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Inflammation in the tumor microenvironment is a complicit and known carcinogenesis driver. Inhibition
of IL-1β, one of the most abundant and influential cytokines in the tumor microenvironment, may
enhance the efficacy of PD-1. In a post-hoc analysis of phase III cardiovascular CANTOS trial, canakinumab,
a monoclonal anti-IL-1β antibody, significantly reduced lung cancer incidence. Immune checkpoint
inhibition (ICI) is the standard of care in non-small-cell lung cancer. However, ICI efficacy is heavily impacted
by programmed death ligand-1 (PD-L1) status. Most patients with non-small-cell lung cancer have low
PD-L1 expression levels. Thus, combinational strategies are needed to improve ICI efficacy and expand its
use. Here, we describe the preclinical and clinical evidence to support the combination of IL-1β and PD-1
under investigation in the CANOPY program. The perioperative use of canakinumab with or without PD-1
inhibition in the CANOPY-N trial is described as a potential chemotherapy-free immunotherapy strategy.

Plain language summary: IL-1β is a small molecule involved in the spreading of cancer cells and scouting
for cells that work against the body’s protective inflammatory response. In a follow-up analysis of
the CANTOS study, people with atherosclerosis who received canakinumab, a drug which limits the
activity of IL-1β in the body, were diagnosed with lung cancer less often than people who received an
inactive substance. Immunotherapy is a treatment that can boost the natural defenses of the immune
system, but how well it works varies from patient to patient. Recent efforts aim to understand whether
blocking unhealthy inflammation with canakinumab and stimulating the body’s protective system with
immunotherapy at the same time could be an efficacious treatment for patients with lung cancer.
Currently there are limited data from experiments in cell and animal models; however, data from the
ongoing CANOPY-N clinical trial, which is investigating this treatment combination prior to surgery for
patients with lung cancer, are expected by the first half of this year.
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The hallmarks of cancer include sustaining proliferative signaling, evading growth suppressors, activating invasion
and metastasis, enabling replicative immortality, inducing angiogenesis and resisting cell death [1]. A key mediator
of lung carcinogenesis, dysregulated inflammation, has been described as an enabling characteristic of malignancy,
tumor suppressor inactivation and oncogene activation [1–5]. Dysregulated, chronic inflammatory conditions or
infections can contribute to tumor initiation and development. Chronic obstructive pulmonary disease, inflamma-
tory bowel disease and chronic hepatitis are associated with higher incidences of lung cancer, colorectal cancer and
hepatocellular carcinoma, respectively [6–8].
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Figure 1. The role of inflammation in tumorigenesis. Several factors can lead to the activation of inflammatory
mediators that contribute to the increasing genetic instability and mutagenesis in cancer cells. This, in turn, can
enhance the dysregulated protumor inflammation in the tumor microenvironment fueled by inflammatory
mediators. This protumor inflammation in the tumor microenvironment causes immunosuppression, facilitates cancer
cell survival and proliferation and induces angiogenesis and metastasis.

Protumor inflammation is a characteristic that underpins several of the hallmarks of cancer through multi-
ple mechanisms, such as the production of growth factors, angiogenic factors and extracellular matrix-modifying
enzymes that facilitate angiogenesis, invasion and metastasis and the production of reactive oxygen species with
mutagenic potential [1,3]. Disruption of the balance between antitumor immune responses, mediated by innate and
adaptive immunity and protumor inflammation, can lead to immune escape and tumor growth [9–11]. Here, we
review the role of dysregulated, chronic, protumor inflammation in mediating immunosuppression in the tumor
microenvironment (TME) and the importance of interleukin (IL)-1β in chronic inflammation and immunosup-
pression in carcinogenesis. We also examine evidence supporting the rationale for combined IL-1β and immune
checkpoint inhibition as a novel therapeutic strategy in non-small-cell lung cancer (NSCLC).

Inflammation & carcinogenesis
Inflammation is critical for tissue repair, regeneration and remodeling, all of which are essential for tissue home-
ostasis regulation [9]. Chronic inflammation can contribute to the pathogenesis of several diseases, and can promote
cancer development at all stages of tumorigenesis (Figure 1) [2,4,9,12]. Cellular stress initiates a cascade of transcrip-
tion factors and proinflammatory cytokines that drive chronic inflammation via multiprotein complexes called
inflammasomes [13–15]. Inflammasomes act as intracellular signaling hubs, whose activation modulates the immune
system, promoting or suppressing cancer development; aberrant inflammasome signaling fuels inflammation in the
TME and leads to cancer [13,14]. Growing evidence implicates infections and environmental factors such as diet,
gut microbiota and inhaled particulates in inflammasome signaling [13,16]. Inflammatory mediators induce genetic
instability and accumulation of genetic mutations in cancer cells, leading to atypical signaling and subsequent
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chronic inflammation. Although the mechanism is not yet fully understood, one model suggests that IL-1β–
mediated induction of mutagenic reactive oxygen species promotes the formation of pre-malignant lesions [17].
IL-1β, via NF-κB, drives expression of protumorigenic genes involved in cell proliferation, differentiation and
apoptosis and leads to the accumulation of mutations in premalignant cells [18–20].

