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We aimed to assess the diagnostic and economic value of next-generation sequencing (NGS) versus single-
gene testing, and of liquid biopsy (LBx) versus tissue biopsy (TBx) in non-small-cell lung cancer biomarker
testing through literature review. Embase and MEDLINE were searched to identify relevant studies (n = 43)
from 2015 to 2020 in adults with advanced non-small-cell lung cancer. For NGS versus single-gene testing,
concordance was 70–99% and sensitivity was 86–100%. For LBx versus TBx, specificity was 43–100%
and sensitivity was ≥60%. Turnaround times were longer for NGS versus single-gene testing (but not vs
sequential testing) and faster for LBx versus TBx. NGS was cost-effective, and LBx reduced US per-patient
costs. NGS versus single-gene testing and LBx versus TBx were concordant. NGS and LBx may be cost-
effective for initial screening.

Plain language summary: Patients with lung cancer with specific genetic mutations can benefit from
medications that are specific to those mutations, known as targetable mutations. There are many methods
to test for specific genetic mutations in patients with lung cancer. To detect genetic mutations, doctors can
test the blood or urine, or they can test biopsy tissue; a small piece of the tumor removed from the lung.
These tests can either look for mutations in one specific gene at a time, or they can use technology that
reads the entire DNA sequence to observe multiple genes at once. In this review, we examined scientific
reports to answer important questions about using genetic testing to find targetable mutations in patients
with lung cancer. How accurate are different genetic tests? How fast can doctors get results from different
genetic tests? How much do different genetic tests cost? We found that reading the entire DNA sequence
was as accurate as testing one specific gene. Reading the entire DNA sequence takes more time than
testing one specific gene, but it might reduce overall costs. Testing blood or urine was not as accurate as
testing tissue, but it took less time for doctors to receive genetic test results and reduced costs.
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Lung cancer is the most common cancer worldwide and is the leading cause of cancer death for men and the second
leading cause for women [1]. Non-small-cell lung cancer (NSCLC) affects approximately 85% of all patients with
lung cancer [2]. These patients typically have a poor prognosis, with 5-year survival rates of 24% for all NSCLC
patients and of only 6% among those with metastatic disease [3].

Targeted therapy is an important treatment option for patients with NSCLC who have driver mutation-
positive tumors. Current treatment guidelines recommend tyrosine kinase inhibitor therapy for patients with
actionable driver mutations, including EGFR, BRAF and RAS mutations, ALK, ROS1, RET or NTRK fusions and
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MET tyrosine kinase abnormalities (i.e., high-level MET amplification and MET exon 14 skipping mutation) [4,5].
Genetic testing is thus required, either to guide appropriate selection of available therapies or to assess patient
suitability for a clinical trial of a new therapy [6]. However, with each biomarker testing procedure performed using
a biopsy from an individual patient, the amount of tissue available for further biomarker testing is reduced. As the
number of potential genetic targets increases, prioritization of limited tissue is essential [7].

Strategies to ensure maximum testing yield from available tissue and to limit invasive procedures for the
patient include multigene sequencing with next-generation sequencing (NGS) and liquid biopsy (LBx) techniques,
respectively. NGS is tissue-sparing compared with conventional sequencing because it allows identification of a
panel of genes using a single sample, but it has not replaced conventional sequencing despite progressive cost
reduction [8]. LBx techniques can be used to test for circulating tumor DNA (ctDNA), circulating tumor cells,
exosomes, platelets and microRNAs [9]. The role of these biomarker techniques in NSCLC, including their
diagnostic and economic value, has not been clearly defined.

The overall objectives of this literature review were to assess the diagnostic evidence and economic impact of
first, NGS versus single-gene testing and second, LBx compared with standard tissue biopsy (TBx) in adults with
unresectable, advanced or metastatic NSCLC.

Methods
A literature review was conducted to identify publications related to NGS and LBx in adult patients (aged ≥18 years)
with advanced, recurrent and/or metastatic NSCLC. The review was guided by the population, intervention,
comparison, outcome, study type (PICOS) framework [10].

