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The induction of tolerance is a major goal of immunotherapy. Investigations over 
the last 20 years have shown that anti-CD3 monoclonal antibodies (mAbs) effectively 
treat autoimmune disease in animal models and have also shown promise in clinical 
trials. Tolerance induction by anti-CD3 mAbs is related to the induction of Tregs that 
control pathogenic autoimmune responses. Here, we review preclinical and clinical 
studies in which intravenous or mucosal administration of anti-CD3 mAbs has been 
employed and provide an outlook on future developments to enhance the efficacy of 
this promising therapeutic approach.
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Background
The success story of monoclonal antibodies 
(mAbs) began with the discovery of hybrid-
oma technology for production of murine 
mAbs, in the 1970s by G. Köhler and C. 
Milstein, who were awarded by the Nobel 
Prize in Physiology or Medicine in 1984. 
Kung  et  al. reported in 1979 the develop-
ment of OKT3 (Ortho Kung T3), the first 
mAb recognizing CD3 surface antigen on 
human T cells [1]. Marketed under the name 
muromonab, OKT3 was the first monoclo-
nal murine antibody to become available 
for therapy in humans. In 1986 OKT3 was 
approved by the US FDA for inhibiting rejec-
tion in solid-organ transplantation. This 
mouse IgG2a is directed against the CD3 
epsilon chain of the CD3/TCR complex that 
characterizes T lymphocytes and has been 
successfully used to treat allograft rejection 
in kidney, liver and heart transplantation [2]. 
A clinical trial with patients suffering from 
multiple sclerosis (MS) also showed potential 
of this anti-CD3 mAb to inhibit relapse of 

disease [3]. However, further clinical develop-
ment of this antibody was halted due to its 
side effects. Being a mAb of murine origin, 
OKT3 is extremely immunogenic in humans, 
eliciting a high titer of antimouse antibod-
ies in most patients  [4,5]. Moreover, OKT3 
is a potent mitogen, promoting T-cell pro-
liferation and cytokine secretion, triggering 
a wide spectrum of side effects that include 
fever, chills nausea, vomiting and headaches, 
summarized as ‘flu-like,’ ‘cytokine-release’ 
or ‘first-dose’ syndrome. A small portion of 
patients suffers even more severe side effects 
such as cardiopulmonary distress, seizures, 
encephalopathy, meningitis, renal insuffi-
ciency and graft thrombosis [6].

Anti-CD3 mAb were ‘rediscovered’ 
thanks to the development of a mouse spe-
cific anti-CD3 mAb (clone 145-2C11) in the 
late 80s  [7] that allowed exploring the side 
effects as well as the mechanisms underly-
ing immunotherapy with anti-CD3 mAb 
in mouse models. This led to the semi-
nal finding by Chatenoud  et  al. in the 90s 
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demonstrating that administration of anti-CD3 mAb 
to overt diabetic NOD (non obese diabetic, develop-
ing spontaneous autoimmune diabetes) mice induced 
long-lasting remission from disease [8]. This discovery 
initiated further successful studies on anti-CD3 mAb 
for tolerance induction in autoimmune diseases and 
other immune mediated pathologies [9]. The advances 
in genetic engineering in antibody structure permit-
ted addressing the shortcomings of OKT3, that is, 
its immunogenicity and side effects. As the immuno-
genicity of OKT3 and its peers were caused by their 
rodent origin, anti-CD3 mAb were humanized by 
grafting the complementarity determining region that 
is key to recognizing antigen, into a human IgG back-
bone and today some antibody clones are of completely 
human origin [10]. Moreover, it was shown that the side 
effects provoked by the first generation of anti-CD3 
mAb were caused by concomitant binding to the Fc 
receptors (FcR) on antigen presenting cells and to the 
CD3/TCR complex on T cells, leading to strong T-cell 
activation and a high transient release of proinflam-
matory cytokines (i.e., TNF-α, IL-6, IFN-γ, IL-2) by 
the targeted T cells briefly after the first administra-
tion [11,12]. After it had been shown that non-FcR bind-
ing anti-CD3 mAb were still tolerogenic  [13], human 
anti-CD3 mAb were rendered non mitogenic by intro-
ducing mutations into the IgG backbone that led to 
highly decreased affinity to Fc receptors  [14,15]. These 
advances led to the further development of anti-CD3 
mAb for treatment of autoimmune diseases  [16]. In 
this review, we will discuss the therapeutic potential of 
anti-CD3 mAb in animal models and human disease 
with a focus on autoimmune diseases, the mechanisms 
underlying tolerance induction by anti-CD3 mAb, 
current clinical developments in this field as well as 
challenges and future directions.

Tregs in autoimmune diseases
Autoimmune diseases are triggered by autoreactive 
T and B cells that escape mechanisms of immune 
tolerance. Tregs are essential gatekeepers of immune 
tolerance by suppressing activation, proliferation and 
effector responses of both innate and adaptive immune 
cells. Treg are a heterogeneous population with respect 
to their origin of development, phenotype, functional 
activity and activation status and are generally catego-
rized into natural/thymus derived Treg (tTreg) cells 
and induced/peripherally derived Treg (pTreg)  [17], 
recently joined by a group of tissue resident Tregs [18]. 
Natural Treg are selected in the thymus thanks to their 
relatively high-affinity interaction with self-peptide/
MHC class II complexes [19,20] and comprise 5–10% of 
the peripheral CD4+ T cells in mice and humans. They 
are characterized by expression of the IL-2R a-chain 

(CD25) [21] and the transcription factor FoxP3 that is 
essential for their regulatory function and for control 
of autoimmunity  [22,23]. Peripheral Treg are induced 
by foreign antigen under tolerogenic conditions and 
thus are an attractive target for antigen-specific immu-
notherapy. Peripherally induced Treg mostly refer 
to TGF-β induced FoxP3+ Treg  [24], IL-10 secreting 
Tr1 cells [25], Th3 cells that express membrane bound 
TGF-β being held in a latent state by LAP [26,27], but 
also include inducible CD8+ Treg, CD3+CD4-CD8- 
Treg, CD4+Vα14+ NKTreg and γδ Treg [28]. Tregs con-
trol autoimmunity by secretion of inhibitory cytokines 
(e.g., IL-10 [29], TGF-β [30] and IL-35 [31]), granzyme/
perforin induced apoptosis of effector lymphocytes [32], 
depriving effector T cells of cytokines leading to apop-
tosis, inhibition of dendritic cell function  [33,34] or 
metabolic disruption [35]. Most if not all autoimmune 
diseases have been associated with alterations of Tregs 
in terms of frequency and/or function, making these 
cells appealing therapeutic targets for immunotherapy 
of autoimmune diseases [36]. Of note, anti-CD3 mAb 
therapy is associated with an increase of the number 
and function of several subpopulations of Treg and 
of the regulatory cytokines TGF-β and IL-10. These 
parameters might be useful biomarkers for indicating 
treatment success in patients.