Inflammatory cytokines increase the activity of the activation-induced cytidine deaminase enzyme that can
contribute to genomic instability and mutations in many types of cancers [21]. IL-1β-driven inflammation induced
by commensal microbiota in the lung can also promote development of lung adenocarcinoma [22]. In the TME,
dysregulated inflammation is associated with uncontrolled cellular proliferation, apoptosis resistance, cancer cell
survival, angiogenesis, metastasis, immune suppression and resistance to therapy [3,5].

Chronic inflammation can modulate the cellular plasticity of cancer, stromal and inflammatory cells within the
TME; thereby, facilitating cancer development and progression [3,9]. NF-κB-regulated cytokines controlling the
inflammatory milieu act on cancer cells. This activates downstream oncogenic signaling pathways such as ERK,
which results in production of inflammatory mediators and activation and recruitment of immune and stromal
cells to the TME [9].

The complex interaction of immune cell infiltrates and stromal cells in the TME has dual roles of anti- and
protumor functions [9]. Antigen-presenting cells prime the antitumor function of cytotoxic cluster of differentiation
(CD)8+ T cells to detect and eliminate immunogenic tumor cells [15]. Conversely, tumor-associated macrophages
(TAMs) trigger inflammatory cytokine production to promote tumor growth [23] and, in later stages of tumor
progression, produce immunosuppressive mediators that attenuate antitumor T-cell function [15]. IL-17-producing
T cells have a dual role in tumors: they contribute to the initiation of malignant tumors and fibrosis, but cause
antitumor regression in late stages of cancer [15].

This evidence collectively supports the concept that immune cell plasticity is influenced heavily by inflammatory
mediators and how anti- and protumor properties of cytokines on epithelial, stromal, immune and cancer cells
sculpt the TME. The terms ‘immunologically hot’ or ‘inflamed’ tumors refer to TMEs with a high influx of T-cell
infiltrates and antitumor immune capacity. ‘Immunologically cold,’ ‘immune-desert’ or ‘non-inflamed’ tumors
are TMEs lacking antitumor properties, as a result of low levels of T cells [9,15,24]. However, these terms do not
consider the essential role of dysregulated, chronic inflammation in creating a tumor-permissive and promoting
microenvironment. There is a need to expand our understanding beyond the ‘hot’ TME, to include ‘dysregulated
inflammation’ or ‘protumor inflammation’ as a critical process in carcinogenesis and target for therapeutic inter-
vention [9]. Promoting a nonspecific ‘hot’ TME may in fact facilitate the seeding of metastasizing cancer cells due
to remodeling of the extracellular matrix into a tumor-permissive microenvironment [25].

IL-1β role in protumor inflammation
IL-1β

IL-1β is one of 11 members of the IL-1 cytokine family and a major agonist of IL-1 receptor (IL-1R)-1 (Fig-
ure 2A) [26–28]. IL-1β signaling recruits an adaptor protein called myeloid differentiation primary response–88
(MyD88) and IL-1R associated kinases [26,27]. This activates the mitogen activated protein kinase pathway and
NF-κB, consequently activating downstream inflammatory pathways [26,27]. In response to cellular stress, inflamma-
somes are assembled (Figure 2B); the nucleotide-binding domain, leucine-rich family, pyrin domain-containing-3
(NLRP3) inflammasome converts the proenzyme procaspase-1 to protease caspase-1. Caspase-1 cleaves the pro-
IL-1β precursor, releases active IL-1β and induces pyroptosis, an inflammation-mediated cell death [13,14,26,27].
IL-1β has many targets and subsequent effects in the TME such as immune cells (e.g., myeloid-derived suppressor
cells (MDSC), natural killer, CD8+), cancer cells (e.g., epithelial–mesenchymal transition (EMT) phenotype) and
inflammatory mediators and cytokines (e.g., IL-6, IL-8, VEGF) (Figure 3).

IL-1β association with cancer
Aberrant IL-1β expression has been associated with lung cancer development, and high expression is associated
with worse prognosis. IL1B –31C>T gene polymorphisms, CT and TT, are all associated with NSCLC [29]. A
meta-analysis of 12 studies identified an association of IL1B –31C>T and +3954C>T polymorphisms with an
increased risk of lung cancer [30]. IL-1β serum levels in patients with NSCLC were significantly higher compared
with healthy controls [31]; this finding was replicated in NSCLC patient subsets of lung adenocarcinoma and lung
squamous cell carcinoma (LUSC) [32]. Some studies have demonstrated a role for IL-1β in reflecting prognosis
or pathological stage of lung cancer. Wu and colleagues reported an association between IL-1β serum levels and
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Figure 2. IL-1β signaling in cancer. (A) The signaling pathway and downstream effects of IL-1β. (B) The role of the
inflammasome in producing IL-1β.
IL: Interleukin; IRAK: Interleukin-1 receptor-associated kinase; MAPK: Mitogen-activated protein kinase; MyD88:
Myeloid differentiation primary response–88; NLRP3: Nucleotide-binding domain, leucine-rich family, pyrin
domain-containing-3.

