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Afatinib-based combination regimens
for the treatment of solid tumors:
rationale, emerging strategies and recent
progress

Jaafar Bennouna*' & Shanti Ricardo Moreno Vera?

In oncology, there is a clinical need for novel combination therapy regimens that maximize
efficacy and delay resistance to individual treatment modalities. Given the role of aberrant
ErbB receptor signaling in the pathogenesis of many human cancers, there is rationale
for incorporating afatinib, an irreversible pan-ErbB tyrosine kinase inhibitor, into such
combinations. This review focuses on: pharmacological properties of afatinib that facilitate
its use in combination; preclinical rationale for the combination of afatinib with other
agents; and recently completed, and ongoing, clinical trials of afatinib-based combinations
across tumor types. Based on these data, we emphasize a number of areas of high unmet
medical need that could benefit from afatinib-based combinations, including patients with
relapsed/refractory non-small-cell lung cancer.
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For many years it has been recognized that the ErbB family of receptors, comprising the EGFR
(ErbB1), HER2 (ErbB2), HER3 (ErbB3) and HER4 (ErbB4) play a fundamental role in the
pathogenesis of several human cancers [1]. Key examples include (but are not restricted to): the
role of EGFR mutations in a subset of non-small-cell lung cancers (NSCLC) [2.3]; dysregulation
of ErbB receptors in patients with squamous cell carcinoma (SCC) of the lung and head and
neck [4]; amplification and/or mutation of HER2 in breast and gastric cancer [5,6]; oncogenic ErbB3
mutations in colon and breast cancer [7); HER4 mutations in melanoma [8]; and overexpression
of EGFR and HER2 in urothelial and bladder cancer [9-12]. While the normal physiological role
of the ErbB receptors is to regulate cellular proliferation, molecular aberrations lead to the aber-
rant activation of a myriad of intracellular signaling pathways including Ras/Raf/MEK/ERK and
PI3K/Akt/TOR, leading to tumorigenesis [4]. Based on this accumulated knowledge, a number
of therapeutic approaches have been developed to target ErbB receptors in patients with cancer,
including small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies. Such agents
have demonstrated striking efficacy, with acceptable tolerability, in the clinic.

Although ErbB receptor-targeted therapies have undoubtedly revolutionized the treatment of
several cancers over the past decade or more, there remains a considerable challenge in that almost
all patients ultimately relapse on these treatments. The selective pressure of targeting specific path-
ways/molecules inevitably leads to the emergence and propagation of cancer cells that are resist-
ant to treatment, ultimately leading to disease progression. The molecular basis for resistance is
twofold: either the target itself accrues mutations that prevent interaction with the drug, or tumor
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cells bypass inhibition via crosstalk and feedback
loops of intracellular pathways [13]. There is a
rationale, therefore, for the development of novel
treatment regimens that target multiple aberrant
pathways, with a view to eliciting more durable
clinical responses.

The irreversible ErbB family blocker, afatinib,
was developed with the aim of delaying acquired
resistance, thus improving clinical outcomes ver-
sus first-generation EGFR inhibitors. Indeed,
across a range of therapy areas and indications,
afatinib monotherapy has demonstrated dura-
ble clinical activity that appears to compare
favorably with other targeted therapies. In two
Phase III trials in patients with EGFR mutation-
positive NSCLC, first-line afatinib significantly
improved progression-free survival (PES) versus
platinum-based chemotherapy [14.15], including
patients with uncommon EGFR mutations [16]
and other difficult-to-treat patient subpopula-
tions such as those with asymptomatic brain
metastases [17]. In contrast to first-generation
EGFR-TKIs, afatinib conferred overall survival
(OS) advantage in patients with De/l9 EGFR
mutations in both trials, based on prespeci-
fied subanalyses [18,19]. Also, perhaps due to its
broader inhibitory profile, afatinib has recently
demonstrated superior PES and OS versus erlo-
tinib in patients with relapsed/refractory SCC
of the lung, a disease characterized by over-
expression of EGFR and a heterogeneous mix
of molecular aberrations affecting other ErbB
receptors and their downstream pathways [20].
Another recent Phase III study demonstrated
that afatinib improved PES versus methotrexate
in patients with SCC of the head and neck
(HNSCC) who had progressed on platinum-
based chemotherapy, thus achieving its primary
end point [21].