Anti-CD3 mAb in animal models
Intravenous administration of anti-CD3 mAb
Much of what we know about the mode of action, the 
pharmacodynamics and the tolerogenic activity of 
anti-CD3 mAb in autoimmune diseases derives from 
animal models. As anti-CD3 mAb are strictly spe-
cies specific, meaning that human anti-CD3 mAb do 
not crossreact with T cells from mice, it wasn’t until 
the development of the anti-mouse anti-CD3 mAb 
145–2C11  [7] that the therapeutic potential of anti-
CD3 mAb and the underlying mechanisms could be 
explored in mouse models. Until 1994 only the immu-
nosuppressive properties of anti-CD3 mAb through 
depletion of T  cells were known. Chatenoud  et  al. 
were the first to demonstrate the tolerogenic proper-
ties of intravenously administered anti-CD3 mAb [8]. 
A 5-day treatment of overt diabetic NOD mice with 
the anti-CD3 mAb 145–2C11  [8] or F(ab’)

2
 frag-

ments of 145–2C11  [13] induced rapid, long-lasting 
and antigen-specific remission from disease and also 
prevented immune response toward syngeneic pancre-
atic islet grafts but not against unrelated antigens as 
shown by normal rejection of skin allografts [8]. Since 
then intravenous administration of anti-CD3 mAb has 
been successfully tested in numerous animal models of 
autoimmunity  [16], including the EAE (experimental 
autoimmune encephalomyelitis) model of MS  [37,38], 
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TNP-KLH induced colitis (a model of inflammatory 
bowel disease [IBD]) [39] and collagen-induced arthri-
tis (modeling rheumatoid arthritis)  [40]. In addition 
to autoimmunity, anti-CD3 mAb also improved the 
outcome of graft versus host disease  [41,42], transplan-
tation  [43–46] and atherosclerosis  [47]. The observation 
that anti-CD3 mAb are able to halt active autoimmu-
nity but less efficient in preventing disease [13,38] led to 
an important discovery in the field of transplantation. 
While administration at the time of transplantation 
induces immunosuppression, a slightly delayed treat-
ment can induce long-lasting remission in pancreatic 
islet grafts  [45] and heart transplantation  [46], prob-
ably due to preferential depletion of activated effector 
T cells, resistance of Tregs to anti-CD3 mAb-induced 
apoptosis and establishment of local immune privi-
lege, factors discussed in more detail in the following 
paragraph.

How does intravenous administration of anti-
CD3 mAb induce tolerance in autoimmune 
diseases?
Therapeutic anti-CD3 mAb bind to the epsilon chain 
of the CD3/TCR complex that characterizes T lym-
phocytes  [48–50]. Much of what we know about anti-
CD3 mAb and their therapeutic potential derives 
from research on NOD mice that spontaneously 
develop autoimmune diabetes  [16,51]. Several nonmu-
tually exclusive mechanisms have been proposed to 
explain the therapeutic effect of intravenously admin-
istered anti-CD3 mAb (see Figure 1). After a short 
lasting capping of the CD3 complex, the CD3/T-cell 
receptor complex disappears from the cell surface by 
internalization or shedding, a process called antigenic 
modulation that renders T cells temporarily blind to 
their cognate antigens  [52]. Anti-CD3 mAb-induced 
signaling preferentially induces anergy [53] or apoptosis 
in activated T cells while sparing Tregs [51,54]. Hetero-
geneity of TCR expression by different T-cell subsets 
might explain the differential effect of anti-CD3 mAb 
on effector versus regulatory or naïve T cells [55]. The 
tolerogenic function of anti-CD3 mAb is independent 
of effector functions that are linked to the Fc region 
of the antibody, such as complement-dependent cyto-
toxicity (CDC), antibody-dependent cellular cyto
toxicity (ADCC) and antibody-dependent cell phago
cytosis (ADCP), as F(ab′)

2
 fragments are sufficient for 

tolerance induction [13]. It has been shown that T cells 
become rapidly activated in response to intravenous 
anti-CD3 mAb as measured by increased expression 
of CD69 and CD25 and serum concentrations of 
TGF-β and IFN-γ briefly after injection, even when 
using nonmitogenic anti-CD3 mAb [56,57]. The direct 
effects of anti-CD3 mAb on T cells (capping, antigenic 