pathological stage in patients with LUSC [32]. In another study in patients with surgically treated early-stage
NSCLC, increased IL-1β protein levels were significantly associated with poorer prognosis in the adenocarcinoma
subtype [33]. Gene expression analysis from The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer
International Consortium databases reported a significant increase in IL1B transcript expression in basal breast
cancer, a disease with a relatively poor prognosis [34]. IL1B gene expression in primary breast cancer biopsies from
untreated patients was associated with a significant risk of disease recurrence at any site and bone metastasis [35].
High IL-1β expression or production levels are associated with multiple cancer types [35–38]; however, it should be
noted that increased IL-1β signaling has also been associated with infection, such as hepatitis B or Epstein–Barr
virus [39,40]. Nevertheless, the evidence collectively proposes a key role for IL-1β in cancer immunopathogenesis.

IL-1β & immunosuppression
Multiple studies have linked IL-1β either directly or indirectly to the activation and recruitment of MDSCs into the
TME (Figure 3) [17,41–45]. MDSCs are derived from immature myeloid cells from the bone marrow, which migrate
to solid tumors through the circulatory system [46]. MDSCs promote tumor progression by inducing the expansion
of CD4+ CD25+ Foxp3+ Tregs in the TME; this, in turn, downregulates the antitumor function of natural killer
cells and cytotoxic T cells, resulting in immunosuppression [2,46,47]. Once in the TME, some MDSCs differentiate
into immunosuppressive TAMs [46]. The accumulation and retention of MDSCs through the persistence of IL-1β

and other mediators in the TME maintain an immune-suppressive state. IL-1β inhibition may be a strategy to
abrogate MDSC-directed, Treg mediated immunosuppression.
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Figure 3. Targets and effects of IL-1β in the tumor microenvironment.
EMT: Epithelial–mesenchymal transition; ICAM-1: Intercellular adhesion molecule-1; IL: Interleukin; MDSC:
Myeloid-derived suppressor cell; MMP: Matrix metalloproteinase; NK: Natural killer; TAM: Tumor-associated
macrophage; TME: Tumor microenvironment.

IL-1β & tumor invasiveness & metastasis
IL-1β is an important cytokine in the TME that promotes invasiveness and metastasis, providing further rationale
to target IL-1β in cancer (Figure 3) [48]. IL-1β is a potent regulator of the cyclooxygenase 2/prostaglandin E2

pathway, which modulates invasion, EMT, apoptosis resistance and angiogenesis [49]. In a study of lung cancer
cell lines, IL-1β promoted metastasis via stimulation of inflammatory mediators, such as IL-6, IL-8, VEGF and
intercellular adhesion molecule 1 [50]. In another study, NSCLC A549 cell lines cultured with chronic IL-1β

stimulation for 21 days progressed to an EMT phenotype that is associated with cancer metastasis, migratory and
invasive functions and apoptotic resistance. The EMT phenotype was sustained for 30 days after IL-1β withdrawal,
suggesting a role for IL-1β exposure in EMT memory [51]. As such, EMT may be induced by chronic IL-1β exposure
and persists despite elimination of the initial inflammatory trigger [51]. Additionally, spontaneous lung metastases
were observed in wild-type mice injected with 4T1 mammary carcinoma cells, but not in IL-1β knockout mice,
suggesting a role for IL-1β in lung cancer progression [43]. IL-1β increases cell invasiveness in other cancer types,
namely breast cancer [35,43,52,53]. Exogenous recombinant IL-1 has also been shown to induce production of growth
and invasiveness-promoting factors [20]. These data together support IL-1 and IL-1β as being involved in controlling
tumor growth and invasion.

Interleukin-1β & angiogenesis
The role of IL-1β in angiogenesis is well established (Figure 3). Increasing IL-1β and VEGF levels are associated
with increased angiogenesis in vitro, as shown with B16 melanoma cells in Matrigel plug invasion assays [42]. In
IL-1β knockout mice, decreased numbers of blood vessels, VEGF-producing cells, and α-smooth muscle actin
levels were reported, indicating reduced angiogenic response [42]. In mice, the injection of recombinant IL-1β or
VEGF led to the production of VEGF and IL-1β, respectively; both induce a potent angiogenic response. The
IL-1β–associated angiogenic response was mediated by VEGF and vice versa, demonstrating crosstalk between the
two angiogenic factors [42].
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Targeting IL-1β inhibition in cancer
Based on the evidence implicating IL-1β in carcinogenesis, inhibiting IL-1β may be a promising therapeutic strategy
in cancer. Wu et al. reported improved prognosis in patients with lung adenocarcinoma or LUSC with low IL-1β