In all these trials, afatinib had a well-defined
safety profile with predominantly gastroin-
testinal and cutaneous adverse events (AEs).
The most frequent treatment-related grade >3
AEs with afatinib were diarrhea (5.4-14.4%),
rash/acne (9.7-16.2%) and stomatitis/mucositis
(5.4-8.7%). There is a paucity of direct head-
to-head data to facilitate direct comparisons of
the safety profile of afatinib and first-generation
EGFR-TKIs. The only published head-to-head
trial that has directly compared afatinib with
a first-generation TKI (erlotinib in patients
with SCC of the lung) showed that the overall
grade >3 AFE burden (afatinib: 57.1%; etlotinib:
57.5%) and serious AEs (44.1% in both arms)
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were similar [20]. The most frequent treatment-
related grade >3 AEs were diarrhea (afatinib:
10.5%; erlotinib: 2.5%), rash/acne (afatinib:
5.9%; erlotinib: 10.4%) and stomatitis (afatinib:
4.1%; erlotinib: 0%). Moreover, in all clinical
trials to date, a well-established dose reduction
scheme, and supportive care measures, were
generally sufficient to allow patients to remain
on afatinib therapy for as long as they experi-
enced clinical benefit without compromising
efficacy [14,1520-22]. Furthermore, all Phase III
trials of afatinib integrated comprehensive
patient-reported outcome (PRO) and health-
related quality-of-life (HRQoL) end points in
their study designs. Notably, afatinib has con-
sistently been associated with improved PROs
and overall HRQoL compared with comparator
arms across trials [21,23,24].

Afatinib has been proven to confer PFS ben-
efit versus other treatment options in EGFR
mutation-positive NSCLC, SCC NSCLC and
HNSCC, probably reflecting the advantages
of ErbB family inhibition; however, responses
are transient. Therefore, there have been inten-
sive efforts in identifying novel afatinib-based
combination regimens that could conceivably
improve duration of response and long-term
outcomes. This review article summarizes pro-
gress to this end and discusses: the pharmaco-
logical characteristics of afatinib that facilitate
combination with other agents; the biological
rationale and preclinical data supporting its
combination with other targeted agents and
chemotherapeutics; and emerging progress in
the clinic with afatinib-based combinations. In
particular, we describe interesting evidence sup-
porting the combination of afatinib with other
ErbB-targeted agents (‘vertical inhibition’).
Also, given the recent emergence of effective
immunotherapeutic agents in cancer, we dis-
cuss the prospects for combining afatinib with
agents such as immune checkpoint inhibitors
and tumor vaccines.

Pharmacological properties of afatinib
that facilitate its use in combination
regimens

¢ Pharmacokinetics

Compared with first-generation EGFR-TKIs,
afatinib has a number of distinctive pharma-
cokinetic properties that potentially facilitate
its use in combination with other agents. A
key difference is the fact that afatinib under-
goes minimal hepatic metabolism and is not a
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substrate for CYP-dependent enzymes [25], thus
reducing the possibility of drug—drug interac-
tions. Also, cigarette smoking, which is well
known to induce key CYP enzymes and can
interfere with the metabolism of first-genera-
tion inhibitors [2627], is unlikely to impact on
afatinib. Furthermore, unlike erlotinib and gefi-
tinib, afatinib is highly soluble throughout the
physiological pH range 1-7.5 and consequently
interactions with acid-reducing drugs, routinely
used in cancer patients, are not expected [28]. As
afatinib is a substrate of p-glycoprotein (p-gp)
and breast cancer resistance protein, it is pos-
sible that drug—drug interactions may occur
with agents that utilize these transporter pro-
teins. Indeed, clinical studies have shown that
ritonavir (a p-gp inhibitor) and rifampicin (a
p-gp inducer) can potentially influence afatinib
exposure [29]. However, these effects can be
mitigated with staggered dosing regimens or
10-mg dose alterations as stipulated in the EU
Summary of Product Characteristics and US
Prescribing Information, respectively [28]. As
with first-generation inhibitors, dose adjust-
ments of afatinib are not routinely required in
patients with hepatic or renal impairment [28];
moreover, patient body weight, age, gender or
ethnicity do not have a clinically relevant effect
on the clearance or exposure of afatinib [30].

¢ Pharmacodynamics & inhibitory profile
When considering the development of novel
drug combination strategies based on EGFR-
TKIs, it is important to note that afatinib has a
different mechanism of action to erlotinib and
gefitinib and blocks signaling from all homodi-
mers and heterodimers formed by ErbB family
members [31]. In contrast to gefitinib and erlo-
tinib, afatinib inhibits EGFR, HER2 and ErbB4
at low nanomolar concentrations in cell-free
in vitro kinase assays, by blocking transphospho-
rylation of tyrosine residues in the C-terminus
(the first step in the activation of ErbB recep-
tors) [3132]. Afatinib also blocks the transphos-
phorylation of ErbB3 by its ErbB partner in the
dimer [32].

Afatinib has consistently demonstrated supe-
rior affinity and potency than first-generation
TKIs against both wild-type EGFR and EGFR
harboring the common activating mutations
L858R and Del19 in cell-free in vitro assays and
cell-based assays, with IC, and EC,| values in
the low nanomolar range [3133,34]. Also, notably,
afatinib inhibits EGFR harboring the resistance
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gatekeeper mutation, 7790M [313334]. As well
as directly inhibiting EtbB receptors, afatinib
has multiple inhibitory effects on downstream
signaling pathways [32]. Afatinib inhibits cellular
growth and induces apoptosis in cell-based and
xenograft models of various tumors associated
with ErbB receptor dysregulation, including
lung, breast, colorectal and pancreatic cancer [32].
Overall, the pharmacological properties of
afatinib indicate that it may represent an attrac-
tive backbone to novel combination regimens
in situations where there is biological ration-
ale for maintaining pan ErbB inhibition while
simultaneously targeting other pathways.

