We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

A paradigm shift from anatomic to functional and molecular imaging in the detection of recurrent prostate cancer

    Nicholas G Zaorsky

    * Author for correspondence:

    E-mail Address: nicholaszaorsky@gmail.com

    Department of Radiation Oncology, Fox Chase Cancer Center, PA, USA

    ,
    Kosj Yamoah

    Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, PA, USA

    ,
    Madhukar L Thakur

    Department of Radiology, Jefferson Medical College of Thomas Jefferson University, PA, USA

    ,
    Edouard J Trabulsi

    Department of Urology, Jefferson Medical College of Thomas Jefferson University, PA, USA

    ,
    Timothy N Showalter

    Department of Radiation Oncology, University of Virginia, Charlottesville, PA, USA

    ,
    Mark D Hurwitz

    Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, PA, USA

    ,
    Adam P Dicker

    Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, PA, USA

    &
    Robert B Den

    Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, PA, USA

    Published Online:https://doi.org/10.2217/fon.13.196

    ABSTRACT: 

    Approximately a third of men with localized prostate cancer who are treated with external beam radiation therapy (EBRT) or radical prostatectomy (RP) develop biochemical failure (BF). Presumably, BF will progress to distant metastasis and prostate cancer-specific mortality in some patients over subsequent years. Accurate detection of recurrent disease is important because it allows for appropriate treatment selection (e.g., local vs systemic therapy) and early delivery of therapy (e.g., salvage EBRT), which affect patient outcome. In this article, we discuss the paradigm shift in imaging technology in the detection of recurrent prostate cancer. First, we discuss the commonly used morphological and anatomical imaging modalities and their role in the post-RP and post-EBRT settings of BF. Second, we discuss the accuracy of functional and molecular imaging techniques, many of which are under investigation. Further studies are needed to establish the role of imaging techniques for detection of cancer recurrence and clinical decision-making.

    Papers of special note have been highlighted as:

    • of interest

    References

    • 1 Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 63(1), 11–30 (2013).
    • 2 Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 61(4), 212–236 (2011).
    • 3 Grimm P, Billiet I, Bostwick D et al. Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU Int. 109(Suppl. 1), 22–29 (2012).
    • 4 Khan MA, Han M, Partin AW, Epstein JI, Walsh PC. Long-term cancer control of radical prostatectomy in men younger than 50 years of age: update 2003. Urology 62(1), 86–91; discussion: 91–82 (2003).
    • 5 Djavan B, Moul JW, Zlotta A, Remzi M, Ravery V. PSA progression following radical prostatectomy and radiation therapy: new standards in the new Millennium. Eur. Urol. 43(1), 12–27 (2003).
    • 6 Zaorsky NG, Raj GV, Trabulsi EJ, Lin J, Den RB. The dilemma of a rising PSA after local therapy: what are our options? Semin. Oncol. 40(3), 322–336 (2013).
    • 7 King CR. The timing of salvage radiotherapy after radical prostatectomy: a systematic review. Int. J. Radiat. Oncol. Biol. Phys. 84(1), 104–111 (2012).
    • 8 Scattoni V, Montorsi F, Picchio M et al. Diagnosis of local recurrence after radical prostatectomy. BJU Int. 93(5), 680–688 (2004).
    • 9 Beresford MJ, Gillatt D, Benson RJ, Ajithkumar T. A systematic review of the role of imaging before salvage radiotherapy for post-prostatectomy biochemical recurrence. Clin. Oncol. (R. Coll. Radiol.) 22(1), 46–55 (2010). • Provides the recommendations for the current role of post-radical prostatectomy (RP) biochemical failure (BF) imaging for salvage external beam radiation therapy (EBRT).
    • 10 Rouviere O, Vitry T, Lyonnet D. Imaging of prostate cancer local recurrences: why and how? Eur. Radiol. 20(5), 1254–1266 (2010). • Reviews current recommendations for detection of local recurrence (LR) after treatment with various modalities.
    • 11 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J. Clin. Epidemiol. 62(10), 1006–1012 (2009).
    • 12 Coakley FV, Teh HS, Qayyum A et al. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 233(2), 441–448 (2004).
    • 13 Westphalen AC, Coakley FV, Roach M 3rd, Mcculloch CE, Kurhanewicz J. Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5-T endorectal MR imaging and MR spectroscopic imaging for detection. Radiology 256(2), 485–492 (2010).
    • 14 Sciarra A, Panebianco V, Salciccia S et al. Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer. Eur. Urol. 54(3), 589–600 (2008).
    • 15 Zakian KL, Sircar K, Hricak H et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234(3), 804–814 (2005).
    • 16 Haider MA, Chung P, Sweet J et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 70(2), 425–430 (2008).
    • 17 Casciani E, Polettini E, Carmenini E et al. Endorectal and dynamic contrast-enhanced MRI for detection of local recurrence after radical prostatectomy. AJR Am. J. Roentgenol. 190(5), 1187–1192 (2008).
    • 18 Cirillo S, Petracchini M, Scotti L et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur. Radiol. 19(3), 761–769 (2009).
    • 19 Panebianco V, Sciarra A, Lisi D et al. Prostate cancer: 1HMRS-DCEMR at 3 T versus 18F-choline PET/CT in the detection of local prostate cancer recurrence in men with biochemical progression after radical retropubic prostatectomy (RRP). Eur. J. Radiol. 81(4), 700–708 (2012).
    • 20 Kim CK, Park BK, Lee HM. Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3 T diffusion-weighted MRI. J. Magn. Reson. Imaging 29(2), 391–397 (2009).
    • 21 Giannarini G, Nguyen DP, Thalmann GN, Thoeny HC. Diffusion-weighted magnetic resonance imaging detects local recurrence after radical prostatectomy: initial experience. Eur. Urol. 61(3), 616–620 (2012).
    • 22 Ross RW, Zietman AL, Xie W et al. Lymphotropic nanoparticle-enhanced magnetic resonance imaging (LNMRI) identifies occult lymph node metastases in prostate cancer patients prior to salvage radiation therapy. Clin. Imaging 33(4), 301–305 (2009).