levels [32]. In another study, Wu and colleagues described how IL-1β neutralization may prevent breast cancer
progression [34]. Humanized mice treated with anakinra the IL-1 receptor antagonist anakinra, reduced the mean
breast cancer tumor volume compared with control [34]. IL-1β expression in breast cancer tissues highly correlated
with expression of genes associated with IL-1β cleavage via the inflammasome and caspase-1 [34]. Wu and colleagues
also reported results from a pilot clinical trial (NCT01802970) in 11 patients with HER2-negative breast cancer
receiving anakinra 100 mg once daily for a 2 week run-in period, followed by anakinra with weekly chemotherapy
until development of treatment-limiting toxicity or progressive disease [34]. Blood transcriptional analysis of these
patients post-treatment demonstrated downregulation of the expression of genes encoding inflammatory cytokines,
namely IL-1- and IL-6-related and NF-κB associated genes [34]. IL-1 blockade also upregulated expression of genes
encoding cytotoxic function in T cells; therefore, IL-1 inhibition both downregulates inflammation and modifies
the genetic signature to restore antitumor immunity in patients with metastatic breast cancer [34].

IL-1β is a protumorigenic mediator which may explain the lack of effectiveness of NF-κB inhibitors as cancer
treatments. In genetically altered mice with a myeloid cell-specific deletion of IKKβ, the activator of NF-κB,
exposure to the carcinogen urethane led to an increased number of lung tumors as well as lung neutrophils.
Elevated neutrophils were also present in wild-type mice exposed to urethane and treated with bortezomib, a
proteasome inhibitor which blocks the degradation of the NF-κB inhibitor. This was paired with an increase
of IL-1β protein in the lungs. The correlation between systemic NF-κB inhibition and increased plasma IL-1β

levels was confirmed in a study of 28 chemotherapy-naive patients with advanced (stage III–IV) NSCLC, who
received one cycle of bortezomib followed by standard chemotherapy or combination therapy (NCT01633645) [54].
Treatment with bortezomib significantly increased IL-1β protein levels; IL-1β levels at baseline were significantly
correlated with reduced progression-free survival. Since IL-1β production was increased in tumor models with
NF-κB inhibition, McLoed and colleagues investigated how blocking the IL-1 pathway in combination with
bortezomib would affect tumor growth. The addition of anakinra with bortezomib in murine lung cancer models
significantly reduced tumor growth compared with with anakinra or bortezomib alone. Bortezomib monotherapy
has been shown to be ineffective as a single agent for first-line treatment of NSCLC [55]. These studies support
a causative role for neutrophil-derived IL-1β in lung tumorigenesis and demonstrate that the addition of IL-1R
antagonist to NF-κB inhibition may improve the effectiveness of NF-κB inhibitor therapy; future clinical trials of
anti-IL-1 inhibition and bortezomib in NSCLC are warranted.

Another study demonstrated that the chemotherapy agents gemcitabine and 5-fluorouracil (5-FU) induced IL-1β

production by EL4 tumor-bearing mice via inflammasome activation in MDSCs [56]. The antitumor effects of
5-FU were increased in the absence of Nlrp3 and Casp1 genes, and were further enhanced with the combination of
anakinra. This suggests that IL-1 restrains the effects of 5-FU and therefore, the inhibition of IL-1 in combination
with 5-FU may enhance antitumor function. These studies suggest that combination strategies with IL-1β inhibition
may overcome resistance mechanisms to other therapeutic drugs.

Rationale for combined IL-1β & programmed cell death protein-1 inhibition in cancer
Preclinical data supporting combined targeting of IL-1β & PD-1 in cancer
The relationship between programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) and
IL-1β in humans is poorly understood. IL-1β is a potent proinflammatory cytokine produced by cells of the
innate immune system and PD-L1 is a critical suppressive protein that plays a key role in innate (e.g., natural
killer cells, macrophages and dendritic cells) and adaptive (B and T cells) immune responses and is also expressed
by tumor cells [57–60]. Resected tumor samples from patients with early-stage lung adenocarcinoma showed an
association between IL-1β and IL-6 expression and PD-1 expression, suggesting a possible interaction between
these mediators [61]. In another study, PD-L1 expression correlated with IL-1β expression in HCC tissues [62]. IL-
1β receptor knockdown inhibited PD-L1 expression in M1 macrophages; although, recombinant IL-1β induced
PD-L1 expression in HCC cells [62]. This may suggest a positive feedback mechanism between these molecules,
which may contribute to their synergistic effects in cancer. However, further investigation is required.