Afatinib-based combination regimens in
solid tumors

e Combination with inhibitors of
intracellular signaling pathways

Once phosphorylated, the tyrosine residues
in the intracellular C-terminal domains of
ErbB receptors activate a myriad of signal-
ing cascades including the PI3K/Akt/mTOR,
Ras/Raf/MEK/ERK and JAK/STAT path-
ways (435]. These pathways demonstrate
remarkable plasticity and cooperate to regu-
late proliferation, apoptosis and angiogenesis
(Figure 1) [4]. There is a rationale, therefore, to
combine afatinib with agents that target these
intracellular pathways. Below, we summarize
the biological rationale for combining afatinib
with inhibitors of specific intracellular pathways
and outline any completed, or ongoing, clinical
trials that have assessed such combinations in
cancer patients.

Afatinib plus PI3K/Akt/mTOR inhibitors

The PI3K/Akt/mTOR pathway is an impor-
tant effector in cell signaling pathways, includ-
ing ErbB signaling, and is deregulated in
many cancers [36]. Furthermore, activation of
PI3K/Akt/mTOR is implicated in the acquired
resistance to EGFR inhibitors, including
afatinib [37].

Several preclinical studies have highlighted
that the combination of PI3K/Akt/mTOR
inhibitors and afatinib is a promising approach
in a range of human malignancies. For example,
combination of PI-103, a dual PI3K and mTOR
inhibitor, with afatinib has demonstrated syner-
gistic inhibitory activity in NSCLC cell lines [38].
Afatinib plus rapamycin, an mTOR inhibitor,
synergistically inhibited lung cancer growth in
a transgenic £GFR-mutation positive NSCLC
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Figure 1. The plasticity of ErbB signaling pathways in the regulation of cell growth.
Adapted by permission from Macmillan Publishers Ltd: Nature Medicine [35] © (2013).

model harboring 7790M as well as transgenic
and xenograft HER2 mutant models [33,39].

To date, few clinical studies have been under-
taken to assess such combinations in patients.
One Phase I trial, however, has assessed the com-
bination of afatinib and sirolimus, an mTOR
inhibitor, in patients with EGFR mutation-pos-
itive NSCLC with disease progression follow-
ing erlotinib and gefitinib (Table 1). Out of 39
patients treated, four (10%) achieved a partial
response (PR) and 23 (59%) had stable disease
(SD) [40]. However, the combination had limited
tolerability due to overlapping dose-limiting tox-
icities of diarrhea and mucositis. All responses
were observed at doses exceeding the maximum
tolerated dose (MTD) of afatinib 30 mg/day and

sirolimus 1 mg/day.

Afatinib plus SRC kinase inhibitors

Preclinical experiments in PCIGR cells, an
EGFR mutation-positive NSCLC cell line har-
boring 7790M, have implicated SRC kinase

in the resistance to afatinib. In proliferation
and apoptosis assays, the SRC kinase inhibitor,
dasatinib, sensitized cells to afatinib [s7]. This
translated into tumor regression in a PCIGR
xenograft mouse model (57]. The combination
of dasatinib and afatinib has also shown syner-
gistic activity against triple-negative breast can-
cer cell lines [58]. The combination is currently
being assessed in a Phase I trial in patients with

NSCLC (NCT01999985, Table 1).

Afatinib plus Ras/Raf/MEK/ERK inhibitors

Oncogenic activation of the Ras/Raf/MEK/
ERK pathway is implicated in the pathogenesis
of about 20-30% human malignancies, largely
due to mutations in RAS [59]. However, to date,
small-molecule inhibitors that target this path-
way have demonstrated only modest activity in
preclinical and clinical studies [60.61]. A recent
in vitro study indicated that upregulation of
ErbB3 may be responsible for intrinsic resistance
to MEK inhibitors. Moreover, experiments in
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KRAS-mutant colorectal (CRC) and NSCLC
cells demonstrated that afatinib acts synergis-
tically with the MEK inhibitors, selumetinib
and trametinib, to inhibit cell proliferation [59].
Interestingly, neither gefitinib nor CP724714
(an ErbB2 inhibitor) demonstrated synergy
with selumetinib, indicating that inhibition of
the whole ErbB family was required to potenti-
ate MEK inhibition [59]. Based on these find-
ings, afatinib plus selumetinib is currently being
assessed in an ongoing Phase I/11 trial in patients
with advanced KRAS-mutant, CRC, NSCLC
and pancreatic cancer (NCT02450656; Table 1).