    • 23 Koontz BF, Mouraviev V, Johnson JL et al. Use of local 111In-capromab pendetide scan results to predict outcome after salvage radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 71(2), 358–361 (2008).
    • 24 Raj GV, Partin AW, Polascik TJ. Clinical utility of 111indium-capromab pendetide immunoscintigraphy in the detection of early, recurrent prostate carcinoma after radical prostatectomy. Cancer 94(4), 987–996 (2002).
    • 25 Wilkinson S, Chodak G. The role of 111indium-capromab pendetide imaging for assessing biochemical failure after radical prostatectomy. J. Urol. 172(1), 133–136 (2004).
    • 26 Hinkle GH, Burgers JK, Neal CE et al. Multicenter radioimmunoscintigraphic evaluation of patients with prostate carcinoma using 111indium capromab pendetide. Cancer 83(4), 739–747 (1998).
    • 27 Elgamal AA, Troychak MJ, Murphy GP. ProstaScint scan may enhance identification of prostate cancer recurrences after prostatectomy, radiation, or hormone therapy: analysis of 136 scans of 100 patients. Prostate 37(4), 261–269 (1998).
    • 28 Ramirez De Molina A, Rodriguez-Gonzalez A, Gutierrez R et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem. Biophys. Res. Commun. 296(3), 580–583 (2002).
    • 29 Bander NH, Trabulsi EJ, Kostakoglu L et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J. Urol. 170(5), 1717–1721 (2003).
    • 30 Pandit-Taskar N, O’Donoghue JA, Morris MJ et al. Antibody mass escalation study in patients with castration-resistant prostate cancer using 111In-J591: lesion detectability and dosimetric projections for 90Y radioimmunotherapy. J. Nucl. Med. 49(7), 1066–1074 (2008).
    • 31 Seltzer MA, Barbaric Z, Belldegrun A et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J. Urol. 162(4), 1322–1328 (1999).
    • 32 Chang CH, Wu HC, Tsai JJ, Shen YY, Changlai SP, Kao A. Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol. Int. 70(4), 311–315 (2003).
    • 33 Nunez R, Macapinlac HA, Yeung HW et al. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J. Nucl. Med. 43(1), 46–55 (2002).
    • 34 Schoder H, Herrmann K, Gonen M et al. 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin. Cancer Res. 11(13), 4761–4769 (2005).
    • 35 Vees H, Buchegger F, Albrecht S et al. 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/ml) after radical prostatectomy. BJU Int. 99(6), 1415–1420 (2007).
    • 36 Picchio M, Briganti A, Fanti S et al. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur. Urol. 59(1), 51–60 (2011).
    • 37 Scattoni V, Picchio M, Suardi N et al. Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur. Urol. 52(2), 423–429 (2007).
    • 38 Giovacchini G, Picchio M, Briganti A et al. [11C]choline positron emission tomography/computerized tomography to restage prostate cancer cases with biochemical failure after radical prostatectomy and no disease evidence on conventional imaging. J. Urol. 184(3), 938–943 (2010).
    • 39 Reske SN, Blumstein NM, Glatting G. [11C] choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 35(1), 9–17 (2008).
    • 40 Castellucci P, Fuccio C, Nanni C et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J. Nucl. Med. 50(9), 1394–1400 (2009).
    • 41 De Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur. Urol. 44(1), 32–38; discussion 38–39 (2003).
    • 42 Rinnab L, Simon J, Hautmann RE et al. [11C] choline PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy. World J. Urol. 27(5), 619–625 (2009).
    • 43 Breeuwsma AJ, Pruim J, Van Den Bergh AC et al. Detection of local, regional, and distant recurrence in patients with PSA relapse after external-beam radiotherapy using (11)-choline positron emission tomography. Int. J. Radiat. Oncol. Biol. Phys. 77(1), 160–164 (2010).
    • 44 Giovacchini G, Picchio M, Scattoni V et al. PSA doubling time for prediction of [11C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 37(6), 1106–1116 (2010).
    • 45 Giovacchini G, Picchio M, Coradeschi E et al. Predictive factors of [11C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 37(2), 301–309 (2010).
    • 46 Castellucci P, Fuccio C, Rubello D et al. Is there a role for 11C-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5 ng/ml? Eur. J. Nucl. Med. Mol. Imaging 38(1), 55–63 (2011).