Kaplanov and colleagues reported pivotal preclinical murine data on the use of anti-IL-1β and anti-PD-1
combination therapy. Lung metastases were observed in wild-type mice injected with 4T1 mammary carcinoma
cells at 25 days, but not in IL-1β knockout mice, demonstrating a role of IL-1β in lung cancer [43]. This study
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was extended to investigate the effects of combined IL-1β and PD-1 inhibition on tumor growth. At days 4
and 7, 4T1-injected BALB/c mice were treated with anti-IL-1β neutralizing antibodies to reduce IL-1β-mediated
immunosuppression. Mice were treated with anti-PD-1 neutralizing antibodies at day 10 to activate anergized
antitumor T cells, which are in a hyporesponsive state with incomplete activation and increase their recruitment to
the TME. Inhibition of either IL-1β or PD-1 alone only partially reduced tumor growth; combined IL-1β and PD-1
inhibition synergistically and significantly inhibited tumor growth for 30 days and increased tumor infiltrating
CD8+ T-cell frequencies compared with the control [43]. IL-1β neutralization reduced myeloid cell recruitment and
maturation of immunosuppressive macrophages; whereas, PD-1 inhibition increased the frequency of infiltrating
CD8+ T cells, restoring their antitumor function from their previous anergized state [43].

The relationship between IL-1β and PD-L1 expression levels is not fully understood. Among the mechanisms
by which tumor cells evade immune surveillance is expression of immune checkpoint inhibitors ligands such
as PD-L1 and facilitation of CD8+ T cell exhaustion, leading to the suppression of the antitumor immune
response [63]. Existing preclinical evidence in various solid tumor-derived cancer cells suggests that targeting IL-1β

leads to decreased PD-L1 expression. Upregulation by IL-1 of COX-2 and PD-(L)1 in melanoma patient derived
tumor associated fibroblasts was shown to be partially responsible for the inhibition of cytotoxic T-cell function [64].
In a recent study by Li et al., it was demonstrated that chronic IL-1β induced inflammation regulates epithelial-
to-mesenchymal phenotypes via epigenetic modifications in NSCLC [65]. Preclinical evidence in established mouse
models of pancreatic ductal adenocarcinoma has shown that antibody-mediated neutralization of IL-1β significantly
enhanced the antitumor activity of anti-PD-1 and was accompanied by increased tumor infiltration of CD8+ T
cells [66]. The protumor role of IL-1β in pancreatic ductal adenocarcinoma via B lymphocyte-mediated immune
suppression was recently demonstrated in a study where B cells isolated from KRAS-mutant mice overexpressing
IL-1β had much higher expression levels of PD-L1, more regulatory B cells, impaired CD8+ T-cell activation
and promotion of tumorigenesis [67]. Inhibition of malignant tumor growth in IL-1β deficient mice and loss of
the immunosuppressive effect by depletion of CD8+ T cells and blockade of lymphocyte mobilization have been
reported recently [68].

The role of IL-1β as an important mediator of intratumoral immunosuppression is supported by another study
which investigated whether combining IL-1β inhibitors with anti-PD-1 or the multikinase inhibitor cabozantinib
could delay tumor growth though modulation of the myeloid compartment of the TME in a murine model for renal
cell carcinoma (RCC). Mice were treated on day 12 with cabozantinib, anti-PD-1, anti-IL-1β and either anti-PD-1
in combination with anti-IL-1β or cabozantinib in combination with anti-IL-1β [69]. Compared with vehicle, tumor
weights on day 18 were significantly reduced with anti-IL-1β or anti-PD-1 monotherapy [69]. However, the largest
reduction in tumor weight was achieved with anti-IL-1β in combination with anti-PD-1 [69]. Compared with
anti-IL-1β monotherapy, the addition of anti-PD-1 led to a significant decrease in tumor weight [69]. Combined
anti-IL-1β and anti-PD-1 decreased polymorphonuclear MDSC infiltration to a greater degree than anti-PD-1
monotherapy and increased the frequency of M1-like TAMs [69]. This was also noted with anti-IL-1β monotherapy,
suggesting that IL-1β inhibition may block the expansion or recruitment of immunosuppressive MDSCs to the
TME [69]. Anti-IL-1β combined with either anti-PD-1 or cabozantinib led to a more significant reduction in tumor
growth than either agent alone [69].

Both in vivo preclinical murine studies support the rationale to target dysregulated pro-tumor inflammation
with combined anti-IL-1β and anti-PD-1 therapy. IL-1β blockade targets the innate early response and reduces
dysregulated inflammatory cytokine release; whereas, PD-1 blockade targets the antitumor immunity of anergized
T cells [43,70].

Recent studies have highlighted the crosstalk between inflammasomes and PD-(L)1. Further research is needed to
understand how these two pathways are mutually dependent and why targeting a single pathway may be ineffective
in some patients. For example, in a recent study in patients with asymptomatic multiple myeloma, inhibition of the
PD-L1 was correlated with increased IL-1β production, in support of the crosstalk between the two pathways [71].
Combination therapy targeting both innate and adaptive responses may be advantageous in treating both early-
and late-stage lung cancer.