Afatinib plus JAK/STAT inhibitors

STAT proteins are a family of transcription
factors that play a key role in multiple cellular
functions and are often constitutively activated
in human cancers [62). Interestingly, in recent
preclinical studies, afatinib has been shown to
activate the JAK/STAT pathway in NSCLC cell
lines by upregulating the interleukin-6 recep-
tor [62]. It is thought that this pathway may
mediate de novo resistance to afatinib in NSCLC
cells harboring 7790M. This hypothesis is sup-
ported by experiments in a mouse xenograft
model of H1975, a human EGFR mutation-
positive NSCLC cell line harboring 7790M. In
these experiments, it was found that afatinib and
pyridine-6, a pan-JAK inhibitor, had synergistic
antitumor activity [62]. These findings provided
rationale for a planned Phase I clinical study that
will assess afatinib plus ruxolitinib, a pan-JAK
inhibitor, in patients with pretreated advanced

NSCLC (NCT02145637; Table 1).

e Combination with other growth factor
receptor inhibitors

Afatinib plus VEGFR inhibitors

ErbB and vascular endothelial growth factor
(VEGF) signaling pathways are known to com-
municate in the growth and survival of tumors
(Figure 1); it has been demonstrated that activa-
tion of EGFR in tumor cells stimulates the pro-
duction of VEGEF, which in turn stimulates pro-
liferation and migration of endothelial cells [63].
There is a clear biological rationale, therefore,
for the combination of EGFR inhibitors with
antiangiogenic agents targeting VEGF or its
receptors. However, to date, clinical evaluation
of antibody-based combinations has generally
been disappointing. For example, combina-
tion of VEGF- and EGFR-directed antibodies

(bevacizumab and cetuximab) with standard
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chemotherapy in patients with CRC did not
improve outcomes and reduced HRQoL [64],
possibly reflecting the limited activity of
antibodies on intracellular signaling events [65].

Several preclinical studies indicate that small-
molecule combinations involving afatinib could
have clinical application. For example, in a
human CRC mouse xenograft model, the combi-
nation of afatinib with nintedanib, a multikinase
VEGFR, PDGFR and FGFR inhibitor, showed
strong tumor growth inhibition compared with
either drug alone; in CRC cell lines, the combi-
nation had a synergistic inhibitory effect regard-
less of KRAS status [65]. Combination of afatinib
with antiangiogenic antibodies also appears to
be a promising approach. In mouse xenograft
models of EGFR-Del19/T790M or EGFR-
L858R/T790M NSCLC, the combination of
the VEGF antibody, bevacizumab, and afatinib
showed synergistic antitumor activity [66].

To date, few clinical studies have been under-
taken to assess the combination of afatinib and
antiangiogenic agents. Recently, an afatinib
plus nintedanib regimen was assessed in a
Phase I study in patients with advanced solid
tumors. Unfortunately, the identified MTD
(afatinib, 10 mg/day; nintedanib, 200 mg
twice daily) was considered subtherapeutic
for Phase II evaluation [41]. In another Phase
I study, afatinib (20 mg/day) combined with
bevacizumab (7.5 mg/kg every other week) and
paclitaxel (80 mg/m? weekly) conferred accept-
able tolerability with no relevant drug—drug
interactions [42].

Afatinib plus IGF-IR inhibitors

The IGF-IR signaling axis regulates cell
growth differentiation and survival and its
aberrant activation is implicated in the patho-
genesis of several cancers, as well as resistance
to chemotherapy, radiotherapy and anti-ErbB
agents [67.68]. Several recent preclinical studies
have provided a rationale for the combination
of afatinib with IGF-IR inhibitors. For example,
afatinib plus NVP-AEW541, an IGF-IR TKI
inhibitor, induced synergistic growth inhibition
in a range of pancreatic cancer cell lines [67). In
another study, Lee e a/l. found that the IGF-IR
signaling pathway contributes to afatinib resist-
ance in EGFR mutation-positive NSCLC cells
harboring 7790M [69]. Knockdown of IGF-IR
increased the sensitivity of these cells to afatinib.
Moreover, afatinib plus linsitinib, a potent
small-molecule inhibitor of both IGF-1R and
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an effective dose reduction/interruption scheme.
Recent data indicate that other EGFR-directed
antibodies, when combined with afatinib, are
active in patients with NSCLC who have failed
on erlotinib/gefitinib. In a Phase I /II study of
patients with advanced EGFR mutation-positive
NSCLC (n = 37), afatinib plus nimotuzumab
conferred an ORR of 38%, disease control rate
(DCR) of 81% and median PES of 4.2 months
(95% CI: 2.4—6.0 months) [44].

These data are interesting because they
demonstrate that tumors with acquired resist-
ance to first-generation EGFR-TKIs remain
dependent upon EGEFR signaling for survival.
However, it seems likely that broad ErbB inhi-
bition, as offered by afatinib, is required when
combining a TKI with an antibody; notably,
no overall responses (ORs) have been observed
in trials of cetuximab in combination with
erlotinib or gefitinib [73.74]. This observation
probably reflects the heterogeneity of resist-
ance mechanisms. In addition to accrual of
T790M (49-68% of patients) [75.76], there
is evidence that activation of other tyrosine
kinase receptors, either due to overexpression
or mutations, leads to compensatory signaling
via proliferative pathways known to be inhib-
ited by afatinib, such as PI3K/Akt/mTOR and
JAK2/STATS3 [77]. Receptors implicated in the
resistance to first-generation EGFR inhibitors
include HER2 (71}, ErbB3 (78] and the MET
receptor [79,80].

