We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

N6-methyladenosine methylation of viral genes

    Jiting Sun

    Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China

    ,
    Yan Zhang

    **Author for correspondence:

    E-mail Address: qdzhangyan01@163.com

    Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China

    Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China

    &
    Bing Luo

    *Author for correspondence:

    E-mail Address: qdluobing@163.com

    Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China

    Published Online:https://doi.org/10.2217/fvl-2022-0201

    N6-methyladenosine (m6A) modification is the most pervasive type of RNA epigenetic modification in eukaryotes and the most common type of posttranscriptional modification of mRNA. m6A modification is a dynamic reversible process that can affect gene expression and play a crucial role in mRNA metabolism and multiple biological processes, ranging from RNA processing, nuclear export and RNA translation to decay. Meanwhile, much evidence has shown that m6A methylation regulates the life cycle of viruses and inhibits or promotes the development of various viruses. However, the mechanism of m6A methylation in virus-associated tumors has not been fully elucidated. This review highlights the role of m6A modification in various viruses to help establish new approaches for treating related diseases.

    Plain language summary

    Genes contain the instructions that tell the body how to function and grow properly. When these instructions are interpreted, they are made into an intermediate called mRNA. mRNA can be modified to have different functions. A common type of modification, known as m6A modification, can change the body's response to viral infections. This article reviews the evidence for the relationship between m6A modification and viral genes. Understanding this could help to identify new ways to treat diseases caused by viruses.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Purta E, O'connor M, Bujnicki JM, Douthwaite S. YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962. J. Mol. Biol. 383(3), 641–651 (2008).
    • 2. Oerum S, Degut C, Barraud P, Tisne C. m1A Post-Transcriptional Modification in tRNAs. Biomolecules 7(1), 20 (2017).
    • 3. Boccaletto P, Machnicka MA, Purta E et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46(D1), D303–D307 (2018).
    • 4. Desrosiers RC, Friderici KH, Rottman FM. Characterization of Novikoff hepatoma mRNA methylation and heterogeneity in the methylated 5′ terminus. Biochemistry 14(20), 4367–4374 (1975).
    • 5. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA 71(10), 3971–3975 (1974).
    • 6. Ke S, Alemu EA, Mertens C et al. A majority of m6A residues are in the last exons, allowing the potential for 3′UTR regulation. Genes Dev. 29(19), 2037–2053 (2015).
    • 7. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397), 201–206 (2012).
    • 8. Lee M, Kim B, Kim VN. Emerging roles of RNA modification: m(6)A and U-tail. Cell 158(5), 980–987 (2014).
    • 9. Liu J, Yue Y, Han D et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10(2), 93–95 (2014).
    • 10. Ping XL, Sun BF, Wang L et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24(2), 177–189 (2014).
    • 11. Jia G, Fu Y, Zhao X et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7(12), 885–887 (2011).
    • 12. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell 169(7), 1187–1200 (2017).
    • 13. Machnicka MA, Milanowska K, Osman Oglou O et al. MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res. 41(Database issue), D262–D267 (2013).
    • 14. Zhao BS, He C. “Gamete On” for m(6)A: YTHDF2 exerts essential functions in female fertility. Mol. Cell 67(6), 903–905 (2017).
    • 15. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526(7574), 591–594 (2015).
    • 16. Pan Y, Ma P, Liu Y, Li W, Shu Y. Multiple functions of m(6)A RNA methylation in cancer. J. Hematol. Oncol. 11(1), 48 (2018).
    • 17. Lavi S, Shatkin AJ. Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. Proc. Natl Acad. Sci. USA 72(6), 2012–2016 (1975).