Data sources
Embase R© and MEDLINE R© were searched for records from 2015 to 2020 using targeted keyword searches
(Supplementary Table 1). To supplement the database searches, conference abstracts (2017–2020) from Amer-
ican Society of Clinical Oncology (ASCO), European Society for Medical Oncology (ESMO), International
Society for Pharmacoeconomics and Outcomes Research (ISPOR), American Association for Cancer Research
(AACR), World Conferences on Lung Cancer (WCLC), International Association for the Study of Lung Cancer
(IASLC) North American Congress on Lung Cancer (NACLC), IASLC Targeted Therapies and International Lung
Cancer Congress were searched manually. Bibliographies of review articles were also searched manually, and the
Tufts Cost–Effectiveness Analysis (CEA) Registry was searched for economic evidence [11,12].

Study selection
Eligible studies were controlled clinical trials (including both randomized and non-randomized), single-arm studies,
observational studies (excluding case reports/series), systematic reviews, surveys and economic evaluations published
in English. Studies had to include ≥100 adult patients of any race or sex with unresectable, advanced and/or
metastatic NSCLC, regardless of histology, for any biomarker or mutation. Any study meeting the above criteria
and reporting biomarker types, molecular testing methods and application, and their associated challenges and
advantages in NSCLC, were considered.

Review procedure
All articles were downloaded into a systematic review database. First screening (titles and abstracts) and second
screening (full-text papers) were conducted by a single reviewer, followed by a quality check from a second
independent reviewer (Supplementary Figure 1). Data were extracted by a single reviewer and verified by an
independent reviewer. Where more than one publication was identified describing a single trial, the data were
compiled into a single entry in the data extraction table to avoid double counting of patients and studies.

Results
Literature review
A total of 2602 records were identified, from which 375 full-text studies were screened (Figure 1). Of these 375
publications, the review included 43 relevant publications describing 42 studies. Fourteen studies examined NGS
versus standard molecular testing techniques in NSCLC. Twenty-eight studies reported evidence on LBx versus
TBx (29 publications describing 28 studies).
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Review/editorial (n = 334)
Animal/in vitro studies (n = 164)
Disease: non-NSCLC (n = 236)

Study design (n = 1057)
Disease stage (n = 140)
Outcome not of interest (n = 241)

Outcome not of interest (n = 163)
Sample size <100 (n = 71)
Published before 2015 (n = 8)

Review/editorial (n = 19)
Disease: non-NSCLC (n = 8)
Study design (n = 63)

Records identified through
database searching (n = 2602)

Duplicates removed (n = 55)

Records excluded (n = 2172)

Full-text articles excluded (n = 332)

Records screened
(n = 2547)

Full-text studies screened
(n = 375)

Included NGS publications (n = 14)
14 studies

Included LBx publications (n = 29)
After linking:

28 studies from 29 publications
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Figure 1. Flow of studies included in the literature review.
LBx: Liquid biopsy; NGS: Next-generation sequencing; NSCLC: Non-small-cell lung cancer.

NGS versus standard molecular testing
Six studies, two of them USA-based, reported diagnostic outcomes [13–18], while nine (five USA-based) reported
economic evidence [17,19–27]. Of these, one study conducted in Singapore by Tan et al. reported both diagnostic
and economic outcomes [17].

Diagnostic evidence

All studies reporting diagnostic outcomes were observational; two were retrospective and four were prospective.
Among studies reporting demographic data (n = 4 studies with a range of 174–533 patients), the median age of
patients ranged from 67 to 70 years, and 38–62% of patients were male [13,15–17]. Two studies from Europe [15,16]

and one from Asia [17] reported concordance rates ranging from 70 to 99% for NGS versus standard molecular
testing across clinically actionable mutations, including EGFR and ALK fusion (Table 1). Sensitivity for NGS
versus standard molecular testing ranged from 86 to 100% for clinically actionable mutations and was reported
as 55.6% in one study based on acquired resistant mutations [13–15,17]. Of the two USA-based studies included, one
(Dagogo-Jack et al.) reported sensitivity and specificity of 98 and 100%, respectively, for a rapid EGFR PCR assay
using NGS as the reference assay [13]. Other studies included did not report specificity data. The second USA-based
study (Yu et al.) reported higher rates of test initiation and completion using less tissue compared with single-gene
testing for four or more biomarkers [18]. Based on the two USA-based studies, median turnaround times were longer
using NGS than with single-gene testing (14–17 vs 7–11 days), but this was not the case if multiple sequential
single-gene tests were required (e.g., three single-gene tests ordered in sequence would require ∼21–∼33 days total
turnaround time) [13,18].