Despite the ongoing development of third-
generation EGFR-TKIs that are targeted
against 7790M, such as AZD-9291 [81], roci-
letinib (CO-1686) [s2] and BI1482694 (HM-
61713) [83,84] there is a major unmet need for
treatment options in patients with acquired
resistance to reversible EGFR-TKIs, particularly
those with 7790M-negative tumors. In recent
Phase 1/11 studies, AZD9291, rociletinib and
BI1482694 have shown remarkable activity in
patients with 7790M-positive tumors (ORRs
of 55-61%) with favorable AE profiles [81,82,84].
However, response rates were much lower in
patients with 7790M-negative tumors [81-83].
Also, resistance mechanisms to third-generation
inhibitors are currently poorly understood. It
is possible, therefore, that the combination of
afatinib and EGFR-directed antibodies may be a
useful therapeutic option in two areas of unmet
medical need: in patients with 7790M-negative
tumors and in patients with 7790M-positive
tumors who progress on third-generation

Future Oncol. (2016) 12(3)

EGFR-TKIs. With this in mind, it is interest-
ing to note that preclinical studies have identi-
fied increased mTORCI signaling as a putative
resistance mechanism to treatment with afatinib
plus cetuximab, thus revealing a potential thera-
peutic strategy once patients become resistant
to the combination [85]. As well as studies in
patients with acquired resistance to etlotinib/
gefitinib, an ongoing Phase II/I11 study is assess-
ing the combination of afatinib and cetuximab,
versus afatinib alone, in a frontline setting in
patients with EGFR mutation-positive NSCLC
(NCT02438722; Table 1). The combination
is also being assessed in other tumor types. A
Phase II trial is assessing afatinib plus cetuxi-
mab versus cetuximab alone in patients with
chemotherapy-refractory wild-type KRAS
metastatic CRC (NCT01919879).

Afatinib plus HER2 antibodies

Preclinical evidence suggests that, as with EGFR
antibodies, synergism may exist between afatinib
and HER2 monoclonal antibodies. For example,
the combination of afatinib and trastuzumab
was more effective than either agent alone in
inhibiting cell proliferation of eight breast can-
cer cell lines with or without resistance to lapa-
tinib (86]. Indeed, there is a biological rationale
for assessing this combination in patients with
trastuzumab-resistant breast cancer. Preclinical
evidence suggests that EGFR and HER3 expres-
sion is increased after long-term exposure of cell
lines to trastuzumab, leading to primary resist-
ance [87]. Furthermore, HER2/HER3 heter-
odimerization is believed to have a key role in
driving tumorigenesis in HER2-overexpressing
breast cancer [88].

Several early-phase clinical studies have
assessed the combination of afatinib and tras-
tuzumab. In a Phase I study of patients with
advanced or metastatic HER2-positive breast
cancer, the MTD for afatinib was 20 mg daily
plus the recommended weekly dose of trastu-
zumab; however additional dose-limiting tox-
icities were observed in the expansion cohort,
meaning that this combination could not be
recommended for Phase IT development without
strict diarrhea management (45]. In a Phase I/I1
study, patients with locally advanced or operable
breast cancer receiving taxane/anthracycline-
containing chemotherapy were treated with
neoadjuvant afatinib plus trastuzumab. The
combination was well tolerated with a pathologic
complete response rate comparable with other

future science group
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anti-HER2 doublets; however, the trial did not
reach its primary efficacy goal [46].

As well as in breast cancer, the combination
of afatinib and trastuzumab is currently being
assessed in other tumor types. For example, an
ongoing Phase II trial is assessing the combina-
tion in patients with advanced HER2-positive
trastuzumab-refractory esophagogastric cancer
(NCT01522768; Table 1); preliminary data from
this trial indicated that afatinib monotherapy
was well tolerated and showed clinical activ-
ity in this setting [89]; the addition of trastu-
zumab to afatinib was mandated in a protocol
amendment.

e Combination with immune checkpoint
inhibitors

In recent years, there has been a great deal of
interest in the development of therapeutic agents
that target immune checkpoint controls. These
constitute receptor—ligand interactions that
tightly regulate the activation of T cells and thus
modulate the intensity and duration of physi-
ological immune responses [90]. Accumulating
evidence has shown that many tumors hijack
these control mechanisms in order to evade
detection by the immune system [91]. Key check-
point receptors include CTLA4, PD-1 and its
ligand PDL-1; antibodies have been developed
against these targets and have shown remark-
able efficacy in clinical trials in various tumor
types [92]. For example, in recent Phase I1I trials,
the PD-1 inhibitor, nivolumab, increased OS
versus docetaxel (9.2 vs 6.0 months; p < 0.001)
in patients with relapsed/refractory SCC of
the lung, an area of particular unmet medical
need [93]. Nivolumab also increased OS versus
docetaxel in patients with relapsed/refractory
nonsquamous NSCLC (12.2 vs 9.4 months;
p =0.002) [94].