    • 18. Krug RM, Morgan MA, Shatkin AJ. Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. J. Virol. 20(1), 45–53 (1976).
    • 19. Sommer S, Salditt-Georgieff M, Bachenheimer S et al. The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic Acids Res. 3(3), 749–765 (1976).
    • 20. Tan B, Gao SJ. RNA epitranscriptomics: regulation of infection of RNA and DNA viruses by N(6)-methyladenosine (m(6) A). Rev. Med. Virol. 28(4), e1983 (2018).
    • 21. Wen J, Lv R, Ma H et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69(6), 1028–1038; e1026 (2018).
    • 22. Knuckles P, Lence T, Haussmann IU et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d. Genes Dev. 32(5-6), 415–429 (2018).
    • 23. Patil DP, Chen CK, Pickering BF et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537(7620), 369–373 (2016).
    • 24. Warda AS, Kretschmer J, Hackert P et al. Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 18(11), 2004–2014 (2017).
    • 25. Wang X, Feng J, Xue Y et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 534(7608), 575–578 (2016).
    • 26. Wang P, Doxtader KA, Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol. Cell 63(2), 306–317 (2016).
    • 27. Pendleton KE, Chen B, Liu K et al. The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell 169(5), 824–835; e814 (2017).
    • 28. Little NA, Hastie ND, Davies RC. Identification of WTAP, a novel Wilms' tumour 1-associating protein. Hum. Mol. Genet. 9(15), 2231–2239 (2000).
    • 29. Horiuchi K, Kawamura T, Iwanari H et al. Identification of Wilms' Tumor 1-associating Protein Complex and Its Role in Alternative Splicing and the Cell Cycle. J. Biol. Chem. 288(46), 33292–33302 (2013).
    • 30. Horiuchi K, Kawamura T, Iwanari H et al. Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J. Biol. Chem. 288(46), 33292–33302 (2013).
    • 31. Zheng G, Dahl JA, Niu Y et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49(1), 18–29 (2013).
    • 32. Li Z, Weng H, Su R et al. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N(6)-Methyladenosine RNA Demethylase. Cancer Cell 31(1), 127–141 (2017).
    • 33. Dina C, Meyre D, Gallina S et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39(6), 724–726 (2007).
    • 34. Jia G, Yang CG, Yang S et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582(23-24), 3313–3319 (2008).
    • 35. Tang C, Klukovich R, Peng H et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. Proc. Natl Acad. Sci. USA 115(2), E325–E333 (2018).
    • 36. Gerken T, Girard CA, Tung YC et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318(5855), 1469–1472 (2007).
    • 37. Fu Y, Jia G, Pang X et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat. Commun. 4, 1798 (2013).
    • 38. Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162(6), 1299–1308 (2015).
    • 39. Xiao W, Adhikari S, Dahal U et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61(4), 507–519 (2016).
    • 40. Hsu PJ, Zhu Y, Ma H et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27(9), 1115–1127 (2017).
    • 41. Huang H, Weng H, Sun W et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20(3), 285–295 (2018).
    • 42. Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS. Regulation of m(6)A Transcripts by the 3′–>5′ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Mol. Cell 68(2), 374–387; e312 (2017).
    • 43. Wang X, Lu Z, Gomez A et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481), 117–120 (2014).
    • 44. Wang X, Zhao Boxuan S, Roundtree Ian A et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6), 1388–1399 (2015).
    • 45. Shi H, Wang X, Lu Z et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 27(3), 315–328 (2017).
    • 46. Xu C, Wang X, Liu K et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nature Chemical Biology 10(11), 927–929 (2014).
    • 47. Klein R, Morohashi K, Sahara H et al. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B. PLOS ONE 6(4), e18285 (2011).
    • 48. Du H, Zhao Y, He J et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).
    • 49. Li A, Chen YS, Ping XL et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 27(3), 444–447 (2017).