IL-1β inhibition in clinical trials in lung cancer
Clinical inhibition of IL-1β by the high-affinity and specific human monoclonal antibody canakinumab in lung
cancer was first reported in an exploratory analysis of the phase III Canakinumab Anti-inflammatory Throm-
bosis Outcomes Study (CANTOS; NCT01327846) [72–74]. This randomized trial involved 10,061 patients with
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atherosclerosis and myocardial infarction; the canakinumab cohort demonstrated significantly lower incidences of
nonfatal and fatal lung cancer, as well as overall lung cancer mortality, compared with placebo for those patients
with a high-sensitivity C-reactive protein (CRP) level ≥2 mg/l (Figure 4) [72,73]. The impact of canakinumab on
lung cancer incidence was dose-dependent (50, 150 and 300 mg cohorts), with the greatest effect in the 300 mg
group (Figure 4) [72].

Although this was not its primary objective, CANTOS was the first study to demonstrate significantly lower
incidences of lung cancer with canakinumab, providing the rationale for evaluating canakinumab in lung cancer [72].
The CANOPY program (comprising CANOPY-A, CANOPY-1, CANOPY-2 and CANOPY-N) was consequently
developed to assess the efficacy of targeting IL-1β in different settings for the treatment of patients with NSCLC [75].

CANOPY-A (NCT03447769) aims to evaluate adjuvant canakinumab 200 mg subcutaneously (sc.) every
3 weeks (Q3W) versus placebo in 1500 patients with stage IIA–IIIA and IIIB completely resected NSCLC [75,76].
Disease free survival is the primary end point [75]. CANOPY-2 (NCT03626545) aimed to assess canakinumab
200 mg sc. Q3W with docetaxel versus placebo with docetaxel in 226 patients with stage IIIB–IV NSCLC who had
been previously treated with PD-L1 inhibitors and chemotherapy [75]. The primary end point of overall survival
was not met [75,77]. CANOPY-1 and CANOPY-N, which investigate IL-1β and PD-1 inhibition, will be discussed
in more detail in the next section.

Combined IL-1β & PD-1 inhibition in clinical trials in lung cancer
Two clinical trials in the CANOPY program were designed to evaluate combined IL-1β and PD-1 inhibition to
treat patients with NSCLC. CANOPY-1 (NCT03631199) is a phase III trial aimed to assess pembrolizumab plus
platinum-based doublet chemotherapy with or without canakinumab as first-line treatment in previously untreated
stage IIIB/IIIC–IV non squamous and squamous NSCLC [78]. The ongoing CANOPY-N (NCT03968419)
phase II study aims to evaluate either canakinumab or the PD-1 inhibitor pembrolizumab as monotherapy or in
combination as neoadjuvant treatment in resectable, stage IB-IIIA NSCLC [79].

In the safety run-in part of the CANOPY-1 trial (n = 30), patients received canakinumab 200 mg sc. Q3W
with pembrolizumab 200 mg iv. Q3W with either: carboplatin and pemetrexed (nonsquamous); cisplatin and
pemetrexed (nonsquamous); or carboplatin and paclitaxel (squamous or nonsquamous) [80]. Serious adverse events
(AEs) were reported in eight (27%) patients and AEs leading to discontinuation of one of the study drugs were
reported in three (10%) patients; these were unrelated to canakinumab. No fatal serious AEs were reported, and one
dose-limiting toxicity during the first 42 days of study treatment was reported with canakinumab in combination
with pembrolizumab and chemotherapy. The recommended phase III regimen of canakinumab was confirmed as
200 mg sc. Q3W with standard dose of pembrolizumab and chemotherapy and considered safe and well tolerated.
These data show no new safety concerns. In a recent press release, it was announced that CANOPY-1 did not meet
its primary end points. However, the data suggest that some patient subgroups may benefit from canakinumab
treatment and additional biomarker driven analyses to identify those patients are ongoing [78,80,81].

CANOPY-N is ongoing at the time of writing [82]. Surgical resection will be performed approximately 4–6 weeks
from study drug administration (either canakinumab or pembrolizumab as monotherapy or a combination of the
two) [79]. The primary end point of CANOPY-N will determine the major pathologic response rate (MPR; defined
as ≤10% viable tumor in resected specimen) based on central review, and secondary end points will investigate
overall response rate, surgical feasibility rates, antidrug antibodies incidence, pharmacokinetic parameters, MPR
based on local review and MPR based on biomarker level. The CANOPY-N study of the inhibition of both IL-1β

and PD-1 is intended to validate preclinical data and assess whether there is a synergistic improvement in efficacy
and safety in patients with NSCLC [79].

