We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

A pallid rainbow: toward improved understanding of avian influenza biology

    Timm Harder

    Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany

    ,
    Jürgen Stech

    Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany

    ,
    El-Sayed M Abdelwhab

    Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany

    ,
    Jutta Veits

    Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany

    ,
    Franz J Conraths

    Institute of Epidemiology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany

    ,
    Martin Beer

    Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany

    &
    Thomas C Mettenleiter

    *Author for correspondence:

    E-mail Address: thomas.mettenleiter@fli.bund.de

    Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany

    Published Online:https://doi.org/10.2217/fvl-2016-0040

    Highly pathogenic avian influenza (‘fowl plague’) has been known since the late 19th century as a devastating infection in poultry but of concern primarily to farmers and veterinarians. Mostly sporadic outbreaks occurred and, except for one episode, wild birds were unaffected. This situation changed drastically by the recognition that avian influenza viruses exhibit zoonotic potential leading to fatal infections in mammals including humans. Moreover, highly pathogenic avian influenza gained access to highly mobile, migratory wild bird populations resulting in unprecedented intercontinental spread. The rapid evolution of avian influenza viruses, their adaption to novel hosts and the resulting change in epidemiology are of major concern. Recent advances in understanding influenza virus biology at the interface between wild birds-terrestrial poultry-livestock and humans are highlighted here.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Sonnberg S, Webby RJ, Webster RG. Natural history of highly pathogenic avian influenza H5N1. Virus Res. 178(1), 63–77 (2013).
    • 2 Russell CA, Fonville JM, Brown AE et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science 336(6088), 1541–1547 (2012).
    • 3 Davis CT, Chen LM, Pappas C et al. Use of highly pathogenic avian influenza A(H5N1) gain-of-function studies for molecular-based surveillance and pandemic preparedness. MBio 5(6), pii: e02431–14 (2014).
    • 4 Berns KI, Casadevall A, Cohen ML et al. Public health and biosecurity. Adaptations of avian flu virus are a cause for concern. Science 335(6069), 660–661 (2012).
    • 5 Casadevall A, Shenk T. The H5N1 moratorium controversy and debate. MBio 3(5), pii: e00379–12 (2012).
    • 6 Alexander DJ, Brown IH. History of highly pathogenic avian influenza. Rev. Sci. Tech. 28(1), 19–38 (2009).
    • 7 Yuen KY, Chan PK, Peiris M et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351(9101), 467–471 (1998).
    • 8 Anderson T, Capua I, Dauphin G et al. FAO–OIE–WHO joint technical consultation on avian influenza at the human–animal interface. Influenza Other Respir. Viruses 4(Suppl. 1), 1–29 (2010).
    • 9 Lee DH, Torchetti MK, Winker K et al. Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. J. Virol. 89(12), 6521–6524 (2015).
    • 10 WHO. Human cases of influenza at the human–animal interface, January 2014–April 2015. Wkly Epidemiol. Rec. 90(28), 349–364 (2015).
    • 11 Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56(1), 152–179 (1992).
    • 12 Li J, Zu Dohna H, Cardona CJ, Miller J, Carpenter TE. Emergence and genetic variation of neuraminidase stalk deletions in avian influenza viruses. PLoS ONE 6, e14722 (2011).
    • 13 Gabriel G, Klingel K, Otte A et al. Differential use of importin-alpha isoforms governs cell tropism and host adaptation of influenza virus. Nature Comm. 2, 156 (2011).
    • 14 Long JS, Giotis ES, Moncorge O et al. Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature 529(7584), 101–104 (2016).
    • 15 Imai M, Kawaoka Y. The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr. Opin. Virol. 2(2), 160–167 (2012).
    • 16 Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine 25(30), 5637–5644 (2007).
    • 17 Su S, Bi Y, Wong G, Gray GC, Gao GF, Li S. Epidemiology, evolution, and recent outbreaks of avian influenza virus in China. J. Virol. 89(17), 8671–8676 (2015).
    • 18 Lam TT, Wang J, Shen Y et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 502(7470), 241–244 (2013).
    • 19 Pu J, Wang S, Yin Y et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc. Natl Acad. Sci. USA 112(2), 548–553 (2015).
    • 20 Becker WB. The isolation and classification of tern virus: influenza virus A/tern/South Africa/1961. J. Hyg. 64, 309–320 (1966).