    • 50. Roundtree IA, Luo GZ, Zhang Z et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife 6, e31311 (2017).
    • 51. Mao Y, Dong L, Liu XM et al. m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat. Commun. 10(1), 5332 (2019).
    • 52. Tanabe A, Tanikawa K, Tsunetomi M et al. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett. 376(1), 34–42 (2016).
    • 53. Meyer KD, Patil DP, Zhou J et al. 5′-UTR m(6)A Promotes Cap-Independent Translation. Cell 163(4), 999–1010 (2015).
    • 54. Edupuganti RR, Geiger S, Lindeboom RGH et al. N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24(10), 870–878 (2017).
    • 55. Epstein MA, Achong BG, Barr YM. Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1(7335), 702–703 (1964).
    • 56. Bu W, Joyce MG, Nguyen H et al. Immunization with components of the viral fusion apparatus elicits antibodies that neutralize Epstein–Barr virus in B cells and epithelial cells. Immunity 50(5), 1305–1316; e1306 (2019).
    • 57. Cohen JI. Epstein–Barr virus infection. N. Engl. J. Med. 343(7), 481–492 (2000).
    • 58. Munz C. Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nat. Rev. Microbiol. 17(11), 691–700 (2019).
    • 59. Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nat. Rev. Cancer 4(10), 757–768 (2004).
    • 60. Ohga S, Nomura A, Takada H, Hara T. Immunological aspects of Epstein–Barr virus infection. Crit. Rev. Oncol. Hematol. 44(3), 203–215 (2002).
    • 61. Wu F, Cheng W, Zhao F, Tang M, Diao Y, Xu R. Association of N6-methyladenosine with viruses and related diseases. Virol J. 16(1), 133 (2019).
    • 62. Zheng X, Wang J, Zhang X et al. RNA m(6)A methylation regulates virus-host interaction and EBNA2 expression during Epstein–Barr virus infection. Immun. Inflamm. Dis. 9(2), 351–362 (2021).
    • 63. Lang F, Singh RK, Pei Y, Zhang S, Sun K, Robertson ES. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathog. 15(6), e1007796 (2019). •• The viral-encoded latent oncoprotein EBNA3C activated transcription of METTL14, and directly interacted with METTL14 to promote its stability.
    • 64. Xia TL, Li X, Wang X et al. N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep. 22(4), e50128 (2021). •• m6A-modified EBV transcripts are recognized and destabilized by the YTHDF1 protein, which leads to the m6A-dependent suppression of EBV infection and replication.
    • 65. Dai DL, Li X, Wang L et al. Identification of an N6-methyladenosine-mediated positive feedback loop that promotes Epstein–Barr virus infection. J. Biol. Chem. 296, 100547 (2021).
    • 66. Liu L, Zhou Q, Xie Y, Zuo L, Zhu F, Lu J. Extracellular vesicles: novel vehicles in herpesvirus infection. Virol Sin. 32(5), 349–356 (2017).
    • 67. Chang Y, Cesarman E, Pessin MS et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266(5192), 1865–1869 (1994).
    • 68. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332(18), 1186–1191 (1995).
    • 69. Soulier J, Grollet L, Oksenhendler E et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease [see comments]. Blood 86(4), 1276–1280 (1995).
    • 70. Gunther T, Grundhoff A. The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes. PLOS Pathog. 6(6), e1000935 (2010).
    • 71. Ye F, Chen ER, Nilsen TW. Kaposi's Sarcoma-Associated Herpesvirus Utilizes and Manipulates RNA N(6)-Adenosine Methylation To Promote Lytic Replication. J. Virol. 91(16),e00466–17 (2017). • The blockage of m6A inhibited splicing of the pre-mRNA encoding the replication transcription activator (RTA), a key KSHV lytic switch protein, and halted viral lytic replication.
    • 72. Hesser CR, Karijolich J, Dominissini D, He C, Glaunsinger BA. N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection. PLoS Pathog. 14(4), e1006995 (2018). • The m6A pathway is centrally involved in regulating KSHV gene expression, and underscore how the outcome of this dynamically regulated modification can vary significantly between cell types.
    • 73. Baquero-Perez B, Antanaviciute A, Yonchev ID, Carr IM, Wilson SA, Whitehouse A. The Tudor SND1 protein is an m(6)A RNA reader essential for replication of Kaposi's sarcoma-associated herpesvirus. Elife 8, e47261 (2019).