As targeted therapies in oncology are associ-
ated with high response rates but modest PES,
and immunotherapies are associated with dura-
ble tumor control but lower response rates, com-
bination regimens combining targeted agents
and immunotherapies have been proposed and
are undergoing clinical evaluation [95]. There
is a preclinical rationale for combining ErbB
inhibitors and immune therapy. It is known, for
example, that EGFR mutation status is associ-
ated with PDL-1 expression, both in preclini-
cal models and patients with NSCLC [96-98].
Furthermore, activation of EGFR, either by
stimulation with EGF, or due to activating

future science group

mutations, leads to upregulation of PD-LI;
this effect is mediated via the Ras/Raf/MEK/
ERK pathway (99]. Therefore, it is possible that
an immune escape mechanism may contribute
to treatment failure in patients treated with
EGFR-targeted therapies. Furthermore, direct
cytotoxicity of EGFR inhibitors on tumor
cells may release tumor antigens that could
help initiate and potentiate immune responses
facilitated by immunotherapeutic agents [100].
However, there are no preclinical data to sup-
port such an approach with afatinib and, in a
recent study, Chen ez 4/. did not identify syner-
gistic activity between EGFR-TKIs and an anti
PD-1 antibody in a coculture system [99]. Data
from ongoing preclinical studies may inform in
the near future.

Ongoing or planned clinical trials are assess-
ing the combination of afatinib with immu-
notherapies. Afatinib plus pembrolizumab, a
PD-1 inhibitor, is being assessed in an ongo-
ing Phase I study in patients with NSCLC
(NCT02364609; Table 1). Indeed, combina-
tion of immune therapy and afatinib in SCC
could be interesting given the recently observed
efficacy of the two treatment modalities in this
indication [20,93]. As another approach, a clinical
development program is planned that will assess
the combination of afatinib with a self-adju-
vanted mRNA vaccine (CV9202) in patients
with NSCLC. CV9202 targets six antigens
commonly expressed in NSCLC [101].

e Combination with chemotherapeutic
agents

Afatinib plus docetaxel

Preclinical data suggest that afatinib and doce-
taxel may have a synergistic effect on tumor cells;
the combination improved inhibitory activity
against SKOV-3 ovarian carcinoma cells, and
had a greater impact on tumor shrinkage in a
SKOV-3 xenograft mouse model, compared with
single agents [102]. Based on these findings, the
combination has been assessed in early-phase
clinical trials.

A Phase I dose-escalation study assessed
afatinib plus docetaxel in patients with heavily
pretreated advanced cancer (Table 1). The MTD
was afatinib 20 mg/day (days 2-21) and doc-
etaxel 75 mg/m? on day 1 of a 3-week cycle.
Although this regimen had a manageable safety
profile, it was deemed to be suboptimal with
no ORs observed in 31 treated patients [103].
Accordingly, no Phase II recommendations
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were made based on this study. As a different
approach, Awada et al. assessed pulsatile 3-day
administration of afatinib in combination
with docetaxel in patients with advanced solid
tumors (47]. In this Phase I study, the MTD was
afatinib 90 mg/day (days 2—4) and docetaxel
75 mg/m? on day 1 of a 28-day cycle. Of 40
treated patients, 5 (12.5%) had an OR and 9
(22.5%) had durable (=6 treatment cycles) SD.
Treatment was particularly effective in patients
with breast cancer and upper gastrointestinal
cancers; one patient with HER2-positive breast
cancer achieved a complete response (CR). The
most frequent drug-related AEs were alopecia,
diarrhea, stomatitis (all 50%) and rash (40%,
all grade <2). As expected, no drug—drug inter-
actions were observed between afatinib and
docetaxel.

Afatinib plus paclitaxel

Paclitaxel has shown preclinical evidence for
synergism with afatinib [102], possibly reflect-
ing its ability to inactivate p70 S6 kinase lead-
ing to inhibition of the PI3K/Akt/mTOR
pathway [104]. A Phase I study assessed afatinib
plus paclitaxel in patients with advanced solid
tumors (Table 1). This study demonstrated that
the combination was feasible, with an MTD
of afatinib 40 mg/day and paclitaxel 80 mg/
m? weekly [48].

Based on these data, a randomized Phase I11
study (LUX-Lung 5) was undertaken in heavily
pretreated patients with NSCLC who had pro-
gressed following at least one line of chemother-
apy and whose tumors had progressed following
initial disease control (=12 weeks) on erlotinib
or gefitinib and thereafter afatinib monotherapy
(Table 1) [49]. Patients who fulfilled these crite-
ria were randomized 2:1 to receive afatinib
plus paclitaxel (40 mg/day; 80 mg/m?*/weekly,
n = 134) or investigators’ choice of single-agent
chemotherapy (n = 68). PFS (median 5.6 vs
2.8 months; p = 0.003) and ORR (32.1 vs
13.2%; p = 0.005) were significantly improved
with afatinib plus paclitaxel, although there
was no difference in OS. Global health status/
quality-of-life was maintained with the combi-
nation over single-agent chemotherapy, despite
prolonged exposure to treatment in the former
group (133 vs 51 days) [105]. Treatment-related
AEs were consistent with those previously
reported for each agent. These data indicate that
afatinib plus paclitaxel may have clinical utility
in a late-line treatment setting and challenge the

Future Oncol. (2016) 12(3)

clinical orthodoxy of discontinuing one therapy
on progression to be replaced by another and
demonstrate the benefit of continued ErbB tar-
geting post progression. Interestingly, in con-
trast to LUX-Lung 5, recent randomized trials
have demonstrated that continued exposure to
gefitinib or erlotinib, combined with chemother-
apy, did not confer clinical benefit and increased
toxicity versus chemotherapy alone in patients
with activating EGFR mutations progressing
after first-line therapy with a TKI [106,107].