To best of the authors’ knowledge, there are two trials of IL-1 inhibitors in solid tumors: one in combination
with an immune check point inhibitor and one as monotherapy [83,84]. At the time of writing, an investigator-
initiated phase I/IIA, non randomized, open-label dose escalation and expansion trial with isunakinra (IL-1α/β

inhibitor) alone and in combination with anti-PD-(L)1 in patients with metastatic or unresectable, locally advanced
malignant solid tumors is recruiting [83]. A National Cancer Institute (NCI) sponsored phase I study of anakinra
monotherapy mediated tumor regression and angiogenesis inhibition in patients with cancers producing IL-1
completed in 2015 but no results have been reported to date [84].

At present, there are two US FDA approved immune checkpoint inhibitors (ICI) regimens in early-stage NSCLC
(eNSCLC). In the IMpower010 trial, administration of adjuvant atezolizumab (PD-L1 inhibitor) for 1 year to
patients with stage II or III NSCLC and PD-L1 expression ≥1% following complete resection and platinum based
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Figure 4. Cumulative incidence of lung cancer and fatal lung cancer in the CANTOS trial in patients with
atherosclerosis. The incidence rates of (A) lung cancer and (B) lung cancer mortality were lower in the canakinumab
arms compared with the group receiving placebo; lung cancer and lung cancer mortality were significantly less
common in the canakinumab 300 mg group than in the placebo group.
HR: Hazard ratio.
Figure reused with permission from the publisher [72].
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chemotherapy showed significant disease-free survival advantage compared with best supportive care (Hazard
radio [HR]: 0.66, 95% CI: 0.50–0.88) [85]. In contrast, in the CheckMate 816 trial, neoadjuvant nivolumab plus
platinum doublet chemotherapy for three cycles administered to patients with stage IB–IIIA NSCLC, regardless
of PD-L1 expression, showed a significant event free survival advantage compared with chemotherapy alone (HR:
0.63; 97.38% CI: 0.43–0.91) [86].

Based on these findings, ICI has clearly established its role as standard of care in eNSCLC. However, several
controversies exist. The most effective ICI regimen (chemotherapy-free combination immunotherapy or combined
ICI plus chemotherapy) and timing of administration (neoadjuvant, adjuvant or both) are unclear. At present, there
is no approved chemotherapy free approved ICI regimen in eNSCLC. Clinically, a chemotherapy-free regimen
is most needed for patients with poor performance status, elderly people and contraindications or refusal to
chemotherapy. Based on the National Cancer Database (NCDB), in patients >70 years old, the mortality within
the first 6 months of starting adjuvant chemotherapy following lung cancer resection is higher, comorbidity scores
are higher and postoperative length of stay in hospital is prolonged compared with younger patients [87]. In spite
of standard of care recommendation guidelines to administer chemotherapy in patients with stages II–III NSCLC,
recent SEERS database analysis showed that 31, 18 and 38% of patients with stages II, IIIA and IIIB eNSCLC,
respectively, underwent surgery alone without receiving preoperative or postoperative chemotherapy [88]. As such,
there is a substantial portion of patients with eNSCLC who do not receive perioperative chemotherapy. Preoperative
immunotherapy strategies such as combined IL-β and PD-1 inhibition (CANOPY-N trial) seek to address this
unmet need and may improve ICI efficacy.

Proposed inflammatory biomarkers & outcomes to assess in clinical trials
Given the role of chronic inflammation in lung carcinogenesis, inflammatory biomarker measurement may have the
potential to measure response to IL-1β and PD-1 inhibition in clinical trials. This has been studied in other tumor
types, for example, carcinoembryonic antigen is a biomarker with diagnostic and prognostic value in colorectal
cancer. One study analyzed tumor and paired normal tissue samples from 22 patients who underwent surgery
for colorectal tumors. A total of 39 inflammatory molecules, plus CRA and CA19-9 were assessed; a correlation
between IL-8, IL-1β and carcinoembryonic antigen was found [89].

CRP is an acute-phase inflammatory protein detected in patients with inflammatory conditions, infections or
cardiovascular disease and is induced by the inflammatory cytokine, IL-6 [90]. In a cohort study of 160,000 patients
diagnosed with cancer, inflammatory marker CRP, erythrocyte sedimentation rate and plasma viscosity were
evaluated [91]. Patients with elevated inflammatory markers had a 1 year cancer incidence of 3.53% (vs 1.50% in
those with normal inflammatory markers) [91]. Notably, inflammatory biomarkers have poor sensitivity and cannot
be used to rule-out cancer, as 44–50% of tested patients with cancer have normal inflammatory marker test results in
the 1st year before diagnosis [91]. In the prostate, lung, colorectal and ovarian cancer screening trial (NCT00002540),
increased circulating IL-6 and IL-8 levels were associated with lung cancer; high levels of serum IL-8 and CRP
were predictive of increased lung cancer risk [92]. In a case–control study of 592 patients with lung cancer, elevated
CRP was associated with increased lung cancer risk among former and current smokers [93]. In a small study of 24
patients with NSCLC compared with 13 healthy controls, serum CRP levels were significantly increased in patients
with metastatic NSCLC compared with healthy controls and patients with localized NSCLC [94]. Additionally,
elevated baseline CRP was associated with lower odds of response to ICI therapy. Based on a longitudinal CRP
trajectory analysis, early CRP decline emerged as a strong predictor of favorable outcome, whereas elevated CRP
trajectories were associated with higher progression risk [95,96]. Because IL-1β is known to induce the production
of CRP, it could be hypothesized that blocking IL-1β may inhibit protumor inflammation thus slowing tumor
progression.