    • 47 Langsteger W, Balogova S, Huchet V et al. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q. J. Nucl. Med. Mol. Imaging 55(4), 448–457 (2011).
    • 48 Heinisch M, Dirisamer A, Loidl W et al. Positron emission tomography/computed tomography with 18F-fluorocholine for restaging of prostate cancer patients: meaningful at PSA < 5 ng/ml? Mol. Imaging Biol. 8(1), 43–48 (2006).
    • 49 Cimitan M, Bortolus R, Morassut S et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur. J. Nucl. Med. Mol. Imaging 33(12), 1387–1398 (2006).
    • 50 Schmid DT, John H, Zweifel R et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235(2), 623–628 (2005).
    • 51 Husarik DB, Miralbell R, Dubs M et al. Evaluation of [18F]-choline PET/CT for staging and restaging of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 35(2), 253–263 (2008).
    • 52 Pelosi E, Arena V, Skanjeti A et al. Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. La Radiologia Medica 113(6), 895–904 (2008).
    • 53 Oyama N, Miller TR, Dehdashti F et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J. Nucl. Med. 44(4), 549–555 (2003).
    • 54 Fricke E, Machtens S, Hofmann M et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 30(4), 607–611 (2003).
    • 55 Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 29(10), 1380–1384 (2002).
    • 56 Wachter S, Tomek S, Kurtaran A et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J. Clin. Oncol. 24(16), 2513–2519 (2006).
    • 57 Beheshti M, Vali R, Waldenberger P et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur. J. Nucl. Med. Mol. Imaging 35(10), 1766–1774 (2008).
    • 58 Futterer JJ. Imaging of recurrent prostate cancer. Radiol. Clin. North Am. 50(6), 1075–1083 (2012). • Provides a concise review of the role of MRI in the detection of recurrent prostate cancer.
    • 59 Martino P, Scattoni V, Galosi AB et al. Role of imaging and biopsy to assess local recurrence after definitive treatment for prostate carcinoma (surgery, radiotherapy, cryotherapy, HIFU). World J. Urol. 29(5), 595–605 (2011).
    • 60 Mohler JL, Armstrong A, Bahnson RR et al. NCCN Guideline: prostate cancer. Version 2.2013. www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
    • 61 Dotan ZA, Bianco FJ Jr, Rabbani F et al. Pattern of prostate-specific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. J. Clin. Oncol. 23(9), 1962–1968 (2005).
    • 62 Tamsel S, Killi R, Apaydin E, Hekimgil M, Demirpolat G. The potential value of power Doppler ultrasound imaging compared with grey-scale ultrasound findings in the diagnosis of local recurrence after radical prostatectomy. Clin. Radiol. 61(4), 325–330; discussion 323–324 (2006).
    • 63 Drudi FM, Giovagnorio F, Carbone A et al. Transrectal colour Doppler contrast sonography in the diagnosis of local recurrence after radical prostatectomy – comparison with MRI. Ultraschall Med. 27(2), 146–151 (2006).
    • 64 Kane CJ, Amling CL, Johnstone PA et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology 61(3), 607–611 (2003).
    • 65 Sugimura K, Carrington BM, Quivey JM, Hricak H. Postirradiation changes in the pelvis: assessment with MR imaging. Radiology 175(3), 805–813 (1990).
    • 66 Miralbell R, Vees H, Lozano J et al. Endorectal MRI assessment of local relapse after surgery for prostate cancer: a model to define treatment field guidelines for adjuvant radiotherapy in patients at high risk for local failure. Int. J. Radiat. Oncol. Biol. Phys. 67(2), 356–361 (2007).
    • 67 Sella T, Schwartz LH, Swindle PW et al. Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology 231(2), 379–385 (2004).
    • 68 Okotie OT, Aronson WJ, Wieder JA et al. Predictors of metastatic disease in men with biochemical failure following radical prostatectomy. J. Urol. 171(6 Pt 1), 2260–2264 (2004).
    • 69 Gomez P, Manoharan M, Kim SS, Soloway MS. Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU Int. 94(3), 299–302 (2004).