modulation, induction of apoptosis and anergy) are all 
short-term and are gone after clearance of the anti-
body from the circulation. Yet, the pharmacological 
effects mediated by anti-CD3 mAb therapy are long 
lasting, indicating that additional and more durable 
mechanisms are involved in anti-CD3 mAb mediated 
tolerance. Perruche et al. showed a link between anti-
CD3 mAb-induced apoptosis, phagocytosis of the 
resulting apoptotic bodies by macrophages and a sub-
sequent increase of TGF-β [58]. TGF-β plays an essen-
tial role in regulating immune responses and the pro-
duction of TGF- β is crucial for the therapeutic effect 
of anti-CD3 mAb  [59]. TGF-β has pleiotropic effects 
on the adaptive immunity [60], including induction of 
adaptive FoxP3+ Tregs [61], inhibition of T-cell activa-
tion and proliferation [62] and blocking dendritic cell 
maturation  [63], and all these outcomes are observed 
after anti-CD3 mAb mediated tolerance induction. 
Indeed, it has been demonstrated that anti-CD3 mAb 
therapy increases TGF-β dependent Tregs [59], renders 
effector T cells more susceptible to TGF-β mediated 
regulation [64] and confers a tolerogenic phenotype to 
dendritic cells [51]. Several groups found that anti-CD3 
mAb have a distinct effect on intestinal T cells [65,66]. 
Anti-CD3 mAb were shown to trigger accumulation 
of regulatory Th17 cells expressing IL-10 in the small 
intestine via CCR6/CCL20 dependent migration [65]. 
Similarly, administration of human anti-CD3 mAb 
to humanized mice (immunodeficient mice reconsti-
tuted with human hematopoietic stem cells) induced 
gut tropic regulatory CD4+CD25highCCR6+FoxP3+ 
T cells that secreted IL-10 [66]. Blocking migration of 
cells to the gut with anti-integrin α4 mAb abrogated 
the therapeutic effect. CD4+CD25highCCR6+FoxP3+ 
T  cells were also increased in patients with Type 1 
diabetes (T1D) that received anti-CD3 mAb  [66]. 
Stimulation of intestinal tissue samples from patients 
with cancer or IBD or healthy controls with anti-CD3 
mAb led to a decrease of proinflammatory cytokines 
and chemokines and an increase of IL-10. Blocking 
IL-10 abrogated the anti-inflammatory effect of anti-
CD3 mAb [67]. Of note, IL-10 induction by anti-CD3 
mAb was observed in all these studies investigating 
the effect of anti-CD3 mAb on intestinal T cells and 
IL-10 is a key anti-inflammatory cytokine regulating 
intestinal homeostasis and controlling IBD [68]. Anti-
CD3 mAb are currently being tested in clinical trials 
for IBD (see chapter on clinical development of anti-
CD3 mAb). In vitro anti-CD3 mAb stimulation of 
lamina propria derived CD4+ T cells, but not CD8+ 
T cells or T cells from peripheral blood, from healthy 
controls or patients with IBD led to apoptosis (depen-
dent on caspase 3 and caspase 8) [69]. Anti-CD3 mAb 
therapy has also been associated with the TNF depen-
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dent induction of CD8+ Tregs (TNFR2+CD25+GIT
R+CTLA4+FoxP3+)  [70]. Of note, even though anti-
CD3 mAb are not intrinsically antigen specific, the 
preferential induction of apoptosis in activated effec-
tor T  cells does confer a certain degree of antigen 
specificity.

New mouse models for testing human 
specific anti-CD3 mAb
Anti-CD3 mAb are strictly species specific, meaning 
that human specific anti-CD3 mAb do not cross-react 
with mouse CD3. Thus, it had been impossible for a 
long time to test human anti-CD3 mAb that had been 
developed for use in the clinics in small animal models. 
Two approaches addressed this issue. The laboratory 
of Lucienne Chatenoud developed transgenic NOD 
mice expressing the human CD3 epsilon chain  [57]. 
These mice develop spontaneous autoimmune diabe-
tes as do conventional NOD mice and enter remis-
sion from diabetes after treatment with either mouse 
or human specific anti-CD3 mAb. Another approach 
was used by Kevan Herold’s laboratory, reconstituting 
NOD/SCID IL2γc-/- (NSG) mice with human hema-
topoetic stem cells  [66]. Both models present differ-
ent advantages that will help us to better understand 
the mechanisms underlying tolerance induction by 
anti-CD3 mAb. In NOD mice expressing the human 
CD3 epsilon chain, the tolerogenic effect of human 
anti-CD3 mAb can be tested in the context of autoim-
munity, while humanized NSG mice allow the study 
of how human anti-CD3 mAb impact human T cells 
in vivo. In vivo studies confirmed mechanistic studies 
that had been performed with mouse anti-CD3 mAb 
and allowed analyzing the effect of human anti-CD3 
mAb on cytokine production, induction of Tregs and 
impact on effector T cells [57,66].

Oral administration of anti-CD3 mAb in 
mice
The gastrointestinal immune system (GALT) has the 
unique capacity to discriminate between potentially 
dangerous and harmless material, for example, rais-
ing a protective immune response against pathogenic 
microbes and toxins while inducing tolerance to food 
antigens and commensal microbes. The observations 

that administration of antigen via the oral route can 
induce changes in the immune system leading to sys-
temic tolerance (a concept known as oral tolerance) 
gave rise to the hypothesis that oral anti-CD3 mAb 
could be an alternative way for tolerance induction 
while decreasing side effects linked to parenteral 
administration. While the tolerogenic effects of intra-
venously administered anti-CD3 mAb have been 
thoroughly investigated since the 90s, the discovery 
that oral administration of anti-CD3 mAb can induce 
tolerance is fairly recent, dating back to 2006  [71]. 
Oral anti-CD3 mAb has been demonstrated to pro-
tect from EAE and had beneficial effect when given 
at peak of disease by inducing dominant immune 
tolerance that could be transferred by CD4+ T  cells 
containing a subset expressing membrane bound 
TGF-β  [71]. A dose–response experiment showed 
that a lower dose of anti-CD3 mAb (5 μg) was supe-
rior to higher amounts (50 or 500 μg) in inducing 
tolerance  [71]. This may be related to the fact that 
peripheral Tregs are best induced by weaker, subop-
timal TCR stimulation [72,73]. Similar to intravenous 
administration, the Fc portion was not required for 
the therapeutic effect [71,74]. Oral anti-CD3 mAb has 
demonstrated therapeutic efficacy in other autoim-
mune models such as diabetes induced by low-dose 
streptozocin  [75], mouse models of SLE (systemic 
lupus erythematosus  [76], CIA (collagen induced 
arthritis)  [77] and in the CD4+CD45RBhigh T-cell 
transfer model of IBD  [78]. Oral administration of 
anti-CD3 mAb has also shown promise in treatment 
of inflammatory conditions other than autoimmune 
disorders. Oral anti-CD3 mAb decreased adipose tis-
sue inflammation and alleviated insulin resistance in 
ob/ob mice, an animal model of Type 2 diabetes [79]. 
Additionally, ApoE deficient mice that are prone to 
atherosclerosis had less lesions, macrophage and CD4+ 
T-cell accumulation when treated with oral anti-CD3 
mAb [80].

How does oral anti-CD3 mAb induce 
tolerance?
Similar to orally administered peptides [81,82] and cyto-
kines [83], oral anti-CD3 mAb retains biological activ-
ity in the gut [75]. Anti-CD3 mAb was detected in the 

Figure 1. Tolerance induction by intravenously administered anti-CD3 mAb is a multistep process (see facing 
page). Binding of anti-CD3 mAb to the CD3/TCR complex leads to antigenic modulation, i.e., disappearance of 
the CD3/TCR from the cells surface by shedding or internalization, rendering T cells blind toward their cognate 
antigen. At the same time anti-CD3 mAb-induced signaling through the CD3/TCR complex can render the T cell 
anergic or trigger apoptosis. While antigenic modulation and anergy only render lymphocytes ignorant to 
antigen and lead to transient immunosuppression, anti-CD3 mAb-induced tolerance is dependent on apoptosis. 
Apoptotic T cells and macrophages that ingest the apoptotic bodies both produce TGF-β that promotes a 
tolerogenic microenvironment. TGF-β can induce FoxP3 in CD4+ T cells, rendering them suppressive. Both, TGF-β 
and CD4+FoxP3+ T cells inhibit effector T cells and skew antigen presenting cells such as dendritic cells toward a 
tolerogenic phenotype.