    • 21 Gaidet N, Cattoli G, Hammoumi S et al. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. PLoS Pathog. 4(8), e1000127 (2008).
    • 22 Rott R. The pathogenic determinant of influenza virus. Vet. Microbiol. 33(1–4), 303–310 (1992).
    • 23 Böttcher-Friebertshäuser E, Garten W, Matrosovich M, Klenk HD. The hemagglutinin: a determinant of pathogenicity. Curr. Top. Microbiol. Immunol. 385, 3–34 (2014).
    • 24 França MS, Brown JD. Influenza pathobiology and pathogenesis in avian species. Curr. Top. Microbiol. Immunol. 385, 221–242 (2014).
    • 25 Veits J, Weber S, Stech O et al. Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proc. Natl Acad. Sci. USA 109, 2579–2584 (2012).
    • 26 Munster VJ, Schrauwen EJ, de Wit E et al. Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype. J. Virol. 84, 7953–7960 (2010).
    • 27 Stech O, Veits J, Weber S et al. Acquisition of a polybasic hemagglutinin cleavage site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain. J. Virol. 83, 5864–5868 (2009). • Exemplifies the difficulties in associating specific mutations with phenotypic characteristics.
    • 28 Londt BZ, Banks J, Alexander DJ. Highly pathogenic avian influenza viruses with low virulence for chickens in in vivo tests. Av. Pathol. 36, 347–350 (2007).
    • 29 Deshpande KL, Fried VA, Ando M, Webster RG. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc. Natl Acad. Sci. USA 84, 36–40 (1987).
    • 30 Monne I, Fusaro A, Nelson MI et al. Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor. J. Virol. 88, 4375–4388 (2014).
    • 31 Abdelwhab el SM, Veits J, Tauscher K et al. A unique multibasic proteolytic cleavage site and three mutations in the HA2 domain confer high virulence of H7N1 avian influenza virus in chickens. J. Virol. 90, 400–411 (2015).
    • 32 Munier S, Larcher T, Cormier-Aline F et al. A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens. J. Virol. 84, 940–952 (2010).
    • 33 Sorrell EM, Song H, Pena L, Perez DR. A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens. J. Virol. 84, 11831–11840 (2010).
    • 34 Stech O, Veits J, Abdelwhab el SM et al. The neuraminidase stalk deletion serves as major virulence determinant of H5N1 highly pathogenic avian influenza viruses in chicken. Sci. Rep. 5, 13493 (2015).
    • 35 Li Y, Chen S, Zhang X et al. A 20-amino-acid deletion in the neuraminidase stalk and a five-amino-acid deletion in the NS1 protein both contribute to the pathogenicity of H5N1 avian influenza viruses in mallard ducks. PLoS ONE 9, e95539 (2014).
    • 36 Hoffmann TW, Munier S, Larcher T et al. Length variations in the NA stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducks. J. Virol. 86, 584–588 (2012).
    • 37 Tada T, Suzuki K, Sakurai Y et al. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens. J. Virol. 85, 1834–1846 (2011).
    • 38 Fujimoto Y, Ito H, Tomita M et al. Amino acid substitution at position 44 of matrix protein 2 of an avirulent H5 avian influenza virus is crucial for acquiring the highly pathogenic phenotype in chickens. Arch. Virol. 160, 2063–2070 (2015).
    • 39 Long JX, Peng DX, Liu YL, Wu YT, Liu XF. Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus Genes 36, 471–478 (2008).
    • 40 Li Z, Jiang Y, Jiao P et al. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J. Virol. 80, 11115–11123 (2006).
    • 41 Kong W, Liu L, Wang Y et al. C-terminal elongation of NS1 of H9N2 influenza virus induces a high level of inflammatory cytokines and increases transmission. J. Gen. Virol. 96, 259–268 (2015).
    • 42 Zielecki F, Semmler I, Kalthoff D et al. Virulence determinants of avian H5N1 influenza A virus in mammalian and avian hosts: role of the C-terminal ESEV motif in the viral NS1 protein. J. Virol. 84, 10708–10718 (2010).
    • 43 Keiner B, Maenz B, Wagner R et al. Intracellular distribution of NS1 correlates with the infectivity and interferon antagonism of an avian influenza virus (H7N1). J. Virol. 84, 11858–11865 (2010).
    • 44 Abdelwhab EM, Veits J, Breithaupt A et al. Prevalence of the C-terminal truncations of NS1 in avian influenza A viruses and effect on virulence and replication of a highly pathogenic H7N1 virus in chickens. Virulence doi: 10.1080/21505594.2016.1159367 (2016) (Epub ahead of print).
    • 45 Ewald SJ, Kapczynski DR, Livant EJ et al. Association of Mx1 Asn631 variant alleles with reductions in morbidity, early mortality, viral shedding, and cytokine responses in chickens infected with a highly pathogenic avian influenza virus. Immunogenetics 63, 363–375 (2011).
    • 46 Verhelst J, Parthoens E, Schepens B, Fiers W, Saelens X. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J. Virol. 86, 13445–13455 (2012).