Economic impact

Among the ten economic studies, six assessed cost–effectiveness [17,19,23–26], one reported costs [27], two assessed
budget impacts [20,21] and one reported a cost–consequence analysis (Table 2) [22].

Among the five USA-based studies that reported economic evidence, two found tumor tissue NGS versus
sequential exclusionary testing or hotspot panel testing (excluding treatment costs) to be cost saving [20,22], with
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Table 1. Diagnostic accuracy of next-generation sequencing versus single-gene testing for clinically actionable
mutations in patients with non-small-cell lung cancer.
Study (year)† Country Study design Test and comparator Biomarker tests Sample size Sensitivity %§ ,¶ Concordance % Ref.

Dagogo Jack (2018) USA Prospective
observational

EGFR-specific PCR assay
vs NGS

EGFRL858R and exon 19
deletion

NR 98 NR [13]

Garcia (2018) France Prospective
observational

NGS vs OncoBEAM‡ EGFRT790M 196 55.6# NR [14]

Fernandes (2019) Portugal Prospective
observational

NGS vs Sanger
sequencing

EGFR 117 100¶ 99.1 [15]

Lindquist (2017) Sweden Prospective
observational

NGS vs single-gene
testing

EGFR, KRAS, NRAS and
BRAF

81 NR 96 [16]

Tan (2020) Singapore Retrospective
observational

NGS vs standard
molecular testing

EGFR exon 19 deletion NR 93.9 70 [17]

ALK fusion NR 85.7 94

†One USA-based study (Yu, 2017) identified in the literature review did not report sensitivity or concordance for NGS vs conventional molecular testing [18].
‡ctDNA was used as a reference standard.
§Specificity for NGS vs conventional molecular testing was reported in only one study (Dagogo-Jack, 2018), which reported a specificity of 100%.
¶EGFR+ cases were assumed to be true positives. One patient was classified as EGFR+ by NGS but was unclassified by Sanger sequencing.
#The detection rates for EGFRT790M were 10.2% and 18.3% by NGS and OncoBEAM, respectively. Sensitivity of NGS assumed all T790M+ cases were true positives, and thus describes
the detection of an acquired resistance mutation.
NGS: Next-generation sequencing; NR: Not reported.

one (Dalal et al.) reporting the shortest wait time, earlier initiation of effective targeted therapy and lower costs
in patients receiving upfront NGS [22]. Two studies found tumor tissue NGS versus single-gene testing (including
treatment costs) to be associated with increased budget, although that was balanced by evidence of cost–effectiveness
for NGS testing [19,21]. In the study conducted by Yu et al. the budget increase over single-gene testing was minimal,
at US$0.0072 per member per month, but NGS was expected to identify more patients with activating mutations,
enabling better selection for targeted therapy [21]. Another study, by Steuten et al., found ctDNA NGS versus
standard of care molecular testing (no additional genomic testing) to be cost-effective, with 8% more patients
identified with targetable mutations and expected survival increasing by 0.06 years versus single-gene testing [19].

Studies conducted in other regions (e.g., Europe, Asia) were aligned with USA-based studies regarding economic
and diagnostic outcomes. In Spain, Simarro et al. reported that NGS implementation was feasible and could be
done at reasonable cost [27]. In Singapore, Tan et al. found that routine upfront NGS was cost-effective compared
with sequential sequencing [17].