894 Immunotherapy (2016) 8(8) future science group

Review    Kuhn & Weiner

villous epithelium within 30 min after administra-
tion [71] and was taken up by the gut epithelium [26]. 
FcR binding anti-CD3 mAb was found bound to gut 
dendritic cells [26]. In contrast to intravenous delivery 
of anti-CD3 mAb, neither modulation of CD3/TCR 
complex, depletion nor proliferation of T  cells was 
observed after oral administration  [84]. This is most 
likely the reason why oral administration of anti-CD3 
mAb does not trigger side effects, such as the systemic 
cytokine release that results from parenteral adminis-
tration. Similarly to oral administration of low-dose 
antigen (oral tolerance), oral anti-CD3 mAb induces 
tolerance via induction of Tregs (Figure 2), in particu-
lar of LAP+ Th3 cells [26,85]. LAP is a surrogate marker 
of latent membrane bound TGF-β. TGF-β is secreted 
as a latent form associated with LAP that protects 
TGF-β from activation and tethers it to the cell mem-
brane when the adapter protein GARP is coexpressed 
by the same cells. The LAP/TGF-β complex can be 
found on activated CD4+FoxP3+ T  cells  [86,87] and 
CD4+FoxP3- T cells [87]. CD4+LAP+ T cells contrib-
ute to infectious tolerance by providing TGF-β that 
can be activated by acidification, proteases, plasmin, 
matrix metalloproteases, thrombospondin-1 and 
certain α

v
 integrins  [27]. Once active, TGF-β can 

induce FoxP3 expression in CD4+FoxP3+ T cells and 
inhibit T-cell proliferation, Th1 differentiation and 
maturation of dendritic cells  [27]. It has been shown 
that suboptimal activation of CD4+ T  cells triggers 
TGF-β-secretion and favors conversion to Foxp3+ 
Tregs  [88], consistent with the finding that low dose 
oral anti-CD3 mAb induces TGF-β dependent tol-
erance  [71,75,80,89]. Gavage with anti-CD3 mAb 
increased the expression of latent membrane bound 
TGF-β on CD4+ T  cells. These CD4+CD25-LAP+ 
(but not CD4+CD25+LAP-) T  cells from treated 
mice transferred tolerance  [71,75,79] and exhibited 
increased suppressive activity in vitro that was depen-
dent on TGF-β but independent on IL-10 in most 
studies  [71,75,80,89]. Notably CD4+LAP+ T  cells con-
trolled expansion of IL17+ follicular T helper cells [89], 
Th1 responses  [75,80], Th2 responses  [80] and most 
likely Th17 responses  [71] depending on the disease 
model. While oral anti-CD3 mAb appears to work 
in a TGF-β dependent manner in most experimen-
tal models  [71,75,80,89], the therapeutic effect in the 
CD45RBhigh induced colitis model was associated 
with an increase of IL-10 and TGF-β but depen-
dent on IL-10  [78], in line with the observation that 
IL-10 is of major importance in maintaining intesti-
nal homeostasis. In conclusion, oral anti-CD3 mAb 
appears to be a very safe way of tolerance induction 
through generation of regulatory LAP+ and FoxP3+ 
T cells that secrete TGF-β and IL-10.

Nasal administration of anti-CD3 mAb
Maintenance of immune homeostasis is particularly 
challenging at sites of constant antigen encounter 
not only in the GI tract but also in the respiratory 
tract, which led us to test if anti-CD3 mAb could 
also induce tolerance when administered nasally. 
Nasal anti-CD3 mAb improved symptoms of lupus 
in two strains of lupus prone mice in a TGF-β and 
IL-10 dependent manner  [76]. This was associated 
with an increase of IL-10 secreting CD4+CD25-LAP+ 
Tregs and a decrease of IL-17 and IL-21 producing 
CD4+ICOS+CXCR5+ follicular T helper cells [76]. In 
collagen induced arthritis  [77] nasal anti-CD3 mAb 
was superior to orally administered CD3 in prevent-
ing disease. Nasal tolerance induction depended on 
generation of IL-10 secreting LAP+ T cells  [77]. The 
in vivo induction of IL-10 secreting Tregs (Tr1) by 
nasal anti-CD3 mAb was dependent on IL-27 secret-
ing dendritic cells in the upper airways and was 
controlled by the transcription factors AHR and 
c-maf [90]. Autocrine IL-21 was found to expand and 
maintain the induced Tr1 cells  [90]. It is interesting 
to note that nasal tolerance induction by anti-CD3 
mAb depends mostly on IL-10  [76] while oral toler-
ance induction by anti-CD3 mAb seems to be TGF-β 
dependent [71,75,80,89] (with the exception of tolerance 
induction in IBD that depends on IL-10)  [78]. This 
might be due to the organ specific microenvironment 
favoring TGF-β induction in the gastrointestinal 
immune system while leaning toward IL-10 in the 
respiratory tract. Nasal administration of anti-CD3 
mAb has not yet been explored as extensively as oral 
administration but equally seems to be a very safe and 
promising therapeutic approach.