    • 47 Barber MR, Aldridge JR Jr, Webster RG, Magor KE. Association of RIG-I with innate immunity of ducks to influenza. Proc. Natl Acad. Sci. USA 107, 5913–5918 (2010).
    • 48 Weber M, Sediri H, Felgenhauer U et al. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe 17(3), 309–319 (2015). • Exemplary elucidation of the role of host-specific factors in influenza virus virulence.
    • 49 Schrauwen EJ, Fouchier RA. Host adaptation and transmission of influenza A viruses in mammals. Emerg. Microb. Infect. 3(2), e9 (2014).
    • 50 Myers KP, Olsen CW, Gray GC. Cases of swine influenza in humans: a review of the literature. Clin. Infect. Dis. 44(8), 1084–1088 (2007).
    • 51 Thacker E, Janke B. Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas. J. Infect. Dis. 197(Suppl. 1), S19–S24 (2008).
    • 52 Vincent AL, Ma W, Lager KM, Janke BH, Richt JA. Swine influenza viruses a North American perspective. Adv. Virus Res. 72, 127–154 (2008).
    • 53 Bowman AS, Sreevatsan S, Killian ML et al. Molecular evidence for interspecies transmission of H3N2pM/H3N2v influenza A viruses at an Ohio agricultural fair, July 2012. Emerg. Microb. Infect. 1(10), e33 (2012).
    • 54 Jhung MA, Epperson S, Biggerstaff M et al. Outbreak of variant influenza A(H3N2) virus in the United States. Clin. Infect. Dis. 57(12), 1703–1712 (2013).
    • 55 Lindstrom S, Garten R, Balish A et al. Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011. Emerg. Infect. Dis. 18(5), 834–837 (2012).
    • 56 Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459(7249), 931–939 (2009).
    • 57 Pappas C, Aguilar PV, Basler CF et al. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc. Natl Acad. Sci. USA 105(8), 3064–3069 (2008).
    • 58 Tumpey TM, Basler CF, Aguilar PV et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310(5745), 77–80 (2005).
    • 59 Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc. Natl Acad. Sci. USA 102(51), 18590–18595 (2005).
    • 60 Schrauwen EJ, Richard M, Burke DF, Rimmelzwaan GF, Herfst S, Fouchier RA. Amino acid substitutions that affect receptor binding and stability of the hemagglutinin of influenza A/H7N9 virus. J. Virol. 90(7), 3794–3799 (2016).
    • 61 Dortmans JC, Dekkers J, Wickramasinghe IN et al. Adaptation of novel H7N9 influenza A virus to human receptors. Sci. Rep. 3, 3058 (2013).
    • 62 Bi Y, Xie Q, Zhang S et al. Assessment of the internal genes of influenza A (H7N9) virus contributing to high pathogenicity in mice. J. Virol. 89(1), 2–13 (2015).
    • 63 Herfst S, Schrauwen EJA, Linster M et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336(6088), 1534–1541 (2012). •• Key paper in understanding receptor-based features of the mammalian adaptation of avian influenza viruses.
    • 64 Imai M, Watanabe T, Hatta M et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486(7403), 420–428 (2012).
    • 65 Mänz B, Dornfeld D, Götz V et al. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein. PLoS Pathog. 9(3), e1003279 (2013).
    • 66 Götz V, Magar M, Dornfeld D et al. Influenza A viruses escape from MxA restriction 1 at the expense of efficient 2 nuclear vRNP import. Sci. Rep. 6, 23138 (2016).
    • 67 Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 67(4), 1761–1764 (1993).
    • 68 Yamada S, Hatta M, Staker BL et al. Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog. 6(8), e1001034 (2010).
    • 69 Leibler JH, Otte J, Roland-Holst D et al. Industrial food animal production and global health risks: exploring the ecosystems and economics of avian influenza. Ecohealth 6, 58–70 (2009).
    • 70 Zhou X, Li Y, Wang Y, Edwards J et al. The role of live poultry movement and live bird market biosecurity in the epidemiology of influenza A (H7N9): a cross-sectional observational study in four eastern China provinces. J. Infect. 71(4), 470–479 (2015).
    • 71 Yu H, Wu JT, Cowling BJ et al. Effect of closure of live poultry markets on poultry-to-person transmission of avian influenza A H7N9 virus: an ecological study. Lancet 383(9916), 541–548 (2014).
    • 72 Peiris JS, Cowling BJ, Wu JT et al. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia. Lancet Infect. Dis. 16(2), 252–258 (2016). • Sketches new lines of interventions that also tackle longstanding socio-cultural conventions in poultry rearing and trading.
    • 73 Swayne DE, Spackman E. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza. Dev. Biol. (Basel) 135, 79–94 (2013).
    • 74 Sitaras I, Kalthoff D, Beer M, Peeters B, de Jong MC. Immune escape mutants of highly pathogenic avian influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein. PLoS ONE 9(2), e84628 (2014).