We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmeb2013.14.51

References

  • 1. Teasdale G , Jennett B . Assessment of coma and impaired consciousness. A practical scale . Lancet 2 ( 7872 ), 81 – 84 ( 1974 ).
  • 2. Rifai N , Gillette MA , Carr SA . Protein biomarker discovery and validation: the long and uncertain path to clinical utility . Nat. Biotechnol. 24 ( 8 ), 971 – 983 ( 2006 ).
  • 3. Anderson NL , Anderson NG . The human plasma proteome: history, character, and diagnostic prospects . Mol. Cell. Proteomics 1 ( 11 ), 845 – 867 ( 2002 ).
  • 4. Mondello S , Muller U , Jeromin A , Streeter J , Hayes RL , Wang KK . Blood-based diagnostics of traumatic brain injuries . Expert Rev. Mol. Diagn. 11 ( 1 ), 65 – 78 ( 2011 ).
  • 5. Agoston DV , Elsayed M . Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder . Front Neurol. 3 , 107 ( 2012 ).
  • 6. Royds JA , Davies-Jones GA , Lewtas NA , Timperley WR , Taylor CB . Enolase isoenzymes in the cerebrospinal fluid of patients with diseases of the nervous system . J. Neurol. Neurosurg. Psychiatry 46 ( 11 ), 1031 – 1036 ( 1983 ).
  • 7. Bohmer AE , Oses JP , Schmidt AP et al. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury . Neurosurgery 68 ( 6 ), 1624 – 1630 ; discussion 1630–1621 ( 2011 ).
  • 8. Chiaretti A , Barone G , Riccardi R et al. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children . Neurology 72 ( 7 ), 609 – 616 ( 2009 ).
  • 9. Varma S , Janesko KL , Wisniewski SR et al. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children . J. Neurotrauma 20 ( 8 ), 781 – 786 ( 2003 ).
  • 10. Berger RP , Pierce MC , Wisniewski SR et al. Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children . Pediatrics 109 ( 2 ), E31 ( 2002 ).
  • 11. Ross SA , Cunningham RT , Johnston CF , Rowlands BJ . Neuron-specific enolase as an aid to outcome prediction in head injury . Br. J. Neurosurg. 10 ( 5 ), 471 – 476 ( 1996 ).
  • 12. Zetterberg H , Smith DH , Blennow K . Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood . Nat. Rev. Neurol 9 ( 4 ), 201 – 210 ( 2013 ).
  • 13. Day IN , Thompson RJ . UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein . Prog. Neurobiol. 90 ( 3 ), 327 – 362 ( 2010 ).
  • 14. Newcomb JK , Kampfl A , Posmantur RM et al. Immunohistochemical study of calpain-mediated breakdown products to alpha-spectrin following controlled cortical impact injury in the rat . J. Neurotrauma 14 ( 6 ), 369 – 383 ( 1997 ).
  • 15. Pike BR , Flint J , Dutta S , Johnson E , Wang KK , Hayes RL . Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats . J. Neurochem. 78 ( 6 ), 1297 – 1306 ( 2001 ).
  • 16. Ballatore C , Lee VM , Trojanowski JQ . Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders . Nat. Rev. Neurosci. 8 ( 9 ), 663 – 672 ( 2007 ).
  • 17. Zimmer DB , Cornwall EH , Landar A , Song W . The S100 protein family: history, function, and expression . Brain Res. Bull. 37 ( 4 ), 417 – 429 ( 1995 ).
  • 18. Sorci G , Bianchi R , Riuzzi F et al. S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond . Cardiovasc. Psychiatry Neurol. 2010 , ( 2010 ).
  • 19. Yardan T , Erenler AK , Baydin A , Aydin K , Cokluk C . Usefulness of S100B protein in neurological disorders . J. Pak. Med. Assoc. 61 ( 3 ), 276 – 281 ( 2011 ).
  • 20. Middeldorp J , Hol EM . GFAP in health and disease . Prog. Neurobiol. 93 ( 3 ), 421 – 443 ( 2011 ).