Clinical development of antihuman anti-CD3 
mAbs
The current generation of anti-CD3 mAb that is 
being developed for clinical application displays 
very low affinity binding to Fc receptors thanks 
to amino acid substitutions in the Fc portion that 
reduced glycosylation. Immunogenicity is negligible 
due to removal of rodent portions of the antibody by 
humanization or by the use of fully human antibod-
ies. So far four anti-human CD3 mAb are in clinical 
development (see Figure 3). Teplizumab, also known 
under the names hOKT3γ1 (Ala-Ala) and MGA031, 
is a humanized IgG1 antibody that was developed by 
grafting the complementarity determining region of 
OKT3 into a human IgG1 backbone. Introduction 
of two point mutations in its Fc portion decreases 
binding to FcR  [15]. This antibody has been clini-
cally developed by MacroGenics and Eli Lilly. Ote-
lixizumab (ChAglyCD3, TRX4, GSK2136525) 
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was derived from the rat antibody YTH12.5. This 
humanized IgG1 bears a single mutation in the γ1 
Fc portion to avoid glycosylation and thus inhibit 
FcR binding  [14]. The companies TolerX and GSK 
were involved in the clinical development of ote-
lixizumab. Visilizumab (Nuvion, HuM291) is a 
humanized IgG2 antibody that is being clinically 
developed by PDL BioPharma and is rendered 
non mitogenic by two point mutations in its Fc 
region [91]. Foralumab (28F11-AE; NI-0401) is so far 

the only entirely human anti-CD3 mAb. The com-
pletely human origin further decreases side effects 
that have been previously noted with other human-
ized anti-CD3 mAb. The Fc portion of this human 
IgG1 was mutated such that the mAb is non FcR 
binding in vitro and exhibits only minor cytokine 
release in vivo while maintaining modulation of the 
CD3/TCR and T-cell depletion  [92]. The reduced 
release of cytokines after intravenous administration 
decreases side effects and improves the overall safety 
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profile of this anti-CD3 mAb. Foralumab is being 
clinically developed by Tiziana LIFE SCIENCES.

Clinical trials with intravenous anti-CD3 
mAb
Two Phase I safety trials in renal allograft recipients 
with acute rejection episodes demonstrated that ote-
lixizumab [93] and teplizumab [94] do not elicit major 
side-effects. In the year 2000 the first clinical trials 
with humanized anti-CD3 mAb were launched to test 
the tolerogenic activity of anti-CD3 mAb in T1D. In 
an American Phase I/II trial, teplizumab treatment 
of patients with recent onset T1D improved insulin 
production and metabolic control  [95,96]. Similarly, 
a European Phase II/III study giving up to a total 
of 64 mg of the anti-CD3 mAb otelixizumab over 
6 consecutive days reported a long-lasting therapeu-
tic effect in terms of β-cell preservation, as measured 
by C-peptide levels  [97,98]. The effect was most sig-
nificant in patients that had good C-peptide levels 
at the beginning of the treatment  [97,98]. Follow-up 
studies were designed to test whether a lower dose 
of teplizumab (two courses of 14 days treatments, 
each cumulating 5, 6 or 17 mg)  [9] or otelixizumab 
(3.1 mg cumulated during 8 days) could preserve 
C-peptide secretion in new-onset T1D patients while 
decreasing the side effects that were observed in the 
previous studies. However, the low dose of otelixi-
zumab was nonefficacious  [99–101] and the choice of 
endpoints of the Protégé study testing teplizumab 
was highly controversial [9]. A post hoc analysis using 

conventional endpoints found a treatment benefit in 
patients with higher baseline levels of C-peptide [102]. 
Also the AbATE study reported that patients with 
new onset diabetes benefit from treatment with tepli-
zumab for at least 2 years and identified immunologic 
features at baseline that were significantly different 
between responders and nonresponders  [103]. Tepli-
zumab is currently being tested in preventing onset 
of T1D in a population ‘at-risk’ (ClinicalTrials.gov; 
NCT01030861). A new study on otelixizumab is 
recruiting T1D patients to identify the concentration 
with maximal therapeutic effect and minimal side 
effects (NCT02000817, clinicaltrials.gov). While 
otelixizumab and teplizumab were foremost tested in 
patients with T1D, visilizumab and foralumab were 
mostly studied in IBD [92]. A first Phase I trial, assess-
ing safety and efficacy of visilizumab in patients with 
severe corticosteroid-refractory ulcerative colitis gave 
promising results  [104]. After reducing the original 
dose of 15 μg/kg/day for 2 days due to occurring side 
effects (prolonged lymphopenia) to 10 μg/kg/day 
the safety profile was considered acceptable. 84% of 
patients showed a clinical response, with 41% enter-
ing clinical remission and 44% endoscopic remis-
sion  [104]. A follow-up randomized, double-blind, 
placebo-controlled trial that was intended to confirm 
the efficacy of visilizumab for the treatment of IBD 
(but used only half of the original dose, i.e., 5 μg/kg) 
was terminated prematurely because of safety and 
efficacy concerns  [105]. Treatment with a cumulated 
dose of only 0.7 mg (for a patient weighing 70 kg), 
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Figure 3. New generation of anti-human CD3 as compared with the mouse anti-human CD3 mAb OKT3.
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was not only associated with a cytokine release syn-
drome but also with an increased rate of infection 
as well as vascular and cardiac symptoms. This was 
surprising as administration of 48 mg otelixizumab 
to patients with T1D provoked less side-effects [97]. It 
was hypothesized that visilizumab’s low tolerability 
as compared with other Fc modified anti-CD3 mAb 
might be due to a stronger activation of CD3/TCR 
signaling [92]. As a consequence the clinical develop-
ment of visilizumab was halted. Foralumab, the only 
completely human anti-CD3 mAb, was assessed in 
a Phase I/II clinical trial in patients with moderate 
to severe active Crohn’s Disease  [106]. Intravenous 
administration of up to 1 mg for 5 days was consid-
ered safe with manageable side effects. Even though 
the power of this study was too limited to assess clini-
cal efficacy, the dose of 1 mg seemed to ameliorate the 
endoscopic index score while no significant improve-
ment of clinical symptoms as assessed by the Crohn’s 
disease activity index was reported [106].

Clinical trials with oral anti-CD3 mAb
A Phase I study with healthy subjects showed that 
repeated oral administration of the anti-CD3 
mAb OKT3 was safe and induced immunological 
effects [107]. When given orally, this FcR binding anti-
body did not trigger systemic proinflammatory cyto-
kines, immunogenicity, depletion of T cells or modula-
tion of the CD3/TCR complex. Oral OKT3 enhanced 
T-cell proliferation, suppressed Th1 and Th17 
responses and led to increased TGF-β/IL-10 expres-
sion and decreased IL-23/IL-6 expression by dendritic 
cells  [107]. A treatment regime of five-times 1 mg was 
considered superior to 0.2 or 5 mg  [107]. Two single 
blind randomized placebo controlled Phase IIa studies 
in patients with treatment resistant chronic hepatitis 
C infection (HCV) [108] or nonalcoholic steatohepatitis 
(NASH) and altered glucose metabolism that included 
subjects with Type 2 diabetes [109], demonstrated that 
oral CD3 was safe and well tolerated, as measured by 
blood hematology, chemistry, immunological safety 
markers and physical signs  [108,109]. Both studies 
reported positive effects on disease and immunological 
markers including an increase of Tregs [108,109].