    • 70 Cher ML, Bianco FJ, Jr., Lam JS et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J. Urol. 160(4), 1387–1391 (1998).
    • 71 Picchio M, Giovannini E, Crivellaro C, Gianolli L, Di Muzio N, Messa C. Clinical evidence on PET/CT for radiation therapy planning in prostate cancer. Radiother. Oncol. 96(3), 347–350 (2010). • Provides an overview of PET/computed tomography in radiation planning, with a particular focus on 11C-choline.
    • 72 Scattoni V, Roscigno M, Raber M et al. Multiple vesico-urethral biopsies following radical prostatectomy: the predictive roles of TRUS, DRE, PSA and the pathological stage. Eur. Urol. 44(4), 407–414 (2003).
    • 73 Leventis AK, Shariat SF, Slawin KM. Local recurrence after radical prostatectomy: correlation of US features with prostatic fossa biopsy findings. Radiology 219(2), 432–439 (2001).
    • 74 Deliveliotis C, Manousakas T, Chrisofos M, Skolarikos A, Delis A, Dimopoulos C. Diagnostic efficacy of transrectal ultrasound-guided biopsy of the prostatic fossa in patients with rising PSA following radical prostatectomy. World J. Urol. 25(3), 309–313 (2007).
    • 75 Crook J, Robertson S, Collin G, Zaleski V, Esche B. Clinical relevance of trans-rectal ultrasound, biopsy, and serum prostate-specific antigen following external beam radiotherapy for carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 27(1), 31–37 (1993).
    • 76 Pucar D, Sella T, Schoder H. The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. Curr. Opin. Urol. 18(1), 87–97 (2008).
    • 77 Crook J, Malone S, Perry G, Bahadur Y, Robertson S, Abdolell M. Postradiotherapy prostate biopsies: what do they really mean? Results for 498 patients. Int. J. Radiat. Oncol. Biol. Phys. 48(2), 355–367 (2000).
    • 78 Pollack A, Zagars GK, Antolak JA, Kuban DA, Rosen Li. Prostate biopsy status and PSA nadir level as early surrogates for treatment failure: analysis of a prostate cancer randomized radiation dose escalation trial. Int. J. Radiat. Oncol. Biol. Phys. 54(3), 677–685 (2002).
    • 79 Ahmed HU, Kirkham A, Arya M et al. Is it time to consider a role for MRI before prostate biopsy? Nat. Rev. Clin. Oncol. 6(4), 197–206 (2009).
    • 80 Turkbey B, Choyke PL. Multiparametric MRI and prostate cancer diagnosis and risk stratification. Curr. Opin. Urol. 22(4), 310–315 (2012).
    • 81 Augustin H, Fritz GA, Ehammer T, Auprich M, Pummer K. Accuracy of 3-Tesla magnetic resonance imaging for the staging of prostate cancer in comparison to the Partin tables. Acta Radiol. 50(5), 562–569 (2009).
    • 82 Seitz M, Shukla-Dave A, Bjartell A et al. Functional magnetic resonance imaging in prostate cancer. Eur. Urol. 55(4), 801–814 (2009).
    • 83 Heidenreich A, Bellmunt J, Bolla M et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur. Urol. 59(1), 61–71 (2011).
    • 84 Thompson IM, Valicenti R, Albertsen PC et al. Adjuvant and salvage radiotherapy after prostatectomy: ASTRO/AUA guideline. www.auanet.org/education/guidelines/radiation-after-prostatectomy.cfm
    • 85 Hom JJ, Coakley FV, Simko JP et al. Prostate cancer: endorectal MR imaging and MR spectroscopic imaging–distinction of true-positive results from chance-detected lesions. Radiology 238(1), 192–199 (2006).
    • 86 Rouviere O, Valette O, Grivolat S et al. Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor–correlation with biopsy findings. Urology 63(5), 922–927 (2004).
    • 87 Ocak I, Bernardo M, Metzger G et al. Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am. J. Roentgenol. 189(4), W192–W201 (2007).
    • 88 Harisinghani MG, Barentsz J, Hahn PF et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348(25), 2491–2499 (2003).
    • 89 Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol. 12(2), 181–191 (2011). • Provides an overview of current and future targets in radionuclide imaging and hybrid imaging for assessment of recurrent prostate cancer.
    • 90 Bouchelouche K, Tagawa ST, Goldsmith SJ, Turkbey B, Capala J, Choyke P. PET/CT imaging and radioimmunotherapy of prostate cancer. Semin. Nucl. Med. 41(1), 29–44 (2011). • Reviews the current status and future directions of PET/CT and radioimmunoscintigraphy in prostate cancer.