In the CANTOS trial, baseline concentrations of CRP and IL-6 were significantly higher among participants
diagnosed with lung cancer than those without a cancer diagnosis. Furthermore, canakinumab demonstrated dose-
dependent reductions in high-sensitivity CRP (26–41%) and IL-6 (25–43%) [72]. Patients who achieved greater CRP
reductions within the first 3 months of treatment appeared to gain the most benefit from canakinumab. In patients
with CRP levels below the median, a 71% reduction in the cumulative incidence of lung cancer was observed;
there was no significant benefit for patients with higher CRP levels [97,98]. These findings suggest that inflammatory
biomarkers, namely serum CRP or IL-6, may be promising predictive biomarkers in IL-1β suppression treatment
strategies, whereby elevated baseline levels may predict responsiveness with expectant reduction in concentration
with IL-1β inhibition.
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Conclusion
Dysregulated, chronic inflammation has a critical role in lung carcinogenesis, by downregulating tumor suppressors
and activating oncogenes. Cellular stress activates transcription factors and cytokines to drive chronic inflamma-
tion via inflammasomes and IL-1β. There is a need to expand our understanding beyond the concept of ‘hot’ or
‘cold’ tumors to include ‘dysregulated inflammation’ or ‘protumor inflammation’ as a critical process in carcino-
genesis and target for therapeutic intervention in order to improve specific antitumor immune responses. Growing
evidence highlights the role of IL-1β in lung cancer development, supporting IL-1β inhibition as a promising
therapeutic target in cancer. Most notably, the impact of clinical IL-1β inhibition with canakinumab in lung cancer
was first reported in the phase III CANTOS trial, where the canakinumab cohort of patients with atherosclerosis
demonstrated significantly lower incidences of nonfatal and fatal lung cancer compared with placebo.

Two clinical trials in the CANOPY program are evaluating the efficacy of combined IL-1β and PD-1 inhibition
to treat NSCLC. Data are also emerging to suggest that inflammatory biomarkers, such as serum CRP or IL-6
levels, may be promising predictive biomarkers in IL-1β suppression treatment strategies. In eNSCLC, a significant
percentage of patients with resectable NSCLC do not receive neoadjuvant or adjuvant chemotherapy. The currently
approved ICI regimens require either neoadjuvant ICI plus chemotherapy or adjuvant ICI following complete
resection and chemotherapy. Therefore, patients with eNSCLC who cannot receive perioperative chemotherapy
represent of population subgroup of high unmet need for treatment. The combination of IL-1β and PD-1 inhibition
may offer a preoperative immunotherapy regimen that is chemotherapy free, which has the potential to improve
ICI efficacy.

In conclusion, combined IL-1β and checkpoint inhibition is a novel strategy which aims to overcome immuno-
suppression and protumor inflammation in lung cancer. This therapeutic approach may improve the efficacy of
checkpoint inhibitors and allow extension of checkpoint inhibition to patient populations that otherwise would
have predictably less or no responsiveness to PD-1 inhibition alone.

Future perspective
Protumor inflammation enables tumor development by driving carcinogenic processes and suppressing antitumor
immune responses. It is also one of the hallmarks of cancer and potential target in NSCLC. However, more clinical
evidence is necessary to support targeting IL-1β in patients with NSCLC. The ongoing canakinumab CANOPY-1
and CANOPY-N trials will further elucidate the potential benefits of combining IL-1β with PD-1 inhibition and
provide insights about potential predictive biomarkers in early-stage lung cancer settings.

Executive summary

Inflammation & carcinogenesis
• Chronic, dysregulated inflammation plays a key role in the tumor microenvironment, but clinical data are limited.
IL-1β in carcinogenesis
• Preclinical evidence and early clinical data support targeting the inflammatory cytokine IL-1β as a valid treatment

approach in non-small-cell lung cancer.
Rationale for combined IL-1β & programmed cell death protein-1 in cancer
• The combined targeting of IL-1β and programmed death 1 (PD-1) may reduce dysregulated inflammation and

promote specific antitumor immunity. The potential for this combination strategy may be greater in the
early-stage setting, when tumor burden is lower and protumor inflammation plays a bigger role.

Proposed inflammatory biomarkers & outcomes to assess in clinical trials
• It is important to identify inflammatory biomarkers to guide the selection of patient subgroups who might

benefit from IL-1β inhibition.
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