Thus, mucosal anti-CD3 mAb therapy is an 
attractive approach for the treatment of inflamma-
tory and autoimmune diseases. Further studies are 
now required to investigate the therapeutic effect of 
oral anti-CD3 mAb and to test nasal administration.

Combination therapies with anti-CD3 mAb 
to improve safety
The current generation of anti-CD3 mAb has highly 
reduced affinity for Fc receptors and thus shows 

dramatically reduced side effects as compared with 
the original FcR binding antibodies derived from 
rodents. However, T-cell activation and minor cyto-
kine secretion are still observed  [93,95,97,110], leading 
to moderate flu-like syndrome including fever, head-
ache and gastrointestinal symptoms and one clinical 
trial reported EBV reactivation  [111]. Pretreatment 
with corticosteroids is one of the most widely used 
strategies to limit infusion-related reactions and has 
already been tested in combination with intravenous 
anti-CD3 mAb therapy in the transplantation set-
ting either alone  [112] or together with indometha-
cin  [113] or pentoxyfylline  [114]. Corticosteroids such 
as hydrocortisone  [115] and methylprednisolone  [116] 
inhibit release of TNF-α, IL-6 and IL-2, thus inhib-
iting the cytokine release syndrome after infusion 
with anti-CD3 mAb. As TNF-α plays a major role in 
triggering anti-CD3 mAb related side effects specific 
inhibition of TNF-α using blocking antibodies is an 
attractive alternative [117]. Indeed, it has been shown 
that anti-TNF-α mAb successfully inhibit anti-CD3 
mAb mediated side effects in mice [117] and men [118]. 
Combination of immunosuppressive drugs with 
anti-CD3 mAb has given mixed results. Cyclospo-
rine  [13], cyclophosphamide  [13] and rapamycin  [119] 
have been shown to interfere with anti-CD3 mAb-
induced tolerance in the NOD model of autoim-
mune diabetes while another group reported no neg-
ative impact of cyclosporine on efficacy in the EAE 
model of multiple sclerosis  [120]. One explanation 
might be the observation that cyclosporine, tacroli-
mus and rapamycin mediate islet toxicity  [121] that 
constitutes out of obvious reasons a major problem 
in autoimmune diabetes. Another important differ-
ence between these studies is the treatment regimen. 
While the diabetes study was based on a treatment 
with intravenous anti-CD3 mAb for 5 consecutive 
days, mice from the EAE study were only treated 
twice, which achieves in our hands immunosup-
pression but not tolerance induction. Hence, cyclo-
sporine, tacrolimus and rapamycin might interfere 
with anti-CD3 mAb-induced tolerance but not 
with immunosuppression. In conclusion, the use of 
immunosuppressive agents might interfere with the 
tolerogenic effect of anti-CD3 mAb and further 
research is necessary before considering a combina-
tion. A very promising approach to improve safety is 
oral or nasal administration of anti-CD3 mAb. Clin-
ical data showed promising results in terms of safety 
and therapeutic effect  [107,109]. Future development 
in anti-CD3 immunotherapy warrants further clini-
cal studies to explore the potential of mucosal anti-
CD3 mAb therapy for treatment of a wide range of 
autoimmune and inflammatory diseases in humans.
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Combination therapies with anti-CD3 mAb 
to improve efficacy
Many research efforts aim at enhancing anti-CD3 
mAb-induced tolerance for therapy of autoimmune 
diseases  [92]. Several nonmutually exclusive strategies 
are pursued, i.e., increasing the function or number of 
Tregs and tolerogenic cytokines, better depletion of 
autoreactive lymphocytes, interfering with proinflam-
matory processes and disease-specific approaches that 
improve function or regeneration of the target organ. 
Induction of antigen-specific or nonspecific Tregs is 
an attractive approach for treating autoimmunity [122] 
and has the potential to improve the therapeutic 
effect of anti-CD3 mAb, as in the case of mucosal 
administration of antigen  [26]. Oral administration 
of autoantigen or anti-CD3 mAb has been shown to 
induce tolerance multiple animal models of autoim-
mune diseases [26,85]. Coadministration of oral insulin 
to diabetic NOD mice improved and prolonged the 
therapeutic efficacy of anti-CD3 mAb therapy  [123]. 
Interestingly, preexisting autoantibodies predicted 
the efficacy of this combination therapy  [123]. Takii-
shi et al. went further and combined anti-CD3 mAb 
with mucosal delivery of biologically contained Lac-
tococcus lactis genetically modified to secrete proinsu-
lin together with the immunomodulatory cytokine 
IL-10, inducing longterm tolerance in diabetic NOD 
mice [124]. While oral tolerance induction is associated 
with LAP+ Treg (Th3 cells), nasal administration of 
antigen relies on induction of IL-10 producing Treg 
(Tr1) [26]. Intranasal delivery of insulin also enhances 
the therapeutic effect of anti-CD3 mAb in NOD 
mice [125]. Also combination of intravenous anti-CD3 
mAb with administration of a GAD65 expressing 
plasmid gave promising results in autoimmune diabe-
tes [125]. The combination of oral or nasal antigen with 
intravenous anti-CD3 mAb has not yet been tested 
in the clinic or in other autoimmune diseases but has 
good potential for clinical translation. Similarly, we 
hypothesize that oral and nasal anti-CD3 mAb are 
likely to enhance the tolerogenic effect of intravenous 
anti-CD3 mAb by inducing Treg. Anti-CD3 mAb 
have been intensively studied in T1D and an impor-
tant point that needs to be considered in T1D is that 
once diabetes is diagnosed a big portion of insulin 
producing β-cells is already destroyed and anti-CD3 
mAb therapy will not be sufficient to reverse diabetes 
once the autoimmune process has progressed too far. 
Thus, combination of anti-CD3 mAb therapy with 
methods that restore insulin production by recov-
ery, expansion or replacement of β-cells is an attrac-
tive approach. Exendin-4 is a glucagon-like peptide-1 
receptor agonist that stimulates β-cell proliferation 
and inhibits apoptosis and it increased remission from 