LBx versus TBx
Of the 25 studies included that compared LBx with TBx (both NGS and single-gene assays) [28–52], four were from
the USA [32–35], five were from Europe [36–40], 12 were from Asia [41–52] and four were global [28–31]. The majority
(88%) of diagnostic studies were observational. Among studies reporting demographic data (n = 16 studies with
a range of 102–1026 patients), the median age of patients ranged from 57 to 70 years (n = 11), and 32–70% of
patients were male (n = 16) [32–38,40,45–51].

Three studies comparing economic outcomes between LBx and TBx were a cost study by Arnaud et al. from
the USA [53], a cost–consequence analysis from Italy by Gancitano et al. [54] and a Canadian cost–effectiveness and
budget impact analysis by Ontario Health [55].

Diagnostic evidence

Measures of diagnostic accuracy, including sensitivity, concordance, positive predictive values (PPVs) and negative
predictive values (NPVs), for LBx versus TBx in detecting clinically actionable genes were examined across studies
(Table 3).

The range of specificity values reported across mutations and across studies was 42.5–100%, with 11 of 17 studies
reporting a specificity ≥90% for all tests [28,30–33,35–37,40–43,47–49,51,52]. Specificity values <90% for EGFRT790M

were observed in two of two studies reporting specificity specifically for this variant [28,31]. Sensitivity values varied
widely across mutations and across studies (range: 0–100%), and 14 of 18 studies reported sensitivity of ≥60% for
all tests [28,30–33,35–37,40–43,47–52].

Concordance rates using LBx to detect targetable mutations were reported in 18 studies [28–30,34–43,45–49].
Concordance rates for all mutations tested were ≥70% in 16 studies and >90% in seven [28–30,35–37,39–43,45–49].
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Table 2. Details of studies reporting the economic impact of next-generation sequencing (base-case analysis) in
advanced non-small-cell lung cancer.
Study (year) Country Study design Test vs comparator Biomarker tests Cost year Study results Ref.

Steuten (2019) USA Cost–
effectiveness
analysis

MGPS vs SMGT EGFR, ALK, BRAF, RET,
ROS1, HER2, MET

2017 MGPS vs SMGT
ICER:
US$148,478 per LYG
LYs:
1.2 vs 1.14
Incremental cost:
US$67,110 vs US$58,297

[19]

Pennell (2019) USA Budget impact
analysis†

NGS vs sequential
testing, exclusionary
testing and hotspot
panel testing

PD-1/PD-L1, EGFR,
ALK, ROS1, KRAS, MET,
RET, NTRK1, BRAF

2017 CMS (2066 patients)
Cost savings for NGS vs:
• Exclusionary testing: US$1,393,678
• Sequential testing: US$1,530,869
• Hotspot panel testing: US
$2,140,795
Commercially insured (156 patients)
Cost savings for NGS vs:
• Exclusionary testing: US$3809
• Sequential testing: US$127,402
• Hotspot panel testing: US$250,842

[20]

Yu (2018) USA Budget impact
analysis‡

NGS vs single-gene
testing

EGFR, ALK, ROS1, BRAF,
MET, HER2, RET

2016 Budget increase for NGS vs
single-gene testing in
1-million-member plan model:
• Over 5 years: US$432,554
• PMPM: US$0.0072

[21]

Dalal (2017) USA Cost–
consequence
analysis

Sequential testing
Exclusionary mutation
(i.e., KRAS) testing
followed by
sequential BRAF
testing
Upfront NGS, including
BRAF testing

BRAFV600E NR CMS reimbursement:
• NGS cost: US$623
• Cost saving: US$980 vs sequential
and mutations panel
• Cost saving: US$1238 vs
exclusionary strategy
Sensitivity analysis (based on
amounts reimbursed by third-party
payers [commercial claims data]):
• NGS (US$2860) remained the least
expensive option by US$894–1044

[22]

Lopes (2020) USA Cost–
effectiveness
analysis

ctDNA NGS vs SoC (no
additional genomic
testing)

NSCLC with incomplete
tissue genotyping

NR Conservative drug costs:
• ctDNA NGS increased the number
of patients who received
guideline-adherent treatment
decisions
• Clinical outcomes improved and
were accompanied by meaningful
cost savings
• Per-patient cost savings were
US$1943
Patients receiving NGS had, on
average, an increased:
• RR of 7.57%
• PFS of 0.75 month
• OS of 1.24 months