    • 91 Petronis JD, Regan F, Lin K. Indium-111 capromab pendetide (ProstaScint) imaging to detect recurrent and metastatic prostate cancer. Clin. Nucl. Med. 23(10), 672–677 (1998).
    • 92 Deb N, Goris M, Trisler K et al. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin. Cancer Res. 2(8), 1289–1297 (1996).
    • 93 Wynant GE, Murphy GP, Horoszewicz JS et al. Immunoscintigraphy of prostatic cancer: preliminary results with 111In-labeled monoclonal antibody 7E11-C5.3 (CYT-356). Prostate 18(3), 229–241 (1991).
    • 94 Nagda SN, Mohideen N, Lo SS et al. Long-term follow-up of 111In-capromab pendetide (ProstaScint) scan as pretreatment assessment in patients who undergo salvage radiotherapy for rising prostate-specific antigen after radical prostatectomy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 67(3), 834–840 (2007).
    • 95 Machtens S, Serth J, Meyer A et al. Positron emission tomography (PET) in the urooncological evaluation of the small pelvis. World J. Urol. 25(4), 341–349 (2007).
    • 96 Farsad M, Schiavina R, Castellucci P et al. Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J. Nucl. Med. 46(10), 1642–1649 (2005).
    • 97 Reske SN, Blumstein NM, Neumaier B et al. Imaging prostate cancer with 11C-choline PET/CT. J. Nucl. Med. 47(8), 1249–1254 (2006).
    • 98 Giovacchini G, Picchio M, Coradeschi E et al. [11C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur. J. Nucl. Med. Mol. Imaging 35(6), 1065–1073 (2008).
    • 99 Schilling D, Schlemmer HP, Wagner PH et al. Histological verification of 11C-choline-positron emission/computed tomography-positive lymph nodes in patients with biochemical failure after treatment for localized prostate cancer. BJU Int. 102(4), 446–451 (2008).
    • 100 Van Poppel H. Is radiotherapy useful in node-positive prostate cancer patients after radical prostatectomy? Eur. Urol. 55(5), 1012–1013 (2009).
    • 101 Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J. Nucl. Med. 52(1), 81–89 (2011).
    • 102 Albrecht S, Buchegger F, Soloviev D et al. 11C-acetate PET in the early evaluation of prostate cancer recurrence. Eur. J. Nucl. Med. Mol. Imaging 34(2), 185–196 (2007).
    • 103 Swinnen JV, Van Veldhoven PP, Timmermans L et al. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem. Biophys. Res. Commun. 302(4), 898–903 (2003).
    • 104 Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J. Nucl. Med. 47(2), 287–297 (2006).
    • 105 Jadvar H, Desai B, Ji L et al. Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin. Nucl. Med. 37(7), 637–643 (2012).
    • 106 Even-Sapir E, Metser U, Flusser G et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J. Nucl. Med. 45(2), 272–278 (2004).
    • 107 Beattie BJ, Smith-Jones PM, Jhanwar YS et al. Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J. Nucl. Med. 51(2), 183–192 (2010).
    • 108 Dehdashti F, Picus J, Michalski JM et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur. J. Nucl. Med. Mol. Imaging 32(3), 344–350 (2005).
    • 109 Hong H, Zhang Y, Sun J, Cai W. Positron emission tomography imaging of prostate cancer. Amino Acids 39(1), 11–27 (2010).
    • 110 Clinical trials database. http://clinicaltrials.gov
    • 111 A Phase 2 diagnostic imaging study with 99mTc-MIP-1404 in men with high-risk prostate cancer scheduled for radical prostatectomy (RP) and extended pelvic lymph node dissection (EPLND) compared to histopathology. http://clinicaltrials.gov/show/NCT01667536
    • 112 Hurwitz MD, Zaorsky NG. Image-guided focused ultrasound for the treatment of bone metastases: current status and future direction. Curr. Radiol. Rep. 10(3), 1–7 (2013).
    • 113 Vogelzang N, Parker C, Nilsson S et al. Updated analysis of radium-223 dichloride (Ra-223) impact on skeletal-related events (SRE) in patients with castration-resistant prostate cancer (CRPC) and bone metastases from the Phase III randomized trial (ALSYMPCA). J. Clin. Oncol. 31(Suppl. 6), Abstract 11 (2013).