diabetes in NOD mice treated with anti-CD3 mAb 
by enhancing the recovery of the residual islets  [126]. 
This combinatorial approach may be useful in treat-
ment of patients with new-onset T1D that still har-
bor a sufficient amount of functional β-cells. In cases 
of extremely low β-cell mass, islet transplantations 
might be required in combination with immuno-
therapy. The combination of teplizumab with other 
immunosuppressive drugs in the setting of pancreatic 
islet transplantation showed promising results [127,128]. 
However, these studies only assessed the benefit of 
anti-CD3 mAb as immunosuppressive agents. Recent 
findings show that anti-CD3 mAb can induce opera-
tional tolerance in the setting of islet allografts in 
mice if administered some days after transplantation, 
when T  cells have already been primed against the 
allo-antigens  [45]. Another publication showed that 
combination of anti-CD3 mAb with transplantation 
of embryonic pancreatic precursors has a synergistic 
effect on recovery of NOD mice from diabetes  [129]. 
Inhibition of inflammation by specifically targeting 
of autoreactive T  cells or neutralizing of proinflam-
matory cytokines seems to be a particularly promis-
ing approach. The selective S1P

1
 receptor modulator 

ponesimod sequesters T  cells within lymph nodes. 
Administration of ponesimod to diabetic NOD mice 
followed by anti-CD3 mAb treatment, started a few 
days before discontinuation of ponesimod, induced 
long-lasting disease remission in all treated mice [130]. 
IL-1β is an interesting therapeutical target in T1D 
as it has been shown to inhibit insulin secretion and 
synthesis and to affect β-cell viability  [131]. Ablamu-
nits  et  al. found synergistic reversal of autoimmune 
diabetes and enhanced immune regulation in NOD 
mice treated with anti-CD3 mAb together with IL-1 
receptor antagonist  [132]. Combination of anti-CD3 
mAb with anti-TNF mAbs achieved synergistic thera-
peutic effect in collagen-induced arthritis (CIA), 
inhibiting progression of disease [133,134]. Also in kid-
ney transplantation pairing anti-CD3 mAb with anti-
TNF mAb improved the clinical outcome [135] and it 
is has been proposed that this combination achieves 
superior depletion of pathogenic T  cells  [92]. It will 
be interesting to assess efficacy of these combinatorial 
approaches in the clinical setting. It will be important 
to test if these drugs can also increase the efficacy of 
oral or nasal anti-CD3 mAb. No combination stud-
ies with mucosally administered anti-CD3 mAb have 
been performed so far.

Conclusion & future perspective
Non-FcR binding anti-CD3 mAb are promising 
modalities for treatment of autoimmune and inflam-
matory diseases. First clinical trials investigating 
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intravenous administration of teplizumab, otelixi-
zumab or visilizumab have been encouraging with 
positive clinical responses  [95–98,104]. Follow-up trials 
that did not recapitulate the initial success [99–101,105], 
most probably due to the altered studies protocols 
(i.e.,  reduced dosing, different end points), clearly 
point out the challenges of the clinical development 
of anti-CD3 mAb: finding the best dose, treating at 
the right time-point and identifying biomarkers that 
predict treatment success. A significant progress was 
the identification of baseline metabolic (HbA1c and 
insulin use) and immunologic features distinguish-
ing responders from nonresponders in the AbATE 
study that showed C-peptide preservation in T1D 
patients, 2 years after teplizumab treatment [103]. The 
ongoing AbATE follow-up study (ClinicalTrials.gov; 
NCT02067923) is further investigating C-peptide 
changes in treated patients versus the control group 
from the AbATE trial. Teplizumab is also being tested 
in prevention of T1D in a population ‘at-risk’ (Clini-
calTrials.gov; NCT01030861) and a clinical trial on 
otelixizumab is currently recruiting T1D patients to 
pinpoint the concentration with maximal therapeu-
tic effect and minimal side effects (NCT02000817, 
clinicaltrials.gov). It will be interesting to see if previ-
ously reported biomarkers that distinguish respond-
ers from nonresponders will be confirmed and if new 
biomarkers can be identified. With the encouraging 
progress in T1D it is likely that intravenous anti-CD3 
mAb therapy will also be further explored in other 
autoimmune diseases.

Multiple preclinical studies have demonstrated that 
oral (or nasal) administration of anti-CD3 mAb can 
be used effectively for the prevention and/or treat-
ment of disease in animal models of autoimmune 
diseases  [75–77,84,89] and inflammatory disorders  [47,79], 
foremost by induction of Tregs. There were no detect-
able side effects such as cytokine release syndrome or 
immunogenicity  [107–109]. The strategy to induce oral 
tolerance by anti-CD3 mAb represents an exciting and 
novel avenue for treatment of autoimmune diseases 
due to the very good safety profile and the highvariety 
of potential applications. A clinical trial testing oral 
and nasal administration of foralumab for treatment 
of autoimmune disease and chronic inflammation is 
being planned by Tiziana Life Sciences.

Preclinical data suggest that intravenous admin-
istration of anti-CD3 mAb is more suitable to treat 
active autoimmune disease while oral anti-CD3 mAb 
is more potent in preventing disease and has consider-
ably less side-effects. Hence, the route of administra-
tion will differ according to the respective application 
and the patient’s immune status. The combination of 
both routes (intravenous and mucosal) might be an 

attractive strategy to be explored. More preclinical 
and clinical studies are necessary to better understand 
mechanisms underlying intravenous and oral anti-
CD3 mAb-induced tolerance, what distinguishes the 
different clones of anti-CD3 mAb in terms of thera-
peutic effect and side effects and how we can enhance 
their therapeutic effect. Preclinical studies have dem-
onstrated a high potential of combining intravenous 
or mucosal anti-CD3 mAb with other immunomodu-
latory drugs to produce additive or synergistic thera-
peutic effect  [77,123–126,130,132–134]. Now, clinical tri-
als are needed to further explore the most promising 
combination therapies. The obvious choice would be 
combination of anti-CD3 mAb with FDA approved 
drugs that are already being used as gold standard for 
the treatment of respective inflammatory and auto-
immune diseases. Further mechanistic studies will 
address the impact of the microenvironment on anti-
CD3 mAb-induced tolerance and open the door to 
new therapeutic combinations.