[23]

Ho (2019) Brazil Cost–
effectiveness
analyses

NGS panel of ctDNA vs
ctDNA EGFR testing

EGFR, ALK, ROS1, BRAF NR Annual cost savings for NGS:
1. EGFR and ALK: -4138.67 BRL$
2. EGFR, ALK and ROS:
-6245.10 BRL$
3. EGFR, ALK, ROS-1 and BRAF:
-5720.48 BRL$
ICERs§:
1: -15,595.77 (BRL$/PFS)
2: -21,399.29 (BRL$/PFS)
3: -18,006.42 (BRL$/PFS)

[24]

†Budget impact was calculated for a hypothetical 1,000,000-member health plan, with an expected 2066 Medicare-insured and 156 commercially insured testing-eligible patients with
metastatic NSCLC.
‡Budget impact was calculated for a hypothetical 1,000,000-member health plan, with an expected 316 testing-eligible patients with advanced NSCLC.
§ ICERs reported in congress abstract. Units of PFS were not explicitly reported in the abstract. The horizon time for the model was 1 year.
CMS: Centers for Medicare & Medicaid Services; ctDNA: Circulating tumor DNA; ddPCR: Droplet digital polymerase chain reaction; FISH: Fluorescence in situ hybridization; ICER:
Incremental cost–effectiveness ratio; LY: Life-year; LYG: Life-year gained; MGPS: Multigene panel sequencing; NGS: Next-generation sequencing; NR: Not reported; NSCLC: Non-small-
cell lung cancer; OS: Overall survival; PFS: Progression-free survival; PMPM: Per member per month; RR: Response rate; SMGT: Single-marker genetic testing; SoC: Standard of care.
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Table 2. Details of studies reporting the economic impact of next-generation sequencing (base-case analysis) in
advanced non-small-cell lung cancer (cont.).
Study (year) Country Study design Test vs comparator Biomarker tests Cost year Study results Ref.

Ferreira (2018) Brazil Cost–
effectiveness
analyses

NGS vs sequential
testing (RT-PCR and
ddPCR)

EGFRT790M NR ICER (per positive T790M detected):
Plasma PCR then tissue NGS if
plasma negative vs plasma NGS +
tissue NGS: US$21,193.66

[25]

Schluckebier
(2017)

Brazil Cost–
effectiveness
analyses

NGS vs diagnostic tests
(RT-PCR and FISH)

EGFR, ALK, ROS1 2016 ICER (per correct case detected):
NGS vs sequential: US$3381.82

[26]

Simarro (2019) Spain Cost analyses NGS with Oncomine
solid tumor
(ThermoFisher) vs
conventional methods

EGFR, ALK, ROS1 NR Cost for NGS:
Total: €3369.84
Per sample: €421.23
Cost for conventional:
Total: €2941.27
Per sample: €367.66

[27]

Tan (2020) Singapore Cost–
effectiveness
analyses

Targeted NGS panels
(sequential singleplex,
sequential multiplex
and NGS-only testing)
vs traditional assay
(SoC)

EGFR, ALK, ROS1, MET,
RET

2018 Cost per patient:
SoC only: SGD$ 2224.6
Sequential (singleplex): SGD$ 1469.2
NGS only: SGD$ 1579.4
Sequential (multiplex): SGD$ 2622.7
ICER (per percent increase in
patients on targeted therapy):
Sequential (singleplex):
Dominant NGS only: SGD$ 110
Sequential (multiplex): SGD$ 261

[17]

†Budget impact was calculated for a hypothetical 1,000,000-member health plan, with an expected 2066 Medicare-insured and 156 commercially insured testing-eligible patients with
metastatic NSCLC.
‡Budget impact was calculated for a hypothetical 1,000,000-member health plan, with an expected 316 testing-eligible patients with advanced NSCLC.
§ ICERs reported in congress abstract. Units of PFS were not explicitly reported in the abstract. The horizon time for the model was 1 year.
CMS: Centers for Medicare & Medicaid Services; ctDNA: Circulating tumor DNA; ddPCR: Droplet digital polymerase chain reaction; FISH: Fluorescence in situ hybridization; ICER:
Incremental cost–effectiveness ratio; LY: Life-year; LYG: Life-year gained; MGPS: Multigene panel sequencing; NGS: Next-generation sequencing; NR: Not reported; NSCLC: Non-small-
cell lung cancer; OS: Overall survival; PFS: Progression-free survival; PMPM: Per member per month; RR: Response rate; SMGT: Single-marker genetic testing; SoC: Standard of care.