  • 21. Haqqani AS , Hutchison JS , Ward R , Stanimirovic DB . Biomarkers and diagnosis; protein biomarkers in serum of pediatric patients with severe traumatic brain injury identified by ICAT-LC-MS/MS . J. Neurotrauma 24 ( 1 ), 54 – 74 ( 2007 ).
  • 22. Boggs JM . Myelin basic protein: a multifunctional protein . Cellular Mol. Life Sci. 63 ( 17 ), 1945 – 1961 ( 2006 ).
  • 23. Kimura M , Sato M , Akatsuka A et al. Overexpression of a minor component of myelin basic protein isoform (17.2 kDa) can restore myelinogenesis in transgenic shiverer mice . Brain Res. 785 ( 2 ), 245 – 252 ( 1998 ).
  • 24. Nakajima K , Ikenaka K , Kagawa T et al. Novel isoforms of mouse myelin basic protein predominantly expressed in embryonic stage . J. Neurochem. 60 ( 4 ), 1554 – 1563 ( 1993 ).
  • 25. Ottens AK , Golden EC , Bustamante L , Hayes RL , Denslow ND , Wang KK . Proteolysis of multiple myelin basic protein isoforms after neurotrauma: characterization by mass spectrometry . J. Neurochem. 104 ( 5 ), 1404 – 1414 ( 2008 ).
  • 26. Givogri MI , Bongarzone ER , Campagnoni AT . New insights on the biology of myelin basic protein gene: the neural-immune connection . J. Neurosci. Res. 59 ( 2 ), 153 – 159 ( 2000 ).
  • 27. Akiyama K , Ichinose S , Omori A , Sakurai Y , Asou H . Study of expression of myelin basic proteins (MBPs) in developing rat brain using a novel antibody reacting with four major isoforms of MBP . J. Neurosci. Res. 68 ( 1 ), 19 – 28 ( 2002 ).
  • 28. Boggs JM , Yip PM , Rangaraj G , Jo E . Effect of posttranslational modifications to myelin basic protein on its ability to aggregate acidic lipid vesicles . Biochemistry (Mosc.) 36 ( 16 ), 5065 – 5071 ( 1997 ).
  • 29. Berger RP , Hayes RL , Richichi R , Beers SR , Wang KK . Serum concentrations of ubiquitin C-terminal hydrolase-L1 and alphaII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI . J. Neurotrauma 29 ( 1 ), 162 – 167 ( 2012 ).
  • 30. Diaz-Arrastia R , Wang KK , Papa L et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) . J. Neurotrauma doi:10.1089/neu.2013.3040 ( 2013 ) ( Epub ahead of print ).
  • 31. Feala JD , Abdulhameed MD , Yu C et al. Systems biology approaches for discovering biomarkers for traumatic brain injury . J. Neurotrauma 30 ( 13 ), 1101 – 1116 ( 2013 ).
  • 32. Papa L , Lewis LM , Silvestri S et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention . J. Trauma Acute Care Surg. 72 ( 5 ), 1335 – 1344 ( 2012 ).
  • 33. Honda M , Tsuruta R , Kaneko T et al. Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase . J. Trauma 69 ( 1 ), 104 – 109 ( 2010 ).
  • 34. Berger RP , Adelson PD , Pierce MC , Dulani T , Cassidy LD , Kochanek PM . Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children . J. Neurosurg. 103 ( 1 Suppl ), 61 – 68 ( 2005 ).
  • 35. Haskins WE , Kobeissy FH , Wolper RA et al. Rapid discovery of putative protein biomarkers of traumatic brain injury by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry . J. Neurotrauma 22 ( 6 ), 629 – 644 ( 2005 ).
  • 36. Kobeissy FH , Ottens AK , Zhang Z et al. Novel differential neuroproteomics analysis of traumatic brain injury in rats . Mol. Cell. Proteomics 5 ( 10 ), 1887 – 1898 ( 2006 ).
  • 37. Ottens AK , Kobeissy FH , Wolper RA et al. A multidimensional differential proteomic platform using dual-phase ion-exchange chromatography-polyacrylamide gel electrophoresis/reversed-phase liquid chromatography tandem mass spectrometry . Anal. Chem. 77 ( 15 ), 4836 – 4845 ( 2005 ).