Also from an industry perspective anti-CD3 mAb 
therapy represents an attractive strategy for a wide 
range of autoimmune and inflammatory diseases. 
Thanks to modern technologies involving chimeriza-
tion and humanization of rodent antibodies for clinical 
use, side effects triggered by mAbs have been drasti-
cally reduced [10,136]. An increasing number of human-
ized antibodies is being approved by FDA as drugs [137] 
and the commercial impact is considerable, with 
annual sales exceeding multibillion dollars in recent 
years [138].

In short, anti-CD3 mAb have the potential to revo-
lutionize therapy of chronic inflammatory and autoim-
mune diseases with high unmet medical needs such as 
IBD, NASH, T1D and MS.
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Executive summary

Background
•	 1979: discovery of the first anti-human CD3 monoclonal antibody (anti-CD3 mAb) OKT3/muromab.
•	 1986: US FDA approval of OKT3 as immunosuppressant for inhibiting transplant rejection but rapid 

replacement by better immunosuppressive drugs with less side effects.
•	 1987: development of the first anti-mouse anti-CD3 mAb (145–2C11).
•	 1993: generation of the first humanized, non-Fc receptor binding anti-CD3 mAb with reduced side effects.
•	 1994: discovery that anti-CD3 mAb can induce long-lasting tolerance in a mouse model of autoimmune 

diabetes.
Tregs in autoimmune diseases
•	 Most autoimmune diseases are due to aberrations in Tregs.
•	 Anti-CD3 mAb therapy is associated with an increased number and function of different subsets of Treg: 

FoxP3+ Treg, IL-10 secreting Tr1 and membrane TGF-β expressing Th3 cells.
Anti-CD3 mAb in animal models
•	 Intravenous administration of anti-CD3 mAb

–– Repeated intravenous administration of anti-CD3 mAb induces remission from disease in multiple mouse 
models of autoimmunity.

–– Intravenous anti-CD3 mAb therapy is more efficient reversing than preventing disease.
•	 How does intravenous administration of anti-CD3 mAb induce tolerance in autoimmune diseases?

–– Intravenous anti-CD3 mAb-induced tolerance is a multistep process involving several nonmutually exclusive 
mechanisms that restore the balance between Treg and effector T cells.

–– Binding of intravenous anti-CD3 mAb to the CD3/TCR complex on T cells triggers TCR modulation through 
internalization or shedding, TCR signaling, anergy and/or apoptosis.

–– Effector T cells are more susceptible to anti-CD3 mAb-induced apoptosis than Treg.
–– TGF-β derived from apoptotic cells and phagocytosing macrophages is essential for anti-CD3 mAb-induced 

tolerance.
–– Generation of gut tropic IL-10 secreting Treg likely contributes to the therapeutic effect of intravenous 

anti-CD3 mAb.
New mouse models for testing human specific anti-CD3 mAb
•	 Anti-CD3 mAb are species specific.
•	 Transgenic NOD mice expressing the human CD3 epsilon chain are a preclinical model for testing human anti-

CD3 mAb in autoimmune diabetes.
•	 NOD/SCID IL2γc-/- (NSG) mice engrafted with human hematopoietic stem cells makes preclinical mechanistic 

studies of human anti-CD3 mAb in vivo possible.
Oral administration of anti-CD3 mAb inmice
•	 Oral administration of anti-CD3 mAb prevents autoimmunity and alleviates ongoing disease.
•	 Oral anti-CD3 mAb shows promise in treatment of inflammatory disorders.
How does oral anti-CD3 mAb induce tolerance?
•	 Oral anti-CD3 mAb-induced tolerance relies mostly on Th3 cells.
•	 Tr1 cells contribute to tolerance in the colitis model.
•	 Th3 cells inhibit follicular T helper cell, Th1, Th2 and likely Th17 responses, depending on the disease model.
Nasal administration of anti-CD3 mAb
•	 Nasal administration of anti-CD3 mAb prevents and improves autoimmunity in several mouse models.
•	 Nasal anti-CD3 mAb-induced tolerance depends on IL-10.
Clinical development of anti-human anti-CD3 mAbs
•	 The clinical development of anti-CD3 mAb was relaunched with the generation of non-Fc receptor binding, 

chimeric/humanized/human anti-CD3 mAb with reduced side effects (otelixizumab, teplizumab, visilizumab 
and foralumab).

Clinical trials with intravenous anti-CD3 mAb
•	 Otelixizumab and teplizumab showed promising results in patients with recent onset of Type 1 diabetes (T1D).
•	 A dose finding study with otelixizumab in T1D was launched after negative results from a clinical trial studying 

decreased dosing.
•	 Baseline metabolic and immunological markers that distinguish responders from non-responders were 

identified
•	 Foralumab and visilizumab were tested in patients with inflammatory bowel disease (IBD) with encouraging 

results.
•	 The clinical development of visilizumab was stopped due to safety concerns in a follow-up study.
•	 Otelixizumab, teplizumab and foralumab continue their clinical development.
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Executive summary (cont.)

Clinical trials with oral anti-CD3 mAb
•	 Oral administration of anti-CD3 mAb was shown to be safe in three independent Phase I and II clinical trials.
•	 Oral anti-CD3 mAb-induced anti-inflammatory effects in healthy subjects and patients with chronic hepatitis C 

infection or NASH.
Combination therapies with anti-CD3 mAb to improve safety
•	 Immunosuppressive agents reduce side effects triggered by intravenous anti-CD3 mAb therapy.
•	 Some immunosuppressive agents interfered with anti-CD3 mAb-induced tolerance.
•	 Combination of intravenous anti-CD3 mAb with anti-TNFα mAb or corticosteroids looks promising.
Combination therapies with anti-CD3 mAb to improve efficacy
•	 Administration of oral or nasal auto-antigen improved the therapeutic effect of intravenous anti-CD3 mAb.
•	 Disease specific strategies to preserve, repair or replace the target organ are interesting.
•	 Neutralization of proinflammatory cytokines or targeting of effector T cells enhanced intravenous anti-CD3 

mAb-induced tolerance.
Future perspective
•	 A dose finding clinical trial investigating intravenous otelixizumab in patients with Type 1 diabetes in ongoing.
•	 Teplizumab (iv.) is currently being tested in preventing Type 1 diabetes in ‘at-risk’ patients.
•	 A clinical trial is programmed to asses safety and efficacy of oral administration of foralumab.
•	 Combination of anti-CD3 mAb with immunomodulatory drugs has promising therapeutic potential.
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