    • 74. Tan B, Liu H, Zhang S et al. Viral and cellular N(6)-methyladenosine and N(6),2′-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nat. Microbiol. 3(1), 108–120 (2018).
    • 75. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J. Hepatol. 51(3), 581–592 (2009).
    • 76. Beck J, Nassal M. Hepatitis B virus replication. World Journal of Gastroenterology 13(1), 48–64 (2007).
    • 77. Imam H, Khan M, Gokhale NS et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proc. Natl Acad. Sci. USA 115(35), 8829–8834 (2018).
    • 78. Kim GW, Imam H, Siddiqui A. The RNA binding proteins YTHDC1 and FMRP regulate the nuclear export of N(6)-methyladenosine-modified hepatitis B virus transcripts and affect the viral life cycle. J. Virol. 95(13), e0009721 (2021).
    • 79. Qu S, Jin L, Huang H, Lin J, Gao W, Zeng Z. A positive-feedback loop between HBx and ALKBH5 promotes hepatocellular carcinogenesis. BMC Cancer 21(1), 686 (2021).
    • 80. Kim GW, Siddiqui A. Hepatitis B virus X protein recruits methyltransferases to affect cotranscriptional N6-methyladenosine modification of viral/host RNAs. Proc. Natl Acad. Sci. USA 118(3), e2019455118 (2021). • HBx interacts with METTL3 and 14 to carry out methylation activity and also modestly stimulates their nuclear import.
    • 81. Imam H, Kim GW, Mir SA, Khan M, Siddiqui A. Interferon-stimulated gene 20 (ISG20) selectively degrades N6-methyladenosine modified Hepatitis B Virus transcripts. PLOS Pathog. 16(2), e1008338 (2020).
    • 82. Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136(5), E359–E386 (2015).
    • 83. Jung KW, Won YJ, Kong HJ, Lee ES. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2016. Cancer Res. Treat 51(2), 417–430 (2019).
    • 84. Wang X, Li Z, Kong B et al. Reduced m(6)A mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget 8(58), 98918–98930 (2017).
    • 85. Zhao J, Lee EE, Kim J et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat. Commun. 10(1), 2300 (2019).
    • 86. Hu C, Liu T, Han C et al. HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m(6)A-MYC expression. Int. J. Biol. Sci. 18(2), 507–521 (2022).
    • 87. Wang L, Zhan G, Maimaitiyiming Y et al. m(6)A modification confers thermal vulnerability to HPV E7 oncotranscripts via reverse regulation of its reader protein IGF2BP1 upon heat stress. Cell Rep. 41(4), 111546 (2022).
    • 88. Churchill MJ, Deeks SG, Margolis DM, Siliciano RF, Swanstrom R. HIV reservoirs: what, where and how to target them. Nat. Rev. Microbiol. 14(1), 55–60 (2016).
    • 89. Mendoza P, Gruell H, Nogueira L et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 561(7724), 479–484 (2018).
    • 90. Lichinchi G, Gao S, Saletore Y et al. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat. Microbiol. 1, 16011 (2016).
    • 91. Tirumuru N, Zhao BS, Lu W, Lu Z, He C, Wu L. N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. Elife 5, e15528 (2016).
    • 92. Kennedy EM, Bogerd HP, Kornepati AVR et al. Posttranscriptional m(6)A Editing of HIV-1 mRNAs Enhances Viral Gene Expression. Cell Host Microbe 22(6), 830 (2017).
    • 93. Tsai K, Bogerd HP, Kennedy EM, Emery A, Swanstrom R, Cullen BR. Epitranscriptomic addition of m(6)A regulates HIV-1 RNA stability and alternative splicing. Genes Dev. 35(13-14), 992–1004 (2021).
    • 94. N'da Konan S, Segeral E, Bejjani F et al. YTHDC1 regulates distinct post-integration steps of HIV-1 replication and is important for viral infectivity. Retrovirology 19(1), 4 (2022). • Cytoplasmic readers of the m6A mark are recruited to the modified viral RNAs and regulate HIV-1 replication.
    • 95. Pereira-Montecinos C, Toro-Ascuy D, Ananias-Saez C et al. Epitranscriptomic regulation of HIV-1 full-length RNA packaging. Nucleic Acids Res. 50(4), 2302–2318 (2022).
    • 96. Chen S, Kumar S, Espada CE et al. N6-methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages. PLoS Pathog. 17(3), e1009421 (2021).
    • 97. Lu W, Tirumuru N, St Gelais C et al. N(6)-Methyladenosine-binding proteins suppress HIV-1 infectivity and viral production. J. Biol. Chem. 293(34), 12992–13005 (2018).
    • 98. Yankova E, Blackaby W, Albertella M et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593(7860), 597–601 (2021).