  • 38. Raphael I , Mahesula S , Kalsaria K et al. Microwave and magnetic (M(2)) proteomics of the experimental autoimmune encephalomyelitis animal model of multiple sclerosis . Electrophoresis 33 ( 24 ), 3810 – 3819 ( 2012 ).
  • 39. Mahesula S , Raphael I , Raghunathan R et al. Immunoenrichment microwave and magnetic proteomics for quantifying CD47 in the experimental autoimmune encephalomyelitis model of multiple sclerosis . Electrophoresis 33 ( 24 ), 3820 – 3829 ( 2012 ).
  • 40. Cortes DF , Landis MK , Ottens AK . High-capacity peptide-centric platform to decode the proteomic response to brain injury . Electrophoresis 33 ( 24 ), 3712 – 3719 ( 2012 ).
  • 41. Mercier E , Boutin A , Lauzier F et al. Predictive value of S-100beta protein for prognosis in patients with moderate and severe traumatic brain injury: systematic review and meta-analysis . BMJ 346 , f1757 ( 2013 ).
  • 42. Rodriguez-Rodriguez A , Egea-Guerrero JJ , Leon-Justel A et al. Role of S100B protein in urine and serum as an early predictor of mortality after severe traumatic brain injury in adults . Clin. Chim. Acta 414 , 228 – 233 ( 2012 ).
  • 43. Morochovic R , Racz O , Kitka M et al. Serum S100B protein in early management of patients after mild traumatic brain injury . Eur. J. Neurol. 16 ( 10 ), 1112 – 1117 ( 2009 ).
  • 44. Spinella PC , Dominguez T , Drott HR et al. S-100beta protein-serum levels in healthy children and its association with outcome in pediatric traumatic brain injury . Crit. Care Med. 31 ( 3 ), 939 – 945 ( 2003 ).
  • 45. Korfias S , Stranjalis G , Boviatsis E et al. Serum S-100B protein monitoring in patients with severe traumatic brain injury . Intensive Care Med. 33 ( 2 ), 255 – 260 ( 2007 ).
  • 46. Mondello S , Linnet A , Buki A et al. Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury . Neurosurgery 70 ( 3 ), 666 – 675 ( 2012 ).
  • 47. Brophy GM , Mondello S , Papa L et al. Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids . J. Neurotrauma 28 ( 6 ), 861 – 870 ( 2011 ).
  • 48. Papa L , Lewis LM , Falk JL et al. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention . Ann. Emerg. Med. 59 ( 6 ), 471 – 483 ( 2012 ).
  • 49. Fraser DD , Close TE , Rose KL et al. Severe traumatic brain injury in children elevates glial fibrillary acidic protein in cerebrospinal fluid and serum . Pediatr. Crit. Care Med. 12 ( 3 ), 319 – 324 ( 2011 ).
  • 50. Pelinka LE , Kroepfl A , Schmidhammer R et al. Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma . J. Trauma 57 ( 5 ), 1006 – 1012 ( 2004 ).
  • 51. Bulut M , Koksal O , Dogan S et al. Tau protein as a serum marker of brain damage in mild traumatic brain injury: preliminary results . Adv. Ther. 23 ( 1 ), 12 – 22 ( 2006 ).
  • 52. Trojanowski JQ , Schuck T , Schmidt ML , Lee VM . Distribution of tau proteins in the normal human central and peripheral nervous system . J. Histochem. Cytochem. 37 ( 2 ), 209 – 215 ( 1989 ).
  • 53. Franz G , Beer R , Kampfl A et al. Amyloid beta 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury . Neurology 60 ( 9 ), 1457 – 1461 ( 2003 ).
  • 54. Bell MJ , Kochanek PM . Pediatric traumatic brain injury in 2012: the year with new guidelines and common data elements . Crit. Care Clin. 29 ( 2 ), 223 – 238 ( 2013 ).
  • 55. Niyonkuru C , Wagner AK , Ozawa H , Amin K , Goyal A , Fabio A . Group-based trajectory analysis applications for prognostic biomarker model development in severe TBI: a practical example . J. Neurotrauma 30 ( 11 ), 938 – 945 ( 2013 ).