinger C, Dagher Z, Hoehn T, Lorenzi M: Aspirin at low-intermediate concentrations protects retinal vessels in experimental diabetic retinopathy through non-platelet-mediated effects. Diabetes54(12),3418–3426 (2005).
    • 150  Kern TS, Engerman RL: Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes50(7),1636–1642 (2001).
    • 151  Amrite AC, Ayalasomayajula SP, Cheruvu NP, Kompella UB: Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest. Ophthalmol. Vis. Sci.47(3),1149–1160 (2006).
    • 152  Kern TS, Miller CM, Du Y et al.: Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes56(2),373–379 (2007).
    • 153  Powell ED, Field RA: Diabetic retinopathy and rheumatoid arthritis. Lancet2(7349),17–18 (1964).
    • 154  Effects of aspirin treatment on diabetic retinopathy. ETDRS report number 8. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology98(Suppl. 5),757–765 (1991).
    • 155  Effect of aspirin alone and aspirin plus dipyridamole in early diabetic retinopathy. A multicenter randomized controlled clinical trial. The DAMAD Study Group. Diabetes38(4),491–498 (1989).
    • 156  Scott DL: Etanercept in arthritis. Int. J. Clin. Pract.59(1),114–118 (2005).
    • 157  Kleinbongard P, Schulz R, Heusch G: TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail. Rev.16(1),49–69 (2011).
    • 158  Joussen AM, Doehmen S, Le ML et al.: TNF-α mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol. Vis.15,1418–1428 (2009).
    • 159  Sfikakis PP, Markomichelakis N, Theodossiadis GP, Grigoropoulos V, Katsilambros N, Theodossiadis PG: Regression of sight-threatening macular edema in Type 2 diabetes following treatment with the anti-tumor necrosis factor monoclonal antibody infliximab. Diabetes Care28(2),445–447 (2005).
    • 160  Rao VR, Prescott E, Shelke NB et al.: Delivery of SAR 1118 to retina via ophthalmic drops and its effectiveness in reduction of retinal leukostasis and vascular leakiness in rat streptozotocin (STZ) model of diabetic retinopathy (DR). Invest. Ophthalmol. Vis. Sci.51(10),5198–5204 (2010).
    • 161  Iliaki E, Poulaki V, Mitsiades N, Mitsiades CS, Miller JW, Gragoudas ES: Role of α 4 integrin (CD49d) in the pathogenesis of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.50(10),4898–4904 (2009).
    • 162  Barile GR, Pachydaki SI, Tari SR et al.: The RAGE axis in early diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.46(8),2916–2924 (2005).
    • 163  Bhatwadekar A, Glenn JV, Figarola JL et al.: A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats. Br. J. Ophthalmol.92(4),545–547 (2008).
    • 164  Kowluru RA, Tang J, Kern TS: Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes50(8),1938–1942 (2001).
    • 165  Bursell SE, King GL: Can protein kinase C inhibition and vitamin E prevent the development of diabetic vascular complications? Diabetes Res. Clin. Pract.45(2–3),169–182 (1999).
    • 166  Ali TK, El-Remessy AB: Diabetic retinopathy: current management and experimental therapeutic targets. Pharmacotherapy29(2),182–192 (2009).
    • 167  Zhang JZ, Xi X, Gao L, Kern TS: Captopril inhibits capillary degeneration in the early stages of diabetic retinopathy. Curr. Eye Res.32(10),883–889 (2007).
    • 168  Nagai N, Izumi-Nagai K, Oike Y et al.: Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-κB pathway. Invest. Ophthalmol. Vis. Sci.48(9),4342–4350 (2007).
    • 169  Yamagishi S, Matsui T, Nakamura K et al.: Olmesartan blocks inflammatory reactions in endothelial cells evoked by advanced glycation end products by suppressing generation of reactive oxygen species. Ophthalmic. Res.40(1),10–15 (2008).
    • 170  Mauer M, Zinman B, Gardiner R et al.: Renal and retinal effects of enalapril and losartan in Type 1 diabetes. N. Engl. J. Med.361(1),40–51 (2009).▪▪ This clinical trial demonstrates that blockade of RAS slows the progress of DR. It also shows that there is a distinct mechanism between diabetic nephropathy and DR.
    • 171  Chaturvedi N, Porta M, Klein R et al.: Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in Type 1 diabetes: randomised, placebo-controlled trials. Lancet372(9647),1394–1402 (2008).
    • 172  Sjolie AK, Klein R, Porta M et al.: Effect of candesartan on progression and regression of retinopathy in Type 2 diabetes (DIRECT Protect 2): a randomised placebo-controlled trial. Lancet372(9647),1385–1393 (2008).
    • 201  International Diabetes Federation Atlas, 4th Edition, 2009 www.diabetesatlas.org/content/foreword-0