In ten studies reporting PPV for LBx versus TBx, the range of PPVs for clinically actionable mutations was
77.8–100% [32,34–37,41,45,47,48,51].

In two USA-based studies, 100% PPV was reported for all clinically actionable mutations except EGFRT790M

(79%) [32,35]. In seven studies that reported NPV of LBx versus TBx, the range of NPVs for clinically actionable
mutations was 52–98% [34,35,41,45,47,48,51]. Faster turnaround times were reported for LBx versus TBx (range across
three studies: 2–10 vs 5–25 days) [29,32,35].

Economic impact

Three economic studies found that incorporating LBx into the treatment pathway was associated with lower testing
cost per patient (Table 4) [53–55].

A USA-based study conducted from a Medicare reimbursement perspective compared the clinical costs and
complications of LBx with TBx (computed tomography [CT]-guided biopsy and navigational bronchoscopy) in a
hypothetical biomarker case that tested for EGFR, KRAS, ALK and BRAF mutations [53]. The authors found that
LBx was significantly less expensive, having a lower total cost of biopsy and biomarker testing (US$836) compared
with CT-guided biopsy (US$4130) and navigational bronchoscopy (US$8284). Overall, LBx was associated with
cost reductions of ≥US$3200 per patient. LBx also reduced time from screening to treatment and was associated
with fewer complications for patients compared with CT-guided biopsy or navigational bronchoscopy, which was
associated with pneumothorax, lung collapse, hemorrhage and respiratory distress in some patients.

A cost–consequence analysis was performed in a hypothetical cohort with EGFR mutations in Italy [54]. This
model compared three different diagnostic pathways: TBx (for first- and second-line treatment), combined (TBx
for first line and LBx for second line if the outcome was unknown) and potential (TBx or LBx for tissue-ineligible
patients as first line and LBx as second line). The potential pathway provided the greatest number of correctly
identified cases. The average cost per correctly identified case in the potential pathway (€685) was lower than for
the combined pathway (€732) or the TBx pathway (€1004). Overall, the addition of LBx was associated with a
cost reduction of approximately €300 per patient in this setting. These authors concluded that a correct diagnostic
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pathway is essential to optimize cancer therapies. This analysis also highlights the value of upfront LBx in the
diagnostic pathway for both first- and second-line treatment.

A recent Canadian Health Technology Assessment reported the cost–effectiveness of TBx alone, LBx alone or
LBx as a triage test in a cohort with EGFRT790M mutations [55]. LBx alone or as a triage test was less costly and
more effective (i.e., resulted in fewer tissue biopsies and more correct decisions) than TBx in terms of test-related
costs and effects only. With regard to lifetime costs, LBx as a triage test was the most effective and produced the
most life-years and quality-adjusted life-years, but it was the costliest of the three options. However, this was largely
driven by higher long-term treatment cost as more patients were correctly identified to receive targeted therapy [55].

Discussion
This targeted literature search conducted from January 2015 to March 2020 identified studies reporting diagnostic
and economic aspects of NGS versus single-gene testing and LBx versus TBx. The studies were global, with most
conducted in North America (including the USA and Canada), followed by Europe and Asia. Overall, the studies
suggest that NGS is highly concordant with conventional molecular testing in patients with NSCLC. Two studies
reporting <90% concordance (55.6% [14] and 82% [37]) between NGS and single-gene tests used specialized
single-gene tests for EGFR testing, and the discordances (missed by NGS) were mainly in the low mutant allelic
fractions. While less sensitive than conventional methods, NGS resulted in broader genomic coverage, which may
reveal diverse mechanisms of resistance among patients with advanced NSCLC.