Addition of afatinib to paclitaxel-based
induction regimens has also been assessed in
other clinical trials. A Phase I study assessed
the combination of afatinib plus paclitaxel
and cisplatin in patients with advanced solid
tumors (Table 1) [50]. The MTD was determined
as continuous afatinib 20 mg/day, paclitaxel
175 mg/m? on day 1 and 75 mg/m? cisplatin
on day 1 of 21-day cycles. Antitumor activity
with this combination was promising. Of 26
treated patients, five (19%) responded, includ-
ing two CRs (both with HNSCC) and disease
control was observed in 54% of patients. The
most common AEs were diarrhea (89%), nau-
sea (85%), anemia (62%) and fatigue (62%).
Other, ongoing, early-phase studies are assess-
ing afatinib/paclitaxel/carboplatin-based regi-
mens as induction therapy in patients with
HNSCC (NCT01732640) and oropharyngeal
SCC (NCT01721525).

Afatinib plus vinorelbine

Overexpression of EGFR and HER3, and the
formation of HER2/HERS3 heterodimers, have
been identified as mechanisms of resistance to
trastuzumab in patients with HER2-positive
breast cancer [87.88,108]. There is a biological
rationale, therefore, for assessing afatinib in such
patients. Furthermore, preclinical data indicate
that the activity of afatinib in this setting could
be enhanced by combining it with vinorelbine, a
semisynthetic vinca alkaloid that interferes with
tubulin polymerization and spindle formation
during metaphase [109].

Phase I clinical studies have demonstrated
that the combination of afatinib and vinorelbine
is feasible with an MTD of continuous afatinib
40 mg/day and vinorelbine 25 mg/m? on days
1, 8, 15 and 22 of 28-day cycles (Table 1) [51,52].
The combination was associated with clinical
activity. In one study, tumor shrinkage was
observed in two-thirds of evaluable breast can-
cer patients [s2].
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Based on these studies, a Phase III rand-
omized trial assessed afatinib plus vinorelbine
versus trastuzumab plus vinorelbine in patients
with HER2-overexpressing metastatic breast
cancer who had progressed on trastuzumab
monotherapy [53]. Recruitment to the study
was stopped prematurely after a benefit/risk
assessment by an independent Data Monitoring
Committee was unfavorable for afatinib plus
vinorelbine. PFS (median 5.49 vs 5.55 months)
and ORR (46.1 vs 47.0%) were similar between
treatment arms. However, OS was significantly
longer with trastuzumab plus vinorelbine than
with afatinib plus vinorelbine (median 28.6 vs
20.5 months; p = 0.0048). The most common
treatment-related grade >3 AEs with afatinib
plus vinorelbine were neutropenia (56.4%),
leukopenia (19.0%) and diarrhea (17.8%). The
AEs were as expected based on the individual
drug profiles, but tolerability was poorer versus
trastuzumab plus vinorelbine. It was concluded,
therefore, that trastuzumab-based therapy
remains treatment of choice in patients with
HER2-positive metastatic breast cancer failing
trastuzumab.

A three-arm, randomized, Phase II trial
assessed afatinib monotherapy, afatinib plus
vinorelbine and investigators’ choice of therapy
in patients with HER2-positive breast cancer
progressing with brain metastases after prior tras-
tuzumab and/or lapatinib-based therapy. In this
study, the combination did not improve patient
benefit at 12 weeks (primary end point), PFS or
OS versus investigators’ choice of therapy [54].

Afatinib plus agents that target thymidylate
synthase
In NSCLC and CRC cell lines, afatinib has
shown synergistic anticancer activity with
chemotherapeutic drugs that target thymi-
dylate synthase, such as 5-fluorouracil and pem-
etrexed [72,110]. Such synergism may be attrib-
utable to the observation that afatinib reduces
expression of thymidylate synthase, thus making
cells more susceptible to chemotoxic agents.
Given the apparent synergy, it is possible that
afatinib could be combined with 5-fluorouracil-
based regimens in the clinic. A recent Phase Ib
trial assessed the combination of afatinib plus
5-fluorouracil and cisplatin in patients with
advanced solid tumors [50]. The MTD was
afatinib 30 mg/day on days 5-21 of a 21-day
cycle, cisplatin 75 or 100 mg/m? on day 1 and
5-fluorouracil 750 mg/m? infused continuously

future science group

over days 1-4. In 21 patients treated, the DCR
was 29% of patients, including one CR and four
unconfirmed PRs. The most common grade >3
AEs were decreased appetite (43%), vomiting
(33%) and fatigue (29%). This combination
regimen is currently being assessed in an ongo-
ing Phase II trial in patients with inoperable
gastric cancer (NCT01743365; Table 1).