NGS can also measure tumor mutational burden (TMB), an emerging biomarker to select patients for im-
munotherapy, and will likely need to be used in conjunction with PD-L1 immunohistochemistry [5]. The sequenc-
ing of targeted therapies and immunotherapies as recommended in treatment guidelines will continue to evolve as
the treatment landscape changes, but clinicians may make use of the wider range of genetic information available
with NGS to facilitate the selection of the right therapy for an individual patient. The potential role of additional
genetic screening – via NGS or single-gene testing – in a patient whose disease develops resistance to initial therapy
needs to be clarified in future studies.

In terms of cost and cost–effectiveness, NGS leads to a greater proportion of patients assigned to targeted therapy
and increased life-years gained while being cost neutral or cost saving. NGS was generally found to be cost-effective
at typical thresholds. With current treatment guidelines recommending targeted therapies for eight specific genetic
biomarkers plus additional recommendations based on PD-L1 and TMB status [5], the additive costs of multiple
single-gene tests should be considered. This review provides indirect evidence on the question of how the costs
of NGS compare with those of multiple single-gene tests, and future studies on the costs of biomarker testing in
NSCLC may provide clearer evidence.

In all studies, concordance between LBx and TBx for all mutations tested was generally high (≥70%), with six
studies reporting >90% concordance. LBx exhibits high specificity to detect targetable mutations in patients with
NSCLC, but it may have lower sensitivity than TBx. Overall, the LBx studies reported shorter turnaround times
from blood sample collection to report delivery compared with TBx. The faster turnaround time and high PPVs
of LBx enable faster treatment decisions in patients with NSCLC who have targetable mutations. LBx may also
provide additional genetic material for subsequent testing at the time when a patient develops resistance to initial
therapy, limiting invasive procedures and potentially improving patient experience and outcomes. Upfront cost
savings may be achieved using LBx as an initial screening method in complement to TBx, although identification
of a greater number of cases may lead to increased treatment costs.

Several limitations to this review should be noted. This review includes only English-language papers published
as journal articles in the last 5 years. While unpublished or non-English-language studies may contain valid results
that may conflict with the conclusions of this review, the broad search strategy used here and the large number of
citations screened make this unlikely. The review excludes diagnostic studies with small sample size (≤100 patients);
however, these are likely to be exploratory studies that could introduce bias. Additional parameters that inform the
quality of biomarker testing (e.g., test failure rate) were not included in the data extraction. Only three economic
evaluations were found comparing LBx and TBx, suggesting that data may be limited in this area.

Future perspective
The findings of our review may have implications regarding recommendations for the timing of LBx and NGS in
future NSCLC treatment guidelines. Among studies included in this review, the results of NGS and conventional
single-gene testing were highly concordant. Comparisons of TBx and LBx indicated that these techniques also
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generally have high concordance. NGS and LBx separately showed benefits in terms of correctly identifying more
patients for targeted therapy, enabling faster turnaround and quicker treatment decisions. In terms of cost and
cost–effectiveness, these methods were associated with reductions in short-term treatment-related costs. In the long
term, increased use of NGS could result in a minimal increase of budget largely driven by more patients receiving
targeted treatment.

Executive summary

Concordance & turnaround time for next-generation sequencing versus standard molecular testing
• High concordance was found between next-generation sequencing (NGS) and single-gene testing methods.
• Turnaround times were longer for NGS versus single-gene testing, but not longer versus sequential testing.
Economic impact of NGS versus standard molecular testing
• NGS was found to be cost-effective in the USA in identifying patients with non-small-cell lung cancer with

targetable mutations.
Concordance & turnaround time for liquid biopsy versus tissue biopsy
• Liquid biopsy has high specificity but lower sensitivity for targetable mutations than tissue biopsy.
• Turnaround times were faster with liquid biopsy versus tissue biopsy.
Economic impact of liquid biopsy versus tissue biopsy
• Liquid biopsy was found to reduce per-patient costs in the USA and may be cost-effective as an initial screening

method.
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