A Phase I dose escalation trial has assessed the
combination of afatinib (both pulsed-dose and
continuous) in combination with pemetrexed
in patients with advanced solid tumors [55]. The
MTD was identified as continuous afatinib
30 mg/day and pemetrexed 500 mg/m? on
day 1 of a 21-day cycle. Of 23 patients treated,
seven (30%) had disease control, including one
confirmed PR. The most frequent drug-related
AEs were diarrhea (91%), stomatitis (60%),
rash (55%) and fatigue (55%). No relevant

pharmacokinetic interactions were observed.

Afatinib plus gemcitabine

In a Phase I study of 19 patients with relapsed
or refractory solid tumors, the combination of
afatinib and gemcitabine was found to be feasi-
ble with a MTD of continuous afatinib 40 mg/
day and gemcitabine 1000 mg/m? on days 1
and 8 of a 21 day cycle [s6]. The most frequent
AEs were diarrhea (90%) and rash (63%). The
efficacy of the combination was promising, with
three (10%) confirmed PRs and 11 (42%) cases
of SD.

Conclusion & future perspective

In conclusion, afatinib is a promising ‘backbone’
combination partner for a variety of novel regi-
mens across a number of indications. Its phar-
macological properties largely preclude drug—
drug interactions [28]. Moreover, it offers highly
potent, and irreversible, inhibition of signaling
via all ErbB homodimers and heterodimers.
Thus, afatinib can be used to target multiple
‘crosstalk’ and feedback loops of intracellular
signaling pathways that are implicated in loss
of response/resistance to single drugs caused by
HER re-programming. Furthermore, increased
understanding of the molecular basis of how intra-
cellular oncogenic pathways interact have resulted
in the undertaking of clinical trials of afatinib
and other targeted agents including, MEK, SRC,
JAK and mTOR inhibitors. The results of these
trials are awaited with interest. There is also a
biological rationale for combining afatinib with
immunotherapies whose recent emergence look
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to revolutionize treatment algorithms for sev-
eral malignancies. One other particular area of
interest is the apparent effectiveness of ‘vertical’
inhibition regimens that combine afatinib with
other ErbB receptor inhibitors, especially in
tumors with £GFR mutation-positive NSCLC
that are resistant to EGFR-TKIs but do not have
the gatekeeping 7790M mutation. In addition to
combination with targeted agents, there is also a
direct biological rationale for combining afatinib
with existing chemotherapeutic agents. Emerging
clinical evidence indicates that such combinations
could be of clinical utility, especially in patients
with limited treatment options, including those
for whom chemotherapy and prior EGFR inhibi-
tion have failed.

Overall, the development of novel afatinib-
based combinations described herein demon-
strate how increased knowledge of the molec-
ular pathogenesis of tumors, especially with
regards to the role of ErbB signaling cascades,
have helped to drive new therapeutic strategies
that could, in the foreseeable future, improve

treatment outcomes in the clinic for a range of
difficult-to-treat cancers.
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The ErbB family of receptors, EGFR, HER2, HER3 and HER4 play a fundamental role in the pathogenesis of several
human cancers.

Accordingly, the development of ErbB receptor-targeted therapies have revolutionized the treatment of several
malignancies, including non-small-cell lung cancer.

However, almost all patients ultimately relapse on these treatments due to the emergence and propagation of cancer
cells that are resistant to treatment.

There is a rationale for developing novel ErbB-based combination regimens to maximize efficacy and delay resistance
to individual treatment modalities.

Afatinib, an irreversible ErbB family blocker, has a broad ErbB inhibitory profile and is thus expected to block signaling
from all relevant ErbB homo and heterodimers.

Afatinib has low potential for drug—drug interaction making it a suitable combination partner for a variety of other
anti-cancer agents.

There is preclinical rationale for the combination of afatinib with: inhibitors of other intracellular signaling pathways,
including PI3K/Akt/mTOR, SRC kinase, Ras/Raf/MEK/ERK and JAK/STAT; inhibitors of other growth factor receptors
including VEGFR and IGF-1R; other ErbB inhibitors; and immune checkpoint inhibitors. A number of early-phase clinical
trials have been completed, are ongoing, or are planned.

A number of clinical trials have assessed the combination of afatinib with chemotherapeutic agents including
docetaxel, paclitaxel, vinorelbine, 5-fluorouracil and pemetrexed.

A recent Phase lll study, LUX-Lung 5, demonstrated that the combination of afatinib plus paclitaxel improved PFS
versus chemotherapy alone in heavily pretreated patients with non-small-cell lung cancer who had progressed
following >1 line of chemotherapy, erlotinib/gefitinib and afatinib monotherapy (after initially benefiting from these
agents). This data demonstrate the benefit of continued ErbB targeting postprogression.

It is hoped that emerging clinical data from trials of novel afatinib-based combinations will drive the development of
treatment options for a range of difficult-to-treat tumors in various clinical settings.

Future Oncol. (2016) 12(3